CN101627457A - 类金刚石碳多层掺杂生长的方法和器件 - Google Patents

类金刚石碳多层掺杂生长的方法和器件 Download PDF

Info

Publication number
CN101627457A
CN101627457A CN200880004915A CN200880004915A CN101627457A CN 101627457 A CN101627457 A CN 101627457A CN 200880004915 A CN200880004915 A CN 200880004915A CN 200880004915 A CN200880004915 A CN 200880004915A CN 101627457 A CN101627457 A CN 101627457A
Authority
CN
China
Prior art keywords
layer
dlc
knot
electrode
optimization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880004915A
Other languages
English (en)
Other versions
CN101627457B (zh
Inventor
摩西·马赫里泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Burning Solar Ltd
Original Assignee
Burning Solar Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Burning Solar Ltd filed Critical Burning Solar Ltd
Publication of CN101627457A publication Critical patent/CN101627457A/zh
Application granted granted Critical
Publication of CN101627457B publication Critical patent/CN101627457B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

a:DLC多层掺杂生长的方法包括以下步骤:在一步法中形成多个a:DLC层,从而产生从第一个结开始并结束于最后一个结的多个连续连接的PIN结,各PIN结具有p-型层、n-型层和本征层;改变至少各个p-型层和n-型层的sp3/sp2比率,并至少用银掺杂以增强各个PIN结中的电子迁移率;以及连接第一侧的电极和第二侧的电极之间的多个a:DLC层以产生对定向于光源的具有优化的光谱响应的器件。

Description

类金刚石碳多层掺杂生长的方法和器件
本申请要求于2007年2月13日提交的美国临时专利申请第60/901,033号的优先权,其以引用方式结合于此作为参考。
技术领域
本发明涉及非晶类金刚石碳薄多层掺杂生长的方法和器件,具体而言,本发明涉及形成具有混合控制(sp3/sp2比率)的可变结构以获得多结光伏电池和热太阳能电池以及其它应用的大光谱能隙的方法。
背景技术
近年来,非晶类金刚石碳(a:DLC,或a-C:H)膜已经取得较大发展。与CVD类金刚石碳(DLC)膜相比,a:DLC膜在低温下更易于沉积到大面积的衬底(如塑料)上。a:DLC膜的独特性能类似于单晶大块金刚石的性质,包括:硬度高、摩擦系数低、化学惰性、红外透明度、高电阻率和平滑度;这使之适用于许多应用中。
由于传统能源或许在未来将会被耗尽,满足世界日益增长的能量需求无疑将会涉及到增加太阳能的使用。因此,近年来人们已经加快了对太阳能电池的研究。尽管最近几十年硅和半导体化合物基的太阳能电池主导市场,但是由于原料和生产成本较高,低成本、稳定且高效的太阳能电池还有待于实现商业化。然而,随着碳半导体材料的出现,这种窘境有望得到改变。碳在自然界易于获得。碳表现出卓越的性质如:化学惰性;高硬度;高热导率;高介电强度;和红外(IR)光学透明度。a:DLC膜中的碳原子可以具有三种不同的原子坐标:sp3(四面体或脂族的),或下文中和所附权利要求中的“sp3”,是对于金刚石的键的典型类型,sp2,(三角形或芳香族的)或下文中和所附权利要求中的“sp2”,是对于石墨的键的典型类型,以及sp1(线形或炔属的)或下文中的“sp1”,是对于非晶碳的键的典型类型。
诸如以上提及的那些碳的所感兴趣的和独特的性质能够通过改变sp3和sp2杂化键的比率在从导体石墨(~0.0eV)到绝缘金刚石(~5.5eV)的非常宽的范围内改变。因此,许多研究人员已经开始关注碳在太阳能或光伏(PV)电池方面的应用。已经报道了碳基异质结构,如金属绝缘体半导体(MIS)二极管、肖特基二极管、金属绝缘体半导体场效应晶体管、异质结二极管和基于硅的光伏电池;由此表明了碳材料在光电器件中的潜在应用。然而,有关C/Si异质结构的PV性质相对而言还很少见诸报道。值得关注的是,实际上所有研究碳光伏电池的研究人员只报道了电池的整体光响应。但是区分C/Si PV电池中的碳和硅各自贡献还仍有待于实现。目前,仍需要对C/Si异质结构的谱频光响应特性展开进一步的工作并显现出C和Si各自的贡献,以理解本质并改进a:DLC-基PV电池的实际实现的特性。
先前的研究如Aisenberg,s.,Kimock,F.M.,Mater.Sci.Forum,52-53,(1988),1,结合于本文作为参考,其表明,通过各种制备方法产生的碳物质的能量是不同的,并且在控制sp3/sp2比率方面起到重要作用。而且,应该认识到,sp3键和sp2键的总体浓度(population concentration)还取决于前体物质的不同类型,其控制a:DLC结构膜的sp3/sp2比率。因此,碳薄膜的性质取决于沉积方法、沉积参数和所使用的前体材料。
现在已经有许多涉及非晶碳和/或类金刚石碳分层结构的用途和其制造的现有技术,其中:美国专利6,078,133(Menu等);7,214,600(Won等);5,206,534(Birkle等);和5,366,556(Prince等),结合于本文作为参考。另外,结合于本文作为参考的美国专利公开US2007/0042667和US2006/0078677也涉及类金刚石碳结构和器件。尽管这些现有技术触及到有关整体制造和一些前体细节的许多方面,但是并未公开sp3和sp2成键水平(以及,作为结果的sp3/sp2比率)的细部控制(detailed control)。
制造PV电池碳膜合适候选材料的其它参数是活化能。对于a:DLC膜(如用于PV电池中的那些)的研究,例如J.Robertson,Adv.Phys.,35(1986),317以及C.Benndorf,M.Grischke,A.Brauer和F.Thieme,Surf.Coat.Technol.,36(1988),171,表明与未掺杂的膜相比,沉积掺杂的a:DLC膜活化能的增加,这两篇文献结合于本文作为参考。活化能的研究揭示了碳膜的费米能级通过中间带隙从价带边缘向导带边缘附近移动。陶茨带隙(Tauc gap)和电导率也受到膜掺杂的影响。
Ingram等在美国专利5,562,781(结合本文此作为参考)中描述了包含多个膜层的PV电池,其中至少一层是非晶氢化碳的半导体膜。PIN结由膜形成;全部都是由非晶氢化碳制成的,且仅根据掺杂剂水平而不同,而不是每一PIN结都如此。从一个PIN结到邻近的PIN结存在带隙变化,以使每一PIN结中光伏效应将会由光谱的不同部分引起。Ingram描述了一种弧光放电沉积技术,该技术显然跨越了制造的不同阶段,并且Ingram引用了传统掺杂技术来控制材料性能。
因此,仍需要更好的sp3/sp2的比率和/或控制sp3/sp2的比率的新方法以及在a:DLC膜中利用掺杂来制造改进的光伏电池。
发明内容
本发明为非晶类金刚石碳多层掺杂生长的方法和器件,具体而言,本发明涉及形成具有混合控制(sp3/sp2比率)的可变结构以获得多结光伏电池和其它应用的大光谱能量带隙的方法。
根据本发明提供的教导,a:DLC多层掺杂生长的方法包括以下步骤:在一步法(one precess)中形成多个a:DLC层,从而产生从第一个结开始并结束于最后一个结的多个连续连接的PIN结,各个PIN结具有p-型层、n-型层和本征层;至少改变各个p-型层和n-型层的sp2/sp3比率,并至少利用银掺杂以增强各个PIN结中的电子迁移率;以及连接第一侧的电极和第二侧的电极之间的多个a:DLC层以产生对定向于光源具有优化光谱响应的器件。优选sp3/sp2比率在a:DLC层中是不同的,在最靠近光源的a:DLC层中为约4.0eV或更大到距离光源最远的a:DLC层中为约0.60eV的比率范围内变化。最优选地,实施至少用银掺杂的a:DLC层以获得从第一个结到最后一个结的受控光伏响应。典型地,其中优化的光谱响应产生优化的器件能量效率。最典型地,优化的光谱响应进一步包括将入射光聚焦到器件上。优选地,该器件是光伏电池。典型地,该器件是集成电路的部件。最优选地,该器件是太阳能电池。
本发明进一步提供了一种a:DLC多层器件,其包含:可在一步法中形成的多个a:DLC层,所述层进一步包含具有第一个结和最后一个结的多个连续连接的PIN结,且各个PIN结具有p-型层、n-型层和本征层;各个p-型层和n-型层具有不同的sp3/sp2比率并至少用银掺杂以增强各个PIN结中的电子迁移率;可连接第一侧和第二侧的电极之间的a:DLC层包含当可定向于光源时具有优化的光谱响应的器件。优选地,sp3/sp2比率可从在a:DLC层中最靠近光源的a:DLC层中约为4.0eV或更大到距离光源最远的a:DLC层中约为0.60eV的范围内变化。最优选地,a:DLC层可至少用银掺杂以获得从第一个结到最后一个结的受控光伏响应。典型地,入射光可聚焦到器件上以进一步优化器件的光谱响应。最典型地,该器件是太阳能电池。优选地,该器件是集成电路的部件。
本发明进一步提供了增强a:DLC多层掺杂生长的方法,包括以下步骤:在一步法中形成第一多个a:DLC层,从而产生从第一个结开始并结束于最后一个结的多个连续连接的PIN结,各个PIN结具有p-型层、n-型层和本征层;改变至少各个p-型层和n-型层的sp3/sp2比率,并至少用银掺杂以增强各个PIN结中的电子迁移率;根据步骤a和b制造第二多个a:DLC层;连接所述层的各个第一侧和第二侧的电极之间的第一多个a:DLC层并连接所述层的各个第一侧和第二侧的电极之间的第二多个a:DLC层;以及连接两个该多个a:DLC层的各个第二侧的各个电极,以产生对定向于光源具有优化光谱响应和优化热响应的器件。优选地,优化的光谱响应进一步包括将入射光聚焦到该器件上。最优选地,该器件是太阳能电池。典型地,该器件是集成电路的部件。
附图说明
本文中仅通过举例说明的方式参照附图来描述本发明,其中:
图1是根据本发明一种实施方式的器件10的示意图,其具有多层膜15;和
图2是根据本发明一种实施方式的强化的器件100的示意图。
具体实施方式
本发明是一种非晶类金刚石碳多层掺杂生长的方法和器件,具体而言,本发明涉及形成具有混合控制(sp3/sp2比率)的可变结构以获得多结光伏电池和其它应用的大光谱能量带隙的方法。
根据本发明的非晶类金刚石碳多层掺杂生长的原理方法可以参照附图和所附描述更好地理解。
在说明书和所附的权利要求中,定义了以下术语。
“非晶类金刚石碳”(可替代地“a:DLC”和/或“a-C:H”)意在是指以碳原子作为主要元素的氢化的含碳材料,大部分这种碳原子在扭曲的四面体配位作用中发生键接。a:DLC能够典型地通过PVD方法形成,但是也能够使用CVD或其它方法,如气相沉积方法。值得注意的是,各种其它元素能够作为杂质或作为掺杂剂包含在DLC材料内,包括但不限于氢、硫、磷、硼、氮、硅和钨等。
“sp3/sp2比率”意在是指a:DLC材料中完全金刚石结构与完全石墨结构之间的比率,术语“sp3”和“sp2”如上文中所定义。
“一步法(one process)”意在是指在一个处理设备中基本上伴随(同时)发生的工艺过程—相对于在非伴随时期内必需多个处理设备和/或涉及一个或多个处理设备的重复步骤的工艺过程。在许多情况下,与涉及许多工艺过程的类似方法相比,除了其它优点之外,一步法提供了时间和成本方面的优势。
“功函数”通常以eV表示,意在是指使物质最高能量状态的电子从物质中发射到真空空间中所需要的能量。因此,功函数为约4.5eV的物质(如铜)需要4.5eV的能量才能使电子从物质表面释放到0eV的理论上的理想真空中。
“热电转化率”涉及热能转化成电能或电能转化成热能的转化率,或者热能的流动。另外,在本发明实施方式的上下文中,用于光伏电池中的a:DLC一般在热离子发射下工作。正如下文中所讨论的,热离子发射是一种物质随着温度升高而实现电子发射增加的特性。诸如a:DLC之类的材料在远低于大多数其他材料的温度下就能表现出热离子发射。例如,当许多材料在超过约1,100℃的温度下倾向于在发射特性方面表现出相当大的热离子发射或温度相关的效应时,a:DLC在接近室温到高达1000℃或更高的温度变化下就表现出发射增加。诸如a:DLC之类的热离子材料在从低于室温到约300℃的温度下均能够使用。
现在参照图1,图1是器件10(如PV电池或太阳能电池)的示意图,根据本发明的一种实施方式,其具有多层膜15。该多层膜包含许多PIN结20,每个PIN结由三个分别的a:DLC薄膜(三极管(trios))形成(图中未示出);该层彼此连续沉积。在本发明的一种实施方式中,紧邻电极层25(氧化铟锡)ITO的PIN三极管由具有高sp3/sp2比率的a:DLC层制成,下文将对其进行进一步描述。相对地,紧邻电极层30的PIN三极管由具有低sp3/sp2比率的a:DLC层制成,下文将对其进行进一步描述。图中未显示出电极层30在的衬底上生长。PIN结20夹在上下电极层之间且与上下电极完全电接触。在本发明的其它实施方式中,电极30和25之一或二者可以均由ITO层制成,正如本技术领域中所已知的。器件10暴露于光源35,例如但不限于太阳光。上电极层25通常接近于光源定向并且该上电极被制成对来自光源的入射光具有高度透明度。引线40被电连接到电极并连接到负载45,例如但不限于:电储存器件、其他电路,或正常接收电能的其他电气/电子器件。
包含a:DLC层的PIN结三极管具有如下文所描述的许多重要性质。本文中所描述的所有这些层具有本技术领域已知的典型厚度,约1μm至约0.1μm,但是厚度也可以大于或小于该范围。
下表1.1来自结合于本文作为参考的Aisenberg,S.,Kimock,F.M.,Mater.Sci.Forum,52-53,(1988),1,其示出了各类非晶和结晶碳材料的几种关键物理特性。本发明的实施方式包括具有大带隙(>4eV)的a:DLC层,其用于改进太阳能电池的导热率(导热性)和增加表面保护。
表1.1几种类型的碳材料的关键物理特性[Aisenberg等之后]
(a)碳的类型   密度(g/cm3)   光学带隙(eV)   硬度(Gpa)   sp3(%)   H(%)
  石墨   2.27   0.0   ......   0.0   0.0
  玻璃态碳   1.3-1.6   0.0   2-3   ~0   ~0
  蒸发   1.9-2.0   0.4-0.7   2-5   <5   <5
  在Si上溅射C(77K)   2.2-2.6   0.6-0.9   10   5-10   <5
  i-C   2.9-3.4   2.5   100   >85   <5
  硬a:DLC   1.6-2.0   1.2-1.6   10-30   40-50   30-50
  软a:DLC   0.9-1.2   1.6-4.0   <5   50-80   50-60
  聚乙烯   0.9   6.0   0.01   100   66
  金刚石   3.52   5.5   100   100   0.0
典型地,以最靠近光源的层中的sp3/sp2比率最高且最远离光源的层中的sp3/sp2比率最低而选择性地制造a:DLC层20。按照这种方式,器件10对光源具有优化的响应,因为仅有波长较长的光被吸收并在最靠近光源的PIN结中被转化成电流,以使较短波长的光通过最靠近光源的层并前进至随后的层,在此处光被选择性吸收并转化成电流。选择性地形成具有sp3/sp2比率为约4.0eV或更大的a:DLC层(具有更类似于金刚石的性质的层,包括高透明度)到约0.5eV的a:DLC层(具有更类似于石墨性质的层)的PIN结20,以使器件10具有优化的光谱响应。
另外,一步法可以用于本发明的实施方式中基于硬a-C:H和软a-C:H以接近连续的方式形成具有a:DLC层的PIN结20。器件10的制造可以在玻璃衬底上进行,通过由固体石墨生长导电性电极层30然后在一个步骤(一步法,one process)中在该电极上制造所有的a:DLC层。按照这种方式,a:DLC层可以是具有各种不同性质的一种连续膜的等价物,这些性质通过受控的和不同sp3/sp2比率以及如下文所描述的在膜中从下电极迁移到上电极的适当掺杂(如本领域中所知的以产生n-掺杂层、p-掺杂层和本征层)来表达。
在本发明的实施方式中,可将Ag(银)作为掺杂材料引入到a:DLC层20中,以减少复合并增加载流子的寿命,从而影响a:DLC的电学性质。这种现象在以下文献中报道过,它们结合于本文作为参考:H.Biederman,L.Martinu,D.Slavinska,I.Chudacek,Pure &Appl.Chem.,60(1988),607;H.Biederman,Z.Chmel,A.Fejfar,M.Misina,J.Pesicka,Vacuum,40(1990);P.Sheng,Y.Abeles,P.Arie,Phys.Review Letters,31(1977),44;和D.Babonneau,T.Cabioc’h,A.Naudon,J.C.Girard,M.F.Denanot,Surface Science,409(1998),358。尽管还有几种其它的a:DLC掺杂材料,如Na、I和B,但是它们全部都生成p-型掺杂。因此,有效的构思是掺杂p-型的a:DLC以获得制造基于p-n结的器件(例如二极管和晶体管)所需的n-型a:DLC。Ag掺杂的其它优点包括:掺杂均匀性得到改进;降低电阻率(电流比率R=(IL-Id)/IL(Id为黑暗中的电流)和光照下的电流(IL));负的光电导率的附加效应;以及改进/提高太阳能电池电流的能隙。
与a:DLC的Ag掺杂有关的另一次要优点是在离线工艺过程控制中表面增强的拉曼光谱。这是基于以下事实,即在石墨存在下不能区分出较小百分比含量的金刚石,因为石墨的散射截面是金刚石的50倍。然而,如果将非常少量的银溅射到a:DLC膜的表面上,则金刚石的拉曼线特性显著增强。
在本发明的实施方式中,Ag-a:DLC膜可以通过RF溅射方法在硅、玻璃、塑料、蓝宝石衬底的衬底(图中未示出),以及任何其它合适的材料上生长,其中Ar+CH4气体的混合物被引入到具有Ag板作为电极之一的沉积室中。可替代地,能够以不同形式引入Ag源,例如气态形式。
a:DLC膜的一种沉积工艺是烃(CH4)或烃与其它气体或掺杂气体的混合物采用RF(13.56MHz)辉光放电。在一个实验中,在沉积室排空至压力p≤1.33×10-4Pa之后实施沉积过程。真空室的尺寸为:直径为50cm,高为80cm。电极直径为20cm,阴极和阳极之间间隔8~10cm。电极还起到衬底支撑物的作用,并且采用水冷式电极。相对于接地的电压Vb,功率电极(所谓的阴极)是RF负性自偏压。因此,其易受离子轰击(例如,受到C+的轰击)。
允许的CH4压力为2~10毫托而放电功率在50至400W之间变化(自偏压为-400至-1000V)。沉积室中允许的气体的纯度为大于99.99%以获得具有高纯度和良好附着力的a:DLC膜。粒子经过滤后,利用质流控制(MFC)来控制气体进入沉积室。
在电接地或未接地(floating)衬底上生长的复合膜经受电子和离子轰击。在通常的放电条件下,未接地或接地衬底相对于等离子体电势为负(约10V压降)。具有该平均能量的正离子轰击是特别重要的,因为其通过表面自由基产生增强了等离子体聚合。在普通平面磁控管的情况下,电压降较低且大多数电子通过隧道磁场捕获。如果增加的UB经由独立RF发生器的电容耦合或通过分流初始RF功率而作用于衬底上,这种情况就会发生变化。简单的解决方案是将该衬底置于激发电极上,例如,沉积等离子体中的Ag板。当使用CH4+Ar气体时,竞争性反应Ar离子蚀刻衬底,除去Ag原子同时CH4发生分解,产生掺杂银的a:DLC膜。在工艺过程中增加Ar分压,膜中Ag的浓度就会增加。
对于a:DLC膜中Ag的沉积,采用真空室,其中放置Ag箔作为一个电极,而衬底作为第二电极。通过质流控制(MFC)进行控制气体流速之比。相对于CH4+Ar总压(6.7×10-1Pa),采用微电极分析器(Micro Pole Analyzer)在沉积室中测定Ar分压[%]的范围。Ag掺杂水平是已知的,采用气体源前体或液体蒸发的气体。
现在参照图2,该图是根据本发明一种实施方式增强的器件100,如PV电池或太阳能电池的示意图。除了以下描述的差异之外,增强的器件100一般类似于在图1中所示的器件10进行工作,以至于用相同的标号表示的元件在结构和操作中一般是相同的。
多层膜包含许多PIN结120和120′(类似于图1中所示的PIN结20);上电极层125和125′(类似于图1中所示的上电极层25);和下电极层130和130′(类似于图1中所示的下电极层30)。在图中能够看到,两个器件10被构造为它们的下电极彼此靠近,但是这些电极一般是彼此绝缘的(图中未示出)。这样的绝缘的一个实例是非导电性衬底,或可选地,其可以是接地的导电材料,通过共同接地起作用,强化的器件可以在其上生长。
引线40和40′以及负载45和45′的功能一般类似于图1中所示的引线40和负载45。增强的器件100的优点在于所示的结构具有在对光源35的光谱响应方面和器件的整体热管理方面优化的a:DLC层。例如,由于器件起到了热离子器件作用,因此当来自照射光源35的光入射到上电极125上并且在PIN结120中被选择性吸收时,就会产生热。产生的热通过PIN结120并通过下电极130和130′而被传导到PIN结120′,其中所产生的一部分热能被转换成电能,通过引线45′回收。另外或可替代地,光入射到器件100上可以进一步被一些或所有PIN结120′吸收而进一步产生电。在本发明的实施方式中,如上文所述,PIN结120和120′中的a:DLC层根据sp3/sp2比率选择性地制造,以优化器件100的整体工作性能。
采用具有高sp3/sp2比的a:DLC用于选择性层的其它优点在于具有这些高比率值的a:DLC是高度热导的。这种性质可以被有利地用于热管理器件10和100从而在总体上增强它们的性能。而且,薄层的使用一般有助于器件整体热管理;薄层一般提供较低的热导率阻抗。
在本发明的其它实施方式中,器件10和100利用单个分色镜将两个具有不同吸收谱带的PIN结之间的入射光谱分开。这种设计能够拓展到许多半导体转化器(converter)。菲涅耳透镜(Fresnellens)可以用于收集入射光并将其引导进入锥形集中器(或锥形集光器,pyramidal concentrator)。该集中器将光递送到小的二色性光学器件,在这种情况下是棱镜,其将吸收不同谱带的太阳能电池之间的输入光分开。
本发明的另一实施方式是集中光学系统,采用将PIN结边沿侧上的光聚焦的微型光学组件。这种原理的优点在于入射光被集中到每一个PIN结上,并且可以增加热管理和器件效率。
采用如上所描述的a:DLC的本发明的实施方式可以进一步应用于常规的和微电子集成电路制造,无论是否应用此前提及的PIN结。这样的应用包括但不限于:可变电子调光器、检测器和可变光传感器(一个检测器中的大光谱波长)、晶体管、电容器(具有可变电容的纳米电容器)、可变反熔丝、场致发射器件、可变电阻组件、以及具有可变电子、机械和光学性质的保护性光学窗口(opticalwindows)阵列、硅和其它光伏电池的改进、ULSI的可变低介电常数膜、用于磁存储盘的具有不同电子、机械、光学和结构(形态,morphology)性质的保护性涂层区域、光学窗口、微机电器件(EM)、固态继电器、任何类型电子器件的恒温器、波导传感系统、医疗装置、微光学组件涂层、和MEMS产品系统。
应该理解,以上描述仅意在作为举例,且许多其他实施方式都可以包括在由所附权利要求限定的本发明的范围内。

Claims (18)

1.一种a:DLC多层掺杂生长的方法,包括以下步骤:
(a)在一步法中形成多个a:DLC层,从而产生从第一个结开始并结束于最后一个结的多个连续连接的PIN结,各PIN结具有p-型层、n-型层和本征层;
(b)改变至少各p-型层和n-型层的sp2/sp3比率,并至少掺杂银以增强各PIN结中的电子迁移率;以及
(c)连接第一侧的电极和第二侧的电极之间的多个a:DLC层以产生对定向于光源的具有优化的光谱响应的器件。
2.根据权利要求1所述的方法,其中,所述sp3/sp2比率在a:DLC层中是变化的,所述比率的范围为最靠近光源的a:DLC层中约为4.0eV或更大到距离光源最远的a:DLC层中约为0.60eV。
3.根据权利要求2所述的方法,其中,至少用银掺杂a:DLC层以产生从所述第一个结到所述最后一个结的受控光伏响应。
4.根据权利要求3所述的方法,其中,所述优化的光谱响应产生了所述器件的优化能量效率。
5.根据权利要求4所述的方法,其中,所述优化的光谱响应进一步包括将入射光聚焦到所述器件上。
6.根据权利要求5所述的方法,其中,所述器件是光伏电池。
7.根据权利要求5所述的方法,其中,所述器件是集成电路的部件。
8.根据权利要求5所述的方法,其中,所述器件是太阳能电池。
9.一种a:DLC多层器件,包含:
(a)可在一步法中形成的多个a:DLC层,所述层进一步包含具有第一个结和最后一个结的多个连续连接的PIN结,且各PIN结具有p-型层、n-型层和本征层;
(b)各个所述p-型层和n-型层具有不同的sp3/sp2比率并至少掺杂有银以增强各PIN结中的电子迁移率;
(c)可连接所述第一侧和第二侧的电极之间的a:DLC层,包括当可定向于光源时具有优化的光谱响应的器件。
10.根据权利要求8所述的器件,所述器件的sp3/sp2比率从最靠近光源的a:DLC层中的约为4.0eV或更大到距离光源最远的a:DLC层中的约为0.60eV的范围内变化。
11.根据权利要求9所述的器件,其中,所述a:DLC层至少用银掺杂以产生从第一个结到最后一个结的受控光伏响应。
12.根据权利要求9所述的器件,其中,将入射光聚焦到所述器件上以进一步优化所述器件的光谱响应。
13.根据权利要求12所述的方法,其中,所述器件是太阳能电池。
14.根据权利要求12所述的方法,其中,所述器件是集成电路的部件。
15.一种增强a:DLC多层掺杂生长的方法,包括以下步骤:
(a)在一步法中形成第一多个a:DLC层,从而产生从第一个结开始并结束于最后一个结的多个连续连接的PIN结,各PIN结具有p-型层、n-型层和本征层;
(b)至少改变所述各p-型层和n-型层的所述sp3/sp2比率,并至少用银掺杂以增强各PIN结中的电子迁移率;
(c)根据步骤a和b制造第二多个a:DLC层;
(d)连接所述层的各个第一侧和第二侧的电极之间的第一多个a:DLC层并连接所述层的各个第一侧和第二侧的电极之间的第二多个a:DLC层;以及
(e)连接两个所述多个a:DLC层的所述各个第二侧的各个电极以产生对所定向的光源具有优化的光谱响应和优化的热响应的器件。
16.根据权利要求15所述的方法,其中,所述优化的光谱响应进一步包括将入射光聚焦到所述器件上。
17.根据权利要求16所述的方法,其中,所述器件是太阳能电池。
18.根据权利要求16所述的方法,其中,所述器件是集成电路的部件。
CN2008800049152A 2007-02-13 2008-02-13 类金刚石碳多层掺杂生长的方法和器件 Expired - Fee Related CN101627457B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US90103307P 2007-02-13 2007-02-13
US60/901,033 2007-02-13
PCT/IL2008/000189 WO2008099394A2 (en) 2007-02-13 2008-02-13 A method and device of diamond like carbon multi-layer doping growth

Publications (2)

Publication Number Publication Date
CN101627457A true CN101627457A (zh) 2010-01-13
CN101627457B CN101627457B (zh) 2012-07-18

Family

ID=39690604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800049152A Expired - Fee Related CN101627457B (zh) 2007-02-13 2008-02-13 类金刚石碳多层掺杂生长的方法和器件

Country Status (6)

Country Link
US (1) US8309842B2 (zh)
EP (1) EP2111653A2 (zh)
JP (1) JP2010521800A (zh)
CN (1) CN101627457B (zh)
AU (1) AU2008215768B2 (zh)
WO (1) WO2008099394A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368602A (zh) * 2015-12-18 2018-08-03 日本Itf株式会社 被覆膜与其制造方法及pvd装置
CN109950353A (zh) * 2019-04-16 2019-06-28 厦门大学 类金刚石薄膜太阳能电池及其制造方法
CN110446883A (zh) * 2017-03-31 2019-11-12 株式会社理研 滑动构件和活塞环
US10823288B2 (en) 2017-03-31 2020-11-03 Kabushiki Kaisha Riken Sliding member and piston ring
CN113403588A (zh) * 2020-03-16 2021-09-17 南京理工大学 高硬高耐磨掺银类金刚石红外增透膜的制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727798B1 (en) * 2009-01-27 2010-06-01 National Taipei University Technology Method for production of diamond-like carbon film having semiconducting property
US8164760B2 (en) 2010-03-11 2012-04-24 Western Digital (Fremont), Llc Method and system for interrogating the thickness of a carbon layer
US8298609B1 (en) 2010-06-14 2012-10-30 Wd Media, Inc. Method and system for interrogating the thickness of a carbon layer
JP5648523B2 (ja) * 2011-02-16 2015-01-07 富士通株式会社 半導体装置、電源装置、増幅器及び半導体装置の製造方法
JP5903818B2 (ja) * 2011-09-26 2016-04-13 富士通株式会社 化合物半導体装置及びその製造方法
TWI478405B (zh) * 2012-12-13 2015-03-21 Ind Tech Res Inst 熱電薄膜結構
RU2592797C2 (ru) * 2014-11-21 2016-07-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследователский университет)" (МАИ) Способ получения антимикробных нанокомпозитных полимерных материалов
US11220742B2 (en) * 2019-03-22 2022-01-11 International Business Machines Corporation Low temperature lift-off patterning for glassy carbon films

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4513168A (en) * 1984-04-19 1985-04-23 Varian Associates, Inc. Three-terminal solar cell circuit
EP0472054A1 (de) * 1990-08-20 1992-02-26 Siemens Aktiengesellschaft Photozelle mit amorphem, wasserstoffhaltigem Kohlenstoff
US5366556A (en) * 1992-01-10 1994-11-22 Robert Prince Process and apparatus for production of diamond-like films
US5562781A (en) * 1995-01-19 1996-10-08 Ohio University Amorphous, hydrogenated carbon (a-C:H) photovoltaic cell
US5837331A (en) * 1996-03-13 1998-11-17 Motorola, Inc. Amorphous multi-layered structure and method of making the same
US6569580B2 (en) * 2001-03-13 2003-05-27 Diverging Technologies, Inc. Binary and phase-shift photomasks
US20070042667A1 (en) * 2002-03-08 2007-02-22 Chien-Min Sung Diamond-like carbon energy conversion devices and methods thereof
US7214600B2 (en) * 2004-06-25 2007-05-08 Applied Materials, Inc. Method to improve transmittance of an encapsulating film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368602A (zh) * 2015-12-18 2018-08-03 日本Itf株式会社 被覆膜与其制造方法及pvd装置
CN108368602B (zh) * 2015-12-18 2020-08-25 日本Itf株式会社 被覆膜与其制造方法、pvd装置及活塞环
CN110446883A (zh) * 2017-03-31 2019-11-12 株式会社理研 滑动构件和活塞环
US10823288B2 (en) 2017-03-31 2020-11-03 Kabushiki Kaisha Riken Sliding member and piston ring
US10883601B2 (en) 2017-03-31 2021-01-05 Kabushiki Kaisha Riken Sliding member and piston ring
CN109950353A (zh) * 2019-04-16 2019-06-28 厦门大学 类金刚石薄膜太阳能电池及其制造方法
CN109950353B (zh) * 2019-04-16 2021-08-17 厦门大学 类金刚石薄膜太阳能电池及其制造方法
CN113403588A (zh) * 2020-03-16 2021-09-17 南京理工大学 高硬高耐磨掺银类金刚石红外增透膜的制备方法
CN113403588B (zh) * 2020-03-16 2022-11-25 南京理工大学 高硬高耐磨掺银类金刚石红外增透膜的制备方法

Also Published As

Publication number Publication date
CN101627457B (zh) 2012-07-18
AU2008215768B2 (en) 2013-02-07
AU2008215768A1 (en) 2008-08-21
WO2008099394A3 (en) 2009-05-28
US20100024873A1 (en) 2010-02-04
JP2010521800A (ja) 2010-06-24
WO2008099394A2 (en) 2008-08-21
US8309842B2 (en) 2012-11-13
EP2111653A2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
CN101627457B (zh) 类金刚石碳多层掺杂生长的方法和器件
JP2009503848A (ja) 組成傾斜光起電力デバイス及び製造方法並びに関連製品
Tsakalakos et al. Silicon nanowire solar cells
US7906723B2 (en) Compositionally-graded and structurally-graded photovoltaic devices and methods of fabricating such devices
EP0062471B1 (en) Thin film solar cell
Williams et al. Conducting polymer and hydrogenated amorphous silicon hybrid solar cells
Yan et al. Amorphous and nanocrystalline silicon thin film photovoltaic technology on flexible substrates
EP2221877B1 (en) Solar cell including silicon nano wire and method for fabricating solar cell
CN103594542B (zh) 光伏器件和形成光伏器件的方法
US20070023082A1 (en) Compositionally-graded back contact photovoltaic devices and methods of fabricating such devices
JP2008021993A (ja) 全背面接点構成を含む光起電力デバイス及び関連する方法
CN102804392A (zh) 半导体光学检测器结构
CN102064216A (zh) 一种新型晶体硅太阳电池及其制作方法
KR101886818B1 (ko) 이종 접합 실리콘 태양 전지의 제조 방법
US20140291147A1 (en) Target materials for fabricating solar cells
CN106887483A (zh) 硅基异质接面太阳能电池及其制备方法
US20130025643A1 (en) Solar cell device comprising an amorphous diamond like carbon semiconductor and a conventional semiconductor
TW201010115A (en) Method for depositing an amorphous silicon film for photovoltaic devices with reduced light-induced degradation for improved stabilized performance
CN109037392A (zh) 一种石墨烯/硅结构太阳能电池的生产工艺
Hamashita et al. Preparation of Al-doped hydrogenated nanocrystalline cubic silicon carbide by VHF-PECVD for heterojunction emitter of n-type crystalline silicon solar cells
CN103187454A (zh) 异质接面太阳能电池及其电极
TW201222639A (en) Method for producing a semiconductor device and a semiconductor device
KR20110044442A (ko) 박막 태양전지용 투명전극 및 그의 제조방법
RU2501121C2 (ru) Фотоэлектрический элемент и способ изготовления фотоэлектрического элемента
Moustakas Photovoltaic properties of amorphous silicon produced by reactive sputtering

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120718

Termination date: 20150213

EXPY Termination of patent right or utility model