CN101621085A - 基于p型硅片的黄铜矿类半导体薄膜异质结太阳电池 - Google Patents

基于p型硅片的黄铜矿类半导体薄膜异质结太阳电池 Download PDF

Info

Publication number
CN101621085A
CN101621085A CN200910183866A CN200910183866A CN101621085A CN 101621085 A CN101621085 A CN 101621085A CN 200910183866 A CN200910183866 A CN 200910183866A CN 200910183866 A CN200910183866 A CN 200910183866A CN 101621085 A CN101621085 A CN 101621085A
Authority
CN
China
Prior art keywords
solar cell
type
chalcopyrite
thickness
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910183866A
Other languages
English (en)
Other versions
CN101621085B (zh
Inventor
吴坚
王栩生
章灵军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHANGSHU CSI SOLAR POWER Co Ltd
CSI SOLAR ELECTRONIC (CHANGSHU) Co Ltd
CSI SOLAR OPTOELECTRONIC (SUZHOU) Co Ltd
Canadian Solar Manufacturing Changshu Inc
CSI Solar Technologies Inc
CSI Solar Power Luoyang Co Ltd
Original Assignee
CHANGSHU CSI SOLAR POWER Co Ltd
CSI SOLAR ELECTRONIC (CHANGSHU) Co Ltd
CSI SOLAR OPTOELECTRONIC (SUZHOU) Co Ltd
Canadian Solar Manufacturing Changshu Inc
CSI Solar Technologies Inc
CSI Solar Power Luoyang Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHANGSHU CSI SOLAR POWER Co Ltd, CSI SOLAR ELECTRONIC (CHANGSHU) Co Ltd, CSI SOLAR OPTOELECTRONIC (SUZHOU) Co Ltd, Canadian Solar Manufacturing Changshu Inc, CSI Solar Technologies Inc, CSI Solar Power Luoyang Co Ltd filed Critical CHANGSHU CSI SOLAR POWER Co Ltd
Priority to CN200910183866XA priority Critical patent/CN101621085B/zh
Publication of CN101621085A publication Critical patent/CN101621085A/zh
Application granted granted Critical
Publication of CN101621085B publication Critical patent/CN101621085B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种基于P型硅片的黄铜矿类半导体薄膜异质结太阳电池,包括依次叠层结合的受光面电极、透明导电层、N型黄铜矿半导体薄膜、P型晶体硅、P+背表面场和背金属电极,形成NPP+的异质结结构。本发明的太阳电池具有更好的光谱响应,尤其是在紫外和可见光波段,从而可以提升短路电流;且在正面可形成梯度带隙,类似于多结的堆叠效应,大幅度地提升开路电压和填充因子;最终得到的太阳电池的转化效率在19%以上。

Description

基于P型硅片的黄铜矿类半导体薄膜异质结太阳电池
技术领域
本发明涉及一种太阳能电池,具体涉及一种基于P型硅片的黄铜矿类半导体薄膜异质结太阳电池。
背景技术
当今世界,常规能源的持续使用带来了能源紧缺以及环境恶化等一系列经济和社会问题,解决上述问题的最好途经是大力发展和推广可再生能源。在可再生能源中,太阳能发电由于地域性限制小、应用范围广、基本无污染、可持续利用率高等优点,成为世界各国竞相发展的目标。目前,太阳能发电在可再生能源中所占比重还很小,主要原因是使用成本过高。因此,开发高效率、低成本的太阳能电池,使其成本接近甚至低于常规能源成本,将有着举足轻重而又意义深远的作用。
目前,现有的各类太阳能电池中,晶体硅太阳电池占了90%的市场份额,其中单晶硅电池的转化效率超过了17%,多晶硅电池转化效率也在15~16%。尽管在实验室中小面积的晶体硅电池的最高转化效率接近25%,但由于其工艺与结构过于复杂,不利于规模化生产及应用。因此,在成本不太高,工艺不太复杂的前提下,各国都在从新的器件结构努力,开发效率更高的晶体硅类太阳电池及其产业化技术。其中,基于晶体硅的异质结太阳电池是一个热点的方向。如一种基于P型硅衬底的太阳能电池,参见附图1所示,包括依次叠层结合的受光面电极1、N型非晶硅层2、本征非晶硅层3、P型硅衬底4和背电极5。其实验室转化效率已经突破18%,产业化的电池片的转化效率也已经达到19%。该类电池具有如下几大优点:(1)由于非晶硅的带隙在1.7eV以上,与晶体硅的1.12eV相比更高,从而形成更强的内建电场,大幅度地提高开路电压;(2)采用低温(200℃以内)沉积方式形成PIN结,避免了常规硅电池工艺的高温扩散(约900℃)工艺,既减少了生产能耗,又避免了高温产生的形变及热损伤,减少了碎片率;(3)在沉积非晶硅层形成PIN结的同时,带来了很好的表面钝化作用。
然而,上述HIT结构的太阳能电池存在如下问题:(1)由于非晶硅材料有很多的界面态和缺陷,载流子迁移率比较低,影响了光生电流的收集;(2)非晶硅材料本身有光致衰退作用,要降低该类电池的效率衰减,必须尽可能地采用N型硅片为衬底,限制了其原材料的选择范围;(3)非晶硅材料和晶体硅材料的光吸收系数都不是很高,要提高长波响应,要求硅片的厚度不能太薄,也限制了电池向薄型化方向发展的潜力。
发明内容
本发明的目的是提供一种基于P型硅片的黄铜矿类半导体薄膜异质结太阳电池,以获得较高的转化效率。
为达到上述发明目的,本发明采用的技术方案是:一种基于P型硅片的黄铜矿类半导体薄膜异质结太阳电池,包括依次叠层结合的受光面电极、透明导电层、N型黄铜矿半导体薄膜、P型晶体硅、P+背表面场和背金属电极,形成NPP+的异质结结构。
上文中,所述N型黄铜矿半导体薄膜与P型晶体硅形成异质PN结,有如下优点:(1)由于有高的光吸收系数,N型层可以比较薄,P型晶体硅的厚度也可以进一步减薄;(2)由于有高的光吸收系数,再加上透明导电层兼有减反射作用,N型层无需做类似绒面的陷光结构;(3)可以调整带隙,按照受光顺序形成从高到低的带隙梯度分布,以达到与太阳光谱匹配形成分段吸收的目的;这样既增加光生电流,又增大开路电压;(4)由于N型黄铜矿半导体薄膜本身载流子迁移率比较高,再加上可以做成很高结晶质量,因而可以更好地收集光生电流。
上述技术方案中,所述受光面电极为Al、Ag、Au、Ni、Cu/Ni、Al/Ni或Ti/Pd/Ag电极,其厚度为100nm~400μm。优选的厚度为20~200μm。该受光面电极主要起到收集电流的作用。
上述技术方案中,所述透明导电层为ITO、SnO2:F(FTO)、CdSnO4、CuGaO2、CuInO2、SrCu2O2、SnO2、In2O3或掺杂的ZnO层,其厚度为80~1000nm。优选的厚度为100~500nm。所述掺杂的ZnO层为掺B、Al、Ga或In等的ZnO层。该透明导电层具有较高的透光性和电导率,除了起到收集电流的作用外,还可通过优化厚度起到良好的减弱表面反射的作用。
上述技术方案中,所述N型黄铜矿半导体薄膜(7)为按照ABC2的原子配比形成的化合物,其中:A为Cu、Ag中的一种元素或二种元素的组合,B为Al、Ga、In中的一种元素或多种元素的组合,C为S、Se、Te中的一种元素或多种元素的组合;其厚度为5nm~3μm,带隙为1.02~3.5eV。优选的厚度为10~300nm。
与之相应的另一种技术方案是,所述N型黄铜矿半导体薄膜为层叠的多层结构,按照受光顺序其带隙从3.5eV到1.02eV形成由高到低分布。
上文中,这类N型黄铜矿半导体具有如下特点:
(1)可以做成高结晶质量的薄膜,且晶格常数与硅
Figure G200910183866XD00031
比较接近,晶格失配在-2.3%到+6.8%,因而可以与硅形成结构稳定的异质结;
(2)是直接带隙半导体,其光吸收系数是目前所有半导体类里最高的,在可见与紫外光区都在105/cm,平均比晶体硅高2个数量级;
(3)是自调整半导体,表现为两方面:一是调整不同主族元素比例,可以直接由其化学组成的调变得到P型或N型的不同导电类型,而不必借助外加杂质;二是在同一主族内搭配不同比例的元素,可以调整带隙,调整范围在1.02~3.5eV;
(4)没有光致衰退效应,且有很好的抗辐射性能,适合于太空应用。
上述技术方案中,所述P+背表面场的厚度为0.1~2μm,并采用铝掺杂,掺杂浓度为1×1018~1×1020/cm3。优选的厚度为0.1~0.5μm。N+背表面场的作用是形成高低结,进一步提升开路电压,同时还可起到背表面钝化的作用。
上述技术方案中,所述背金属电极为Al、Ag、Au、Ni、Cu/Ni、Al/Ni或Ti/Pd/Ag电极,其厚度为100nm~400μm。优选的厚度为20~200μm。背金属电极采用背部全覆盖,其作用是收集背电流,同时增加波反射,提高N型硅片对长波的吸收。
上述技术方案中,所述P型晶体硅为单晶硅、太阳能级或金属级多晶硅、带状硅,其厚度为100~350μm,掺杂浓度为1×1015~1×1017/cm3
上述技术方案中,在所述N型黄铜矿半导体薄膜和P型晶体硅之间还设有一层本征硅薄膜层,形成NIPP+的异质结结构,所述本征硅薄膜层的厚度为3~50nm。优选的厚度为5~15nm。该本征硅薄膜层的作用是减少界面缺陷态,增加表面钝化效应;特别是对于金属含量较高或缺陷态密度较多的低级别P型硅片(如金属级或带状硅)。
由于上述技术方案的采用,与现有技术相比,本发明具有如下优点:
1.本发明采用了N型黄铜矿半导体薄膜与P型晶体硅形成异质PN结,具有更好的光谱响应,尤其是在紫外和可见光波段,从而可以提升短路电流;且在正面可形成梯度带隙,类似于多结的堆叠效应,大幅度地提升开路电压和填充因子;最终得到的太阳电池的转化效率在19%以上。
2.本发明的太阳电池耐辐射好,效率衰退小。
附图说明
附图1是背景技术中太阳能电池的结构示意图;
附图2是本发明实施例一的结构示意图;
附图3是本发明实施例一的J-V曲线图;
附图4是本发明实施例二的结构示意图;
附图5是本发明实施例二的J-V曲线图;
附图6是本发明实施例三的结构示意图;
附图7是本发明实施例三的J-V曲线图。
其中:1、受光面电极;2、P型非晶硅层;3、本征非晶硅层;4、N型硅衬底;5、背电极;6、透明导电层;7、N型黄铜矿半导体薄膜;8、P型晶体硅;9、P+背表面场;10、背金属电极;11、本征硅薄膜层。
具体实施方式
下面结合附图及实施例对本发明作进一步描述:
实施例一
参见附图2~3所示,一种基于P型硅片的黄铜矿类半导体薄膜异质结太阳电池,包括依次叠层结合的受光面电极1、透明导电层6、N型黄铜矿半导体薄膜7、P型晶体硅8、P+背表面场9和背金属电极10,形成NPP+的异质结结构。
上文中,所述受光面电极为Ag电极,其厚度为20μm;该受光面电极主要起到收集电流的作用。所述透明导电层为ITO层,其厚度为200nm;该透明导电层具有较高的透光性和电导率,除了起到收集电流的作用外,还可通过优化厚度起到良好的减弱表面反射的作用。
上述技术方案中,所述N型黄铜矿半导体薄膜为
CuInGaS2——N型,带隙为1.7eV,厚度为8nm
CuInS2——N型,带隙为1.54eV,厚度为8nm
所述P+背表面场的厚度为0.2μm,并采用铝掺杂,掺杂浓度为2×1019/cm3;P+背表面场的作用是形成高低结,进一步提升开路电压,同时还可起到背表面钝化的作用。
所述背金属电极为Al电极,其厚度为100μm;背金属电极采用背部全覆盖,其作用是收集背电流,同时增加波反射,提高P型硅片对长波的吸收。
上述技术方案中,所述P型晶体硅为单晶硅,其厚度为200μm,掺杂浓度5×1016/cm3
上文中,这类N型黄铜矿半导体具有如下特点:
(1)可以做成高结晶质量的薄膜,且晶格常数与硅
Figure G200910183866XD00051
比较接近,晶格失配在-2.3%到+6.8%,因而可以与硅形成结构稳定的异质结;
(2)是直接带隙半导体,其光吸收系数是目前所有半导体类里最高的,在可见与紫外光区都在105/cm,平均比晶体硅高2个数量级;
(3)是自调整半导体,表现为两方面:一是调整不同主族元素比例,可以直接由其化学组成的调变得到P型或N型的不同导电类型,而不必借助外加杂质;二是在同一主族内搭配不同比例的元素,可以调整带隙,调整范围在1.02~3.5eV;
(4)没有光致衰退效应,且有很好的抗辐射性能,适合于太空应用。
因而,所述N型黄铜矿半导体薄膜与P型晶体硅形成异质PN结,有如下优点:(1)由于有高的光吸收系数,P型层可以比较薄,P型晶体硅的厚度也可以进一步减薄;(2)由于有高的光吸收系数,再加上透明导电层兼有减反射作用,N型层无需做类似绒面的陷光结构;(3)可以调整带隙,按照受光顺序形成从高到低的带隙梯度分布,以达到与太阳光谱匹配形成分段吸收的目的;这样既增加光生电流,又增大开路电压;(4)由于N型黄铜矿半导体薄膜本身载流子迁移率比较高,再加上可以做成很高结晶质量,因而可以更好地收集光生电流。
经过AMPS-1D计算拟合,得到的理论转化效率达到20.371%,详见图3 。
实施例二
参见附图4~5所示,一种基于P型硅片的黄铜矿类半导体薄膜异质结太阳电池,包括依次叠层结合的受光面电极1、透明导电层6、N型黄铜矿半导体薄膜7、P型晶体硅8、P+背表面场9和背金属电极10。在所述N型黄铜矿半导体薄膜和P型晶体硅之间还设有一层本征硅薄膜层11,形成NIPP+的异质结结构,所述本征硅薄膜层的厚度为5nm。
上文中,所述受光面电极为Ag电极,其厚度为20μm;该受光面电极主要起到收集电流的作用。所述透明导电层为ITO层,其厚度为200nm;该透明导电层具有较高的透光性和电导率,除了起到收集电流的作用外,还可通过优化厚度起到良好的减弱表面反射的作用。
上述技术方案中,所述N型黄铜矿半导体薄膜为
CuInGaS2——N型,带隙为1.8eV,厚度为1.2μm
CuInS2——N型,带隙为1.54eV,厚度为15nm
所述P+背表面场的厚度为0.2μm,并采用铝掺杂,掺杂浓度为2×1019/cm3;P+背表面场的作用是形成高低结,进一步提升开路电压,同时还可起到背表面钝化的作用。
所述背金属电极为Al电极,其厚度为100μm;背金属电极采用背部全覆盖,其作用是收集背电流,同时增加波反射,提高P型硅片对长波的吸收。
上述技术方案中,所述P型晶体硅为单晶硅,其厚度为160μm。掺杂浓度5×1016/cm3
经过AMPS-1D计算拟合,得到的理论转化效率达到19.519%,详见图4。
实施例三
参见附图6~7所示,一种基于P型硅片的黄铜矿类半导体薄膜异质结太阳电池,包括依次叠层结合的受光面电极1、透明导电层6、N型黄铜矿半导体薄膜7、P型晶体硅8、P+背表面场9和背金属电极10,形成NPP+的异质结结构。
上文中,所述受光面电极为Ag电极,其厚度为20μm;该受光面电极主要起到收集电流的作用。所述透明导电层为ITO层,其厚度为300nm;该透明导电层具有较高的透光性和电导率,除了起到收集电流的作用外,还可通过优化厚度起到良好的减弱表面反射的作用。
上述技术方案中,所述N型黄铜矿半导体薄膜为
AgIn(SSe)2——N型,带隙为1.93eV,厚度为2μm
所述P+背表面场的厚度为0.2μm,并采用硼掺杂,掺杂浓度为2×1019/cm3;P+背表面场的作用是形成高低结,进一步提升开路电压,同时还可起到背表面钝化的作用。
所述背金属电极为Al电极,其厚度为100μm;背金属电极采用背部全覆盖,其作用是收集背电流,同时增加长波反射,提高P型硅片对长波的吸收。
上述技术方案中,所述P型晶体硅为单晶硅,其厚度为220μm。掺杂浓度5×1016/cm3
经过AMPS-1D计算拟合,得到的理论转化效率达到22.867%,详见图7。

Claims (10)

1.一种基于P型硅片的黄铜矿类半导体薄膜异质结太阳电池,其特征在于:包括依次叠层结合的受光面电极(1)、透明导电层(6)、N型黄铜矿半导体薄膜(7)、P型晶体硅(8)、P+背表面场(9)和背金属电极(10),形成NPP+的异质结结构。
2.根据权利要求1所述的基于P型硅片的黄铜矿类半导体薄膜异质结太阳电池,其特征在于:所述受光面电极(1)为Al、Ag、Au、Ni、Cu/Ni、Al/Ni或Ti/Pd/Ag电极,其厚度为100nm~400μm。
3.根据权利要求1所述的基于P型硅片的黄铜矿类半导体薄膜异质结太阳电池,其特征在于:所述透明导电层(6)为ITO、SnO2:F(FTO)、CdSnO4、CuGaO2、CuInO2、SrCu2O2、SnO2、In2O3或掺杂的ZnO层,其厚度为80~1000nm。
4.根据权利要求1所述的基于P型硅片的黄铜矿类半导体薄膜异质结太阳电池,其特征在于:所述N型黄铜矿半导体薄膜(7)为按照ABC2的原子配比形成的化合物,其中:A为Cu、Ag中的一种元素或二种元素的组合,B为Al、Ga、In中的一种元素或多种元素的组合,C为S、Se、Te中的一种元素或多种元素的组合;其厚度为5nm~3μm,带隙为1.02~3.5eV。
5.根据权利要求1所述的基于P型硅片的黄铜矿类半导体薄膜异质结太阳电池,其特征在于:所述N型黄铜矿半导体薄膜为层叠的多层结构,按照受光顺序其带隙从3.5eV到1.02eV形成由高到低分布。
6.根据权利要求1所述的基于P型硅片的黄铜矿类半导体薄膜异质结太阳电池,其特征在于:所述P+背表面场(9)的厚度为0.1~2μm,并采用硼、铝或镓掺杂,掺杂浓度为1×1018~1×1020/cm3
7.根据权利要求1所述的基于P型硅片的黄铜矿类半导体薄膜异质结太阳电池,其特征在于:所述背金属电极(10)为Al、Ag、Au、Ni、Cu/Ni、Al/Ni或Ti/Pd/Ag电极,其厚度为100nm~400μm。
8.根据权利要求1所述的基于P型硅片的黄铜矿类半导体薄膜异质结太阳电池,其特征在于:所述P型晶体硅(8)为单晶硅、太阳能级或金属级多晶硅、带状硅,其厚度为100~350μm,掺杂浓度为1×1015~1×1017/cm3
9.根据权利要求1所述的基于P型硅片的黄铜矿类半导体薄膜异质结太阳电池,其特征在于:在所述N型黄铜矿半导体薄膜和P型晶体硅之间还设有一层本征硅薄膜层(11),形成NIPP+的异质结结构,所述本征硅薄膜层的厚度为3~50nm。
10.根据权利要求14所述的基于P型硅片的黄铜矿类半导体薄膜异质结太阳电池,其特征在于:所述本征硅薄膜层(11)的厚度为5~15nm。
CN200910183866XA 2009-08-03 2009-08-03 基于p型硅片的黄铜矿类半导体薄膜异质结太阳电池 Expired - Fee Related CN101621085B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910183866XA CN101621085B (zh) 2009-08-03 2009-08-03 基于p型硅片的黄铜矿类半导体薄膜异质结太阳电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910183866XA CN101621085B (zh) 2009-08-03 2009-08-03 基于p型硅片的黄铜矿类半导体薄膜异质结太阳电池

Publications (2)

Publication Number Publication Date
CN101621085A true CN101621085A (zh) 2010-01-06
CN101621085B CN101621085B (zh) 2012-05-23

Family

ID=41514213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910183866XA Expired - Fee Related CN101621085B (zh) 2009-08-03 2009-08-03 基于p型硅片的黄铜矿类半导体薄膜异质结太阳电池

Country Status (1)

Country Link
CN (1) CN101621085B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621084B (zh) * 2009-08-03 2011-02-16 苏州阿特斯阳光电力科技有限公司 基于n型硅片的黄铜矿类半导体薄膜异质结太阳电池
CN102185001A (zh) * 2011-04-18 2011-09-14 西安交通大学 硅基纳米氧化锌粉体薄膜异质结太阳能的结构及其制备
CN103219413A (zh) * 2013-04-10 2013-07-24 中国科学院微电子研究所 一种石墨烯径向异质结太阳能电池及其制备方法
CN104867990A (zh) * 2014-02-21 2015-08-26 美环能股份有限公司 具钝化层的太阳能电池及其制程方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101438417B (zh) * 2006-03-14 2011-04-06 科鲁斯技术有限公司 包含金属衬底的基于黄铜矿半导体的光伏太阳能电池、用于光伏太阳能电池的被涂敷的金属衬底及其制造方法
JP4439492B2 (ja) * 2006-05-25 2010-03-24 本田技研工業株式会社 カルコパイライト型太陽電池およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621084B (zh) * 2009-08-03 2011-02-16 苏州阿特斯阳光电力科技有限公司 基于n型硅片的黄铜矿类半导体薄膜异质结太阳电池
CN102185001A (zh) * 2011-04-18 2011-09-14 西安交通大学 硅基纳米氧化锌粉体薄膜异质结太阳能的结构及其制备
CN102185001B (zh) * 2011-04-18 2013-04-17 西安交通大学 硅基纳米氧化锌粉体薄膜异质结太阳能的结构及其制备
CN103219413A (zh) * 2013-04-10 2013-07-24 中国科学院微电子研究所 一种石墨烯径向异质结太阳能电池及其制备方法
CN104867990A (zh) * 2014-02-21 2015-08-26 美环能股份有限公司 具钝化层的太阳能电池及其制程方法

Also Published As

Publication number Publication date
CN101621085B (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
CN101621084B (zh) 基于n型硅片的黄铜矿类半导体薄膜异质结太阳电池
CN207320169U (zh) 一种渐变带隙的钙钛矿电池
US20190131472A1 (en) Solar cell
TWM432144U (en) Structure and method for high efficiency cis/cigs-based tandem photovoltaic module
CN106784041A (zh) 一种硅基异质结太阳能电池及其制备方法
CN206271715U (zh) 一种晶体硅异质结太阳电池
CN106653898B (zh) 一种czts太阳能电池
TW201030994A (en) Two sided light absorbing type solar cell
CN102201480B (zh) 基于n型硅片的碲化镉半导体薄膜异质结太阳电池
CN101621085B (zh) 基于p型硅片的黄铜矿类半导体薄膜异质结太阳电池
CN106449845A (zh) 一种基于Si/TiOx异质结的双面晶体硅太阳电池
CN106252430A (zh) 一种晶体硅异质结太阳电池
CN101393942B (zh) 多晶硅-碳化硅叠层薄膜太阳能电池
CN201667340U (zh) 一种叠层太阳能电池
EP2515342A2 (en) Solar Cell
CN207425874U (zh) 双面发电太阳能电池片、电池串及双面发电光伏组件
CN103178148A (zh) 一种薄膜/异质结叠层太阳电池及其制造方法
CN101707219B (zh) 本征隔离结构太阳能电池及其制造方法
CN100399584C (zh) 一种二氧化锡/硅异质结太阳电池
CN208000925U (zh) 一种太阳能电池
CN101901847B (zh) 一种薄膜太阳能电池
CN207265068U (zh) 一种薄膜太阳能电池
CN101908569B (zh) 一种太阳能电池
CN101635318A (zh) 太阳能电池
CN206412374U (zh) 一种hjt太阳能电池及其模块

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120523

Termination date: 20120803