CN101616695A - 用于非侵入性检测组织缺氧的弱碱性2-硝基咪唑 - Google Patents

用于非侵入性检测组织缺氧的弱碱性2-硝基咪唑 Download PDF

Info

Publication number
CN101616695A
CN101616695A CN200780044283A CN200780044283A CN101616695A CN 101616695 A CN101616695 A CN 101616695A CN 200780044283 A CN200780044283 A CN 200780044283A CN 200780044283 A CN200780044283 A CN 200780044283A CN 101616695 A CN101616695 A CN 101616695A
Authority
CN
China
Prior art keywords
yuan
chemical compound
acid ester
low alkyl
ester group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200780044283A
Other languages
English (en)
Other versions
CN101616695B (zh
Inventor
J·A·拉莱格
D·Y·-W·李
X·纪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Natural Pharmacia International Inc
Original Assignee
Natural Pharmacia International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Natural Pharmacia International Inc filed Critical Natural Pharmacia International Inc
Publication of CN101616695A publication Critical patent/CN101616695A/zh
Application granted granted Critical
Publication of CN101616695B publication Critical patent/CN101616695B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0455Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0459Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having six-membered rings with two nitrogen atoms as the only ring hetero atoms, e.g. piperazine

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明在卤代2-硝基咪唑中掺入弱碱性的取代基(pKa约为8或8以上),例如吡咯烷、哌啶、哌嗪和氮杂环庚烷部分,其为相对于非侵入性检测正常组织和恶性组织中的细胞缺氧的先有技术的重要改善。本发明的特征在于[18F]正电子发射断层显相术、[19F]磁共振波谱和[19F]磁共振成像的用途。相对于先有技术化合物的改善有6个方面。1)弱碱性试剂的盐是高度水溶性的,其有利于给药。2)未反应的试剂由系统循环中快速清除,由此降低背景噪音。3)具有弱碱性取代基的试剂在组织中被浓缩至血浆水平之上约3倍,由此增加结合强度和增强信号检测。4)弱碱性试剂的缀合碱具有中间的辛醇-水分配系数,这有利于它们穿透入包括脑在内的所有组织。5)含有弱碱性取代基的试剂的细胞加合物比先有技术的试剂更稳定。6)具有弱碱性取代基的试剂对检测实体组织中的瞬时缺氧有效。

Description

用于非侵入性检测组织缺氧的弱碱性2-硝基咪唑
发明领域
本发明涉及2-硝基咪唑的弱碱性衍生物(pKa约为8或8以上)及其次末级化学前体,它们借助于正电子发射断层显相术(PET)、磁共振波谱(MRS)和磁共振成像(MRI)用于非侵入性检测正常组织和癌症组织中的细胞缺氧。
发明背景
缺氧在生理学、病理生理学和癌症中起着重要的作用。最近的实例包括:组织氧化的激素控制(Badger等人,Urol Int,76:264-268,2006);骨重建(Dodd等人,Am.J.Physiol.Renal.Physiol 277:C598-602,1999);胚发生(Nanka等人,Dev Dyn,235:723-733,2006);畸形生长(Danielsson等人,Birth Defects Res A Clin MOl Teratol 73:146-153,2005);视神经缺血(Danylkova等人,Brain Res 1096:20-29,2006);缺血性心脏病(Cheema等人,J Am Coll Cardiol 47:1067-1075,2006);包括关节炎在内的炎性疾病(Peters等人,Arthritis Rheum 50:291-296,2004);伤口愈合(Albina等人,Am J Physiol Cell Physiol 281:C1971-1977,2001);缺血性肾病(Villanueva等人,Am J Physiol RegulIntegr Comp Physiol 290:R861-870,2006);硬化性肝病(Jeong等人,Liver Int 24:658-668,2004);肺病(Morani等人,Proc Natl Acad Sci U SA 103:7165-7169,2006);酒精诱发的胰腺病(McKim等人,ArchBiochem Biophys 417:34-43,2003);胸腺病(Hale等人,Am J PhysiolHeart Circ Physiol 282:H1467-1477,2002);尿殖器官的阻塞性疾病(Damaser等人,J Appl Physiol 98:1884-1890,2005;Ghafar等人,J Urol167:1508-1512,2002);以及在癌症中的预测(Carnell等人,Int J RadiatOncol Biol Phys 65:91-99,2006;Kaanders等人,Cancer Res 62:7066-7074,2002)。
目前已知实体组织存在两类缺氧:扩散限制性慢性缺氧和灌注限制性急性或波动性缺氧。急性和慢性缺氧除了对肿瘤的局部辐射控制的影响之外,它们还被认为通过诱发缺氧诱导的血管生成、迁移和不受治疗方案影响而增加整体肿瘤侵袭性的侵袭因素,导致癌症患者的整体预后较差(Vaupel等人,Semin.Oncol.28:29-35,2001)。慢性缺氧是正常组织如肝脏和肾脏的天然特征,不是病理生理状况。然而,缺氧的不受控波动通过在正常组织中产生活性氧物质而促成缺氧-再灌注损伤(Thurman等人,J.Gastroenterol.Hepatol.13(增刊):S39-50,1998)。
慢性缺氧出现在氧梯度远端,氧梯度由接近血管的细胞中的氧消耗产生,就肿瘤而言,还混杂着由肿瘤血管树中的pO2纵向梯度产生的局部氧供应缺乏(Dewhirst等人,Int.J.Radiat.Oncol.Biol.Phys.42:723-726,1998)。Thomlinson和Gray首先推断出在人肿瘤中存在慢性缺氧区域,并提出这些区域促成了肿瘤辐射抗性(Thomlinson和Gray,Br.J.Cancer 9:539-549,1955)。
与具有静态的、代谢控制的pO2梯度的慢性缺氧相反,急性缺氧与由血流不稳定性产生的波动pO2相关,就肿瘤而言,波动pO2由于瞬时血管阻塞产生(Dewhirst等人,出处同上)。业已提出,急性缺氧的肿瘤细胞是增殖性的,在治疗上可能比静止的慢性缺氧细胞(Kennedy等人,出处同上;Varia等人,Gynecol.Oncol.71:270-277,1998)更相关(Wouters等人,Radiat.Res.147:541-550,1997)。在正常组织中,波动缺氧与缺氧-再灌注损伤相关,所述缺氧-再灌注损伤例如酒精诱发的肝病(Arteel等人,Am.J.Physiol.271:G494-500,1996);酒精诱发的胰腺炎(McKim等人,Arch.Biochem.Biophys.417:34-43,2003);和化疗诱导的肾病(Zhong等人,Am.J.Physiol.275:F595-604,1998)。
免疫组织化学缺氧标记已用于在人肿瘤中清楚显现氧梯度(Raleigh等人,Br.J.Cancer 56:395-400,1987;Cline等人,Br.J.Cancer62:925-931,1990;Kennedy等人,Int.J.Radiat.Oncol.Biol.Phys.37:897-905,1997;和美国专利号5,086,068),并随后用于证实细胞缺氧预兆着头颈癌的结果(Kaanders等人,Cancer Res.62:7066-7074,2002)。这些标记之一为弱碱性2-硝基咪唑的HCl盐-哌莫硝唑(1-(2-羟基-3-哌啶子基丙基)-2-硝基咪唑,pKa=8.7),已用于通过免疫化学方法检测缺氧(美国专利号5,674,693;美国专利号5,086,068)。免疫组织化学分析可用于将细胞缺氧与其它生理因素(如氧调节的蛋白表达、血管系统、坏死和细胞分化)关联起来,但因为它们需要活检组织,所以它们是侵入性的,因为取样误差,不适于正常组织缺氧的常规临床研究,且由于与连续活检相关的不便利和不舒适而基本上不合乎跟踪人组织缺氧变化的需要。
在1976年,Varghese等人表明,硝基杂环化合物被还原活化,并共价结合至缺氧的哺乳动物细胞(Varghese等人,Cancer Res.36:3761-3765,1976)。在生物还原活化2-硝基咪唑缺氧标记的细胞电子转移系统的电子级联中加入第一个电子可被分子氧逆转,由此标记结合变成组织缺氧的间接检测。在1981年,Chapman等人证实,结合的氧依赖性处于使组织抗辐射损伤的pO2范围内(Chapman等人,Br.J.Cancer 43:546-550,1981)。在Varghese等人和Chapman等人的发现之后,尝试将它们转变为在临床上对检测组织缺氧有用的技术。侵入性技术包括放射性标记的2-硝基咪唑的放射自显影和闪烁计数(Urtasun等人,Br.J.Cancer 54:453-457,1986);基于抗体的免疫组织化学(Raleigh等人,出处同上;Cline等人,出处同上;和美国专利号5,086,068);基于抗体的酶联免疫吸附测定(Raleigh等人,Br.J.Cancer69:66-71,1994);和基于抗体的流式细胞术(Olive等人,Acta.Oncol.40:917-923,2001)。
用于检测组织缺氧的早期非侵入性技术包括单光子发射断层扫描(SPECT;Urtasun等人,Br.J.Cancer Suppl.27:S209-12,1996;Iyer等人,Br.J.Cancer 78:163-9,1998);核医学(Ballinger等人,J.Nucl.Med.37:1023-31,1996;Strauss等人,J.Nucl.Cardiol..2:437-45,1995);[19F]磁共振波谱(Raleigh等人,Int.J.Radiat.Oncol.Biol.Phys.12:1243-5,1986;Jin等人,Int.J.Radiat.Biol.58:1025-34,1990);和采用18F-氟米索硝唑的正电子发射断层显相术([18F]FMISO;Rasey等人,Int.J.Radiat.Oncol.Biol.Phys.17:985-991,1989)。为了改进[18F]氟米索硝唑([18F]MISO)的目的发明了许多试剂。这些试剂包括[18F]氟依他硝唑([18F]FETA;Rasey等人,J.Nucl.Med.40:1072-1079,1999);[18F]氟赤硝基咪唑([18F]FETNIM;Yang等人,Radiology 194:795-800,1995;Wallace等人,美国专利号5,728,843);[18F]2-(2-硝基-1H-咪唑-1-基)-N-(3-氟丙基)-乙酰胺([18F]EF1;Evans等人,J.Nucl.Med.41:327-336,2000;Koch等人,美国专利申请公布号2005/0026974 A1);[18F]2-(2-硝基-1H-咪唑-1-基)-N-(2,2,3,3-五氟丙基)-乙酰胺([18F]EF5;Ziemer等人,Eur.J.Nucl.Med.Mol.Imaging 30:259-266,2003;Dobler等人,美国专利申请公布号2006/0159618 A1);[18F]氟氮霉素呋喃阿拉伯糖苷([18F]FAZA;Sorger等人,Nucl.Med.Biol.30:317-326,2003);4-溴-1-(3-[18F]氟丙基)-2-硝基咪唑(4-Br-[18F]FPN);和1-(3-[18F]氟丙基)-2-硝基咪唑([18F]FPN;Yamamoto等人,Biol.Pharm.Bull.25:616-621)。相比于[18F]FMISO,实现了肿瘤对正常组织比率的微小改善、肝吸收下降和循环代谢物减少。
用[18F]标记的2-硝基咪唑进行组织缺氧的PET检测包括约4个独立过程:(1)连接在缺氧标记加合物上的[18F]的固定、快速的放射性衰变(t1/2=109.8分钟)。这相对于(2)未代谢的[18F]缺氧标记分子的流进和流出的动态背景构成了快速衰变的缺氧信号;(3)[18F]缺氧标记蛋白加合物的累积和分解代谢;和(4)缺氧标记的[18F]小分子代谢物的累积和清除,所述代谢物包含半胱氨酸和谷胱甘肽加合物与标记物的水解片段产物(Raleigh和Liu,Iht.J.Radiat.Oncol.Biol Phys.10:1337-1340,1984)。通过水解片段化约80%的生物还原性活化的2-硝基咪唑缺氧标记。片段化产生非结合的[18F]代谢物,其对背景噪音有巨大影响,但对缺氧信号未添加影响。约20%的生物还原性活化的2-硝基咪唑缺氧标记产生缺氧信号-10%来自与蛋白的加合物,10%来自含硫醇的小化合物如谷胱甘肽(Raleigh和Koch,Biochem.Pharmacol.40:2457-2464,1990)。除了没有由于放射性衰变引起的信号损失之外,非侵入性[19]MRS和[19F]MRI易出现与[18]PET相同的信噪比问题。
已设计了数学模型由背景噪音(未结合的缺氧标记及其非结合的代谢物)中分离出缺氧信号(蛋白和谷胱甘肽加合物),但基本上不可能基于每一个患者获得与缺氧标记代谢物相关的并发动力学过程的动力学数据,PET研究人员采用了更简单的低氧肿瘤体积比例的概念,该比例为在注射后2-3小时的固定时间具有≥1.4的肿瘤对血液放射性比率的肿瘤区域比例(像素)(Koh等人,Int.J.Radiat.Oncol.Biol.Phys.33:391-398,1995;Couturier等人,Eur.J.Nucl.Med.MoL Imaging31:1182-1206,2004)。
采用2-硝基咪唑化合物如[18F]F-MISO(Rasey等人,Int.J.Radiat.Oncol.Biol.Phys.17:985-991,1989)和[19F]CCI-103F(Raleigh等人,Int.J.Radiat.Oncol.Biol.Phys.12:1243-5,1986)的早期研究确定了[18F]PET和[19]MRS用于非侵入性检测组织缺氧的潜力,但仍需要通过改善慢性和急性缺氧的信噪比限制来改善灵敏度和专属性的试剂。
发明概述
本发明涉及某些可用作使用正电子发射断层显相术(PET;如[18F]PET)、磁共振波谱(MRS;如[19F]MRS)和磁共振成像(MRI;如[19F]MRI)的组织缺氧检测剂的新型化合物。新型化合物包括氟化试剂的次末级的化学前体以及[19F]和[18F]氟化试剂本身,所有这些试剂都可容易地合成。
本发明的第一方面的特征在于具有下式I的结构的化合物,
Figure G2007800442838D00061
其中R1为卤素(例如氟(F)、氯(Cl)、溴(Br)、碘(I)或砹(At))、正电子放射性核素(例如[11C]、[13N]、[15O]、[18F]、[52Fe]、[55Co]、[61Cu]、[62Cu]、[64Cu]、[62Zn]、[63Zn]、[70As]、[71As]、[74As]、[76Br]、[79Br]、[82Rb]、[86Y]、[89Zr]、[110In]、[120I]、[124I]、[122Xe]、[94mTc]、[94Tc]或[99mTc])、非金属、被取代以包含卤素的低级烷基、被取代以包含正电子放射性核素的低级烷基、被取代以包含非金属的低级烷基、甲苯磺酸酯基、甲磺酸酯基、三氟甲磺酸酯基、氢或羟基;R2和R3独立地选自低级烷基或羟烷基,或者连接形成含有至少1个氮原子(例如至少2、3或4个氮原子)的5元、6元或7元杂环;前提是:如果R1为氢或羟基,则R2、R3中的至少一个或所述杂环含有卤素、正电子放射性核素、非金属、被取代以包含卤素的低级烷基、被取代以包含正电子放射性核素的低级烷基、被取代以包含非金属的低级烷基、甲苯磺酸酯基、甲磺酸酯基或三氟甲磺酸酯基。
在本发明第一方面的优选实施方案中,所述化合物具有式III-VI或VIII-XVIII的结构。
本发明的第二方面的特征在于具有下式II的结构的化合物,
Figure G2007800442838D00071
其中R1为卤素(例如氟(F)、氯(Cl)、溴(Br)、碘(I)或砹(At))、正电子放射性核素(例如[11C]、[13N]、[15O]、[18F]、[52Fe]、[55Co]、[61Cu]、[62Cu]、[64Cu]、[62Zn]、[63Zn]、[70As]、[71As]、[74As]、[76Br]、[79Br]、[82Rb]、[86Y]、[89Zr]、[110In]、[120I]、[124I]、[122Xe]、[94mTc]、[94Tc]或[99mTc])、非金属、被取代以包含卤素的低级烷基、被取代以包含正电子放射性核素的低级烷基、被取代以包含非金属的低级烷基、甲苯磺酸酯基、甲磺酸酯基、三氟甲磺酸酯基、氢或羟基;R2和R3独立地选自低级烷基或羟烷基,或者连接形成含有至少1个氮原子(例如至少2、3或4个氮原子)的5元、6元或7元杂环;前提是:如果R1为氢或羟基,则R2、R3中的至少一个或所述杂环含有卤素、正电子放射性核素、非金属、被取代以包含卤素的低级烷基、被取代以包含正电子放射性核素的低级烷基、被取代以包含非金属的低级烷基、甲苯磺酸酯基、甲磺酸酯基或三氟甲磺酸酯基。
在本发明第二方面的优选实施方案中,化合物具有式VII的结构。
在本发明第一方面和第二方面的几个实施方案中,R2和R3连接形成5元、6元或7元杂环;R1为甲苯磺酸酯基、甲磺酸酯基或三氟甲磺酸酯基,且R2和R3连接形成5元、6元或7元杂环;
R2和R3连接形成5元、6元或7元杂环,且所述杂环含有2、3或4个氮原子,其中杂环的至少1个所述氮原子或碳原子与低级烷基或羟烷基共价键合;R1为羟基,且R2和R3连接形成5元、6元或7元杂环,其中杂环的至少1个碳原子或氮原子被卤代烷基(例如氟烷基,例如[19F]或[18F])取代;R1为甲苯磺酸酯基、甲磺酸酯基或三氟甲磺酸酯基,且R2和R3独立选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、羟甲基、羟乙基、羟丙基和羟丁基;或者R1、R2、R3或杂环含有卤素、正电子放射性核素、非金属、被取代以包含卤素的低级烷基、被取代以包含正电子放射性核素的低级烷基或者被取代以包含非金属的低级烷基。
在本发明第一和第二方面的优选实施方案中,所述正电子放射性核素为[18F]、[79Br]或[124I]。
本发明第三方面的特征在于如下生产含有正电子放射性核素的化合物的方法:(a)提供具有式下I或II的结构的化合物:
Figure G2007800442838D00081
其中R1为甲苯磺酸酯基、甲磺酸酯基或三氟甲磺酸酯基;且R2和R3独立选自低级烷基或羟烷基,或者连接形成5元、6元或7元杂环,所述杂环含有至少1个氮原子(例如至少2、3或4个氮原子);和(b)使该化合物与游离形式的或盐形式的正电子放射性核素(例如[11C]、[13N]、[15O]、[18F]、[52Fe]、[55Co]、[61Cu]、[62Cu]、[64Cu]、[62Zn]、[63Zn]、[70As]、[71As]、[74As]、[76Br]、[79Br]、[82Rb]、[86Y]、[89Zr]、[110In]、[120I]、[124I]、[122Xe]、[94mTc]、[94Tc]或[99mTc])在引起含正电子放射性核素的化合物形成的条件下反应。
在本发明第三方面的几个实施方案中,R2和R3独立选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、羟甲基、羟乙基、羟丙基和羟丁基;正电子放射性核素为[18F]、[79Br]或[124I];或者R2和R3连接形成5元、6元或7元杂环,且该杂环包含2、3或4个氮原子,其中杂环的至少1个所述氮原子或碳原子与卤代烷基(例如氟烷基,如[19F]或[18F])共价键合。
本发明的第四方面的特征在于检测哺乳动物(例如人)的正常组织、患病的正常组织或恶性组织(包括例如脑、肺、心脏、眼、肾脏、肝脏、胰腺、胸腺、肠、尿殖器官、胃和骨的组织,并进一步包括缺血组织(例如由于中风受损的组织)、炎性组织(例如关节炎组织)、经历伤口愈合的组织和肿瘤组织)中的低氧细胞的方法,所述方法给予哺乳动物本发明的第一方面或第二方面的化合物,其中所述化合物含有正电子放射性核素(例如[11C]、[13N]、[15O]、[18F]、[52Fe]、[55Co]、[61Cu]、[62Cu]、[64Cu]、[62Zn]、[63Zn]、[70As]、[71As]、[74As]、[76Br]、[79Br]、[82Rb]、[86Y]、[89Zr]、[110In]、[120I]、[124I]、[122Xe]、[94mTc]、[94Tc]或[99mTc])或者被取代以包含正电子放射性核素的低级烷基,并通过非侵入性正电子发射断层显相术(PET)检测所述正常组织、患病的正常组织或恶性组织中存留的所有所述化合物。
在本发明的第四方面的优选实施方案中,所述正电子放射性核素为[18F]。
本发明的第五方面的特征在于检测哺乳动物(例如人)的正常组织、患病的正常组织或恶性组织(包括例如脑、肺、心脏、眼、肾脏、肝脏、胰腺、胸腺、肠、尿殖器官、胃和骨的组织,并进一步包括缺血组织(例如由于中风受损的组织)、炎性组织(例如关节炎组织)、经历伤口愈合的组织和肿瘤组织)中的低氧细胞的方法,所述方法(a)给予哺乳动物具有下式I或II的结构的化合物,
Figure G2007800442838D00101
其中R1为卤素(例如[19F])、被取代以包含卤素的低级烷基、非金属(例如[31P]或[13C])、被取代以包含非金属的低级烷基、甲苯磺酸酯基、甲磺酸酯基、三氟甲磺酸酯基、氢(例如氘)或羟基;和R2和R3独立地选自低级烷基或羟烷基,或者连接形成含有至少1个氮原子的5元、6元或7元杂环;前提是:如果R1为氢或羟基,则R2、R3中的至少一个或所述杂环含有卤素、非金属、被取代以包含卤素的低级烷基、被取代以包含非金属的低级烷基、甲苯磺酸酯基、甲磺酸酯基或三氟甲磺酸酯基;和(b)通过非侵入性磁共振波谱(MRS)或磁共振成像(MRI)检测在正常组织、患病的正常组织或恶性组织中存留的所有所述化合物。
本发明的第六方面的特征在于用于验证组织缺氧的正电子发射断层显相术(PET)、磁共振波谱(MRS)或磁共振成像(MRI)分析的方法,该方法使患病组织(例如肿瘤组织)与抗体(例如多克隆抗体或单克隆抗体,或包含所述抗体的抗血清)接触,所述抗体特异性结合患病细胞(例如肿瘤细胞)中存在的蛋白、多肽、多糖或多核苷酸与本发明的第一方面或第二方面的化合物反应后产生的加合物,并检测抗体与患病组织的结合,其中抗体与患病组织的结合相对于抗体与正常组织的结合增加证实了使用PET、MRS和MRI的组织缺氧的测定结果。
在本发明的第六方面的实施方案中,使用免疫荧光、免疫过氧化物酶、血细胞计数、流式细胞术或酶联免疫吸附测定(ELISA)检测抗体与患病组织的结合。在又一个实施方案中,组织缺氧分析使用[18F]PET、[19F]MRS或[19F]MRI进行。
本发明的第七方面的特征在于生产抗体的方法,该方法用加合物免疫哺乳动物(例如兔、猴、山羊或人),所述加合物为患病细胞(例如肿瘤细胞)中存在的蛋白、多肽、多糖或多核苷酸与本发明的第一方面或第二方面的化合物反应后产生的加合物,并由哺乳动物收集抗血清或抗体。
本发明的第八方面的特征在于一种药盒,其包含具有本发明的第一方面或第二方面的化合物的容器、具有单克隆抗体或多克隆抗体或包含所述单克隆抗体或多克隆抗体的单克隆抗血清或多克隆抗血清的容器,以及使用所述药盒检测组织中的缺氧细胞的说明书,其中所述单克隆或多克隆抗体特异性结合加合物,所述加合物为所述化合物与患病细胞(例如肿瘤细胞)中存在的蛋白、多肽、多糖或多核苷酸反应后产生的加合物。
在本发明的第八方面的优选实施方案中,所述说明书描述了使用药盒通过免疫荧光、免疫过氧化物酶、血细胞计数、流式细胞术或酶联免疫吸附测定(ELISA)检测加合物的方法。
当前公开的并要求保护的新型化合物全部具有弱碱性部分,所述部分具有通用结构式I或II。
Figure G2007800442838D00111
其中R1独立选自氢、羟基、甲苯磺酸酯基、甲磺酸酯基、三氟甲磺酸酯基、[19F]氟或[18F]氟,以及独立选自低级烷基部分或含有一个或多个N原子的5元、6元和7元环。而R2和R3独立选自低级烷基、烯丙基或烷基部分或含有一个或多个N原子的5元、6元和7元环,其中R2和R3连接形成具有一个或多个N原子的5元、6元和7元杂环。结构I中的至少1个N原子为具有阴离子反离子的盐形式,所述阴离子反离子包括但不限于卤素离子。对于R2和R3中的多个N原子而言,至少1个N可被低级烷基取代。此外,R2和R3可在碳上被独立选自氢、甲苯磺酸酯基、甲磺酸酯基或三氟甲磺酸酯基、[19F]氟或[18F]氟的部分取代。
本发明包括慎密性特别选择的含有至少1个弱碱性部分的化合物,所述弱碱性部分赋予的药代动力学和药效学特性代表了优于组织缺氧的非侵入性PET、MRS和MRI分析的现有试剂的特别改善。
本发明旨在改善使用PET、MRS和MRI检测患病的正常组织和恶性组织中的缺氧。这包括以更高的灵敏度检测慢性和急性缺氧的初始水平,和跟踪两种类型的缺氧在治疗干涉后的变化。
本文使用的术语“烷基”是指1-24个碳原子的支链或直链的饱和烃基,例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、戊基、辛基、癸基、二十烷基、二十四烷基等。本文优选的烷基为含1-5个碳原子的的“低级烷基”。
术语“羟烷基”是指含有羟基的烷基。
术语“甲苯磺酸酯(基)”是指羟基与对甲苯磺酰氯反应时形成的酯,但可以包括其中甲苯部分被烷基、卤基、酯基、醚基或氰基等取代的甲苯磺酰氯。
术语“甲磺酸酯(基)”是指羟基与甲烷磺酰氯反应时形成的酯,但可以包括其中甲烷部分被烷基、卤基、酯基、醚基或氰基等取代的甲烷磺酰氯。
术语“三氟甲磺酸酯(基)”是指羟基与三氟甲烷磺酰酐反应时形成的酯。
所述“在环的骨架内\上\中”是指在环结构的连接的原子上掺入一个原子或至少一个原子的基团。
实例包括氟化2-硝基咪唑,但本领域技术人员知道,就PET而言,本发明的化合物可以用任何正电子放射性核素标记,包括例如[76Br]和[124I]。
要理解的是,本发明的化合物可用于PET、MRS和MRI检测组织缺氧,掺入弱碱性部分的试剂的优势自然增强了[18]PET、[19F]MRS和[19F]MRI的优势。还要理解的是,本发明人认识到,通过化学合成领域技术人员众所周知的程序或方法增加诸如[19F]的卤原子数,将以随化合物中存在的卤原子数平方增加的方式增加MRS/MRI的检测灵敏度。
要理解的是,静脉内给药对PET研究(使用例如[18F])是优选途径,但静脉内或口服给药可用于本发明的化合物,例如在组织缺氧的[19]MRS或[19F]MRI分析中使用的化合物。
要理解的是,多克隆或单克隆抗体可针对生物还原性生产的本发明化合物的大分子加合物产生,这些抗体可用于通过免疫化学方法验证非侵入性PET、MRS和MRI分析,所述免疫化学方法包括免疫荧光、免疫过氧化物酶和酶联免疫吸附测定。
由以下的本发明优选实施方案的描述和权利要求显而易见本发明的其它特征和优势。
附图简述
图1是比较针对弱碱性2-硝基咪唑(左侧图,A和C)和没有弱碱性部分的2-硝基咪唑(图B和D)的结合的免疫染色的显微照片。图A和B与图C和D得自相同犬腺癌的不同区域。注意,在图C和D中,用于两个缺氧标记的免疫染色程度是类似的,但在图A和B中,弱碱性标记的结合程度(图A)极大地超出了没有弱碱性部分的标记的结合程度(图B),而且,在图A中更广泛结合的区域的强度比在图B中的该区域更亮。在肿瘤坏死区域周围存在强免疫染色带的情况下,亮染色是急性或波动性缺氧的特征性表现,这是具有弱碱性部分的标记在检测上的优势。
发明详述
本发明的新型化合物和方法将弱碱性部分(pKa为约8或8以上)掺入用例如卤素、正电子发射核素或非金属标记的2-硝基咪唑缺氧标记中,有利于正常组织缺氧的非侵入性分析和组织缺氧变化的分析。具体地说,本发明提供在治疗干预之前检测缺氧的便利技术,其又允许以有效且适时的方式选择患者的基于缺氧的治疗干预。本发明还提供跟踪基于缺氧的治疗干预在患病的正常组织和恶性组织中的有效性的方法。具体地说,本发明的化合物可用于检测在例如脑、肺、心脏、眼、肾脏、肝脏、胰腺、胸腺、肠、尿殖器官、胃和骨的组织中存在的低氧状况。低氧状况可由于缺血(例如作为中风的结果)、炎症、伤口愈合和癌症产生。
本发明提供使用PET、MRS和MRI的非侵入性检测慢性和急性缺氧的化合物。所述化合物有效检测慢性和急性缺氧。本发明的化合物提供增加的信噪比,并具有比先有技术标记更大的灵敏度检测急性或波动性缺氧的能力。检测急性缺氧的能力是很重要的,因为在癌症生物学家中广泛认为急性缺氧对癌症疗法具有紊乱性影响。
本发明的化合物包括利用[18F]PET、[19F]MRS或[19F]MRI非侵入性检测患病的正常组织和恶性组织的缺氧的氟化2-硝基咪唑衍生物。所述化合物的2-硝基咪唑部分经历生物还原,变成共价结合pO2≤10mmHg的组织细胞中的肽和蛋白的中间体,使得形成用作组织缺氧标记的稳定加合物。将[18F](和/或其它正电子放射性核素)或[19F](和/或其它非放射性卤素或非金属)引入2-硝基咪唑中使得可以利用非身体侵入性的[18F]PET、[19F]MRS或[19F]MRI检测组织缺氧。本发明的化合物可用于患病的正常组织(例如关节炎组织)和恶性组织(例如癌症组织)的非侵入性缺氧研究。
本发明可以两种方式使用。首先,可评价治疗前的组织缺氧水平,以容许选择可由基于缺氧的干预获益的患者。其次,可跟踪响应于治疗干预的组织缺氧变化,例如致电离辐射、高热、低氧细胞辐射敏化剂、生物还原性细胞毒素、抗炎剂或生长因子抑制剂,作为干预成功的检测。
本发明的化合物在几个方面构成了对先有技术化合物的改善,其中很重要的包括以下几项:1)本发明的化合物降低现有的PET、MRS和MRI试剂用于缺氧的非侵入性检测时通常观察到的背景“噪音”。2)具有弱碱性取代基的2-硝基咪唑化合物的酸式盐是水溶性的,由此利于在人和实验动物应用中给药。3)弱碱性试剂对人具有短得多的血浆半衰期。例如,哌莫硝唑具有比缺氧标记如米索硝唑(t1/2=9.3小时)或EF5(t1/2=11.7±2.7小时)短得多的血浆半衰期(t1/2=5.1±0.8小时)。因此,未代谢的弱碱性标记将极为快速地由循环中去除,由此在例如[18F]PET、[19F]MRS和[19F]MRI]分析中增加信噪比。4)在胞外浓度之上将弱碱性PET试剂选择性吸收到组织细胞中将增加结合低氧细胞的速率和增强检测灵敏度。本发明的方法认识到,增强的吸收是实体瘤细胞中的胞内和胞外pH之间差异的结果。5)具有弱碱性取代基的本发明化合物的缀合碱(例如本发明的[18F]PET、[19F]MRS和[19F]MRI试剂)具有中间的辛醇-水分配系数。这意味着所述化合物易于穿透包括脑在内的所有组织,在所述组织中它们被浓缩至血浆水平之上约3倍。因此,本发明的弱碱性PET、MRS和MRI化合物可用于研究所有的正常组织和肿瘤组织缺氧,而在先有技术中的亲水标记被许多目标正常组织有效地排除在外。已知弱碱性2-硝基咪唑缺氧标记的中枢神经系统毒性有限。然而,PET化合物以痕量使用,中枢神经系统毒性不是重要的问题。即便相对高剂量(0.5g/m2;750-1000mg/患者;50%的最大耐受单剂量)的弱碱性缺氧标记哌莫硝唑也已在临床上以极低频率使用,产生甚至最温和的中枢神经系统(CNS)作用,例如温觉,表明CNS毒性应不妨碍较高浓度的本发明的弱碱性2-硝基咪唑化合物用于MRS或MRI的用途(例如本发明的[19F]-氟化弱碱性2-硝基咪唑化合物用于[19F]MRS或[19F]MRI的用途)。6)缺氧标记与弱碱性取代基的加合物比没有弱碱性取代基的缺氧标记更稳定。这相对于当前可用的先有技术的PET、MRS和MRI标记具有稳定的缺氧信号的作用(具体地说,本发明的氟化缺氧标记显示出比先有技术的[18F]PET、[19F]MRS和[19F]MRI缺氧标记更稳定的缺氧信号)。7)本发明的弱碱性化合物允许以比先有技术的PET、MRS和MRI标记高得多的灵敏度检测急性缺氧。本发明化合物的弱碱性取代基提升了所述化合物在高胞外pH(pHe)组织微环境中经历波动缺氧的细胞的浓度。其发生归因于经历波动缺氧的细胞的胞内和胞外pH的差异;在实体组织中存在的pH梯度使得经历波动缺氧的细胞处于相对高的pH。
本发明的化合物
本文提供的新型化合物是由以下结构式(I)和(II)定义的那些:
Figure G2007800442838D00161
R1可以选自卤素(例如氟(F)、氯(Cl)、溴(Br)、碘(I)或砹(At))、正电子放射性核素(例如[11C]、[13N]、[15O]、[18F]、[52Fe]、[55Co]、[61Cu]、[62Cu]、[64Cu]、[62Zn]、[63Zn]、[70As]、[71As]、[74As]、[76Br]、[79Br]、[82Rb]、[86Y]、[89Zr]、[110In]、[120I]、[124I]、[122Xe]、[94mTc]、[94Tc]或[99mTc])、非金属、被取代以包含卤素的低级烷基、被取代以包含正电子放射性核素的低级烷基、被取代以包含非金属的低级烷基、甲苯磺酸酯基、甲磺酸酯基、三氟甲磺酸酯基、氢或羟基;且R2和R3可独立选自低级烷基或羟烷基,或者连接形成含有至少1个氮原子(例如至少2、3或4个氮原子)的5元、6元或7元杂环;要注意的是,如果R1为氢或羟基,则R2、R3中的至少一个或所述杂环包含卤素、正电子放射性核素、非金属、被取代以包含卤素的低级烷基、被取代以包含正电子放射性核素的低级烷基、被取代以包含非金属的低级烷基、甲苯磺酸酯基、甲磺酸酯基或三氟甲磺酸酯基。
优选地,R2和R3连接形成含有至少1个氮原子的5元、6元或7元杂环,但在该环中排除降低碱性的基团,例如O、S或N-酰基。结构(I)中的至少1个N原子可为具有阴离子反离子的盐形式,包括但不限于卤素离子。就多个N原子的情况而言,至少1个N可被低级烷基、羟烷基或氟烷基取代。此外,R2和R3可在碳上被独立选自氢、甲苯磺酸酯基、甲磺酸酯基、三氟甲磺酸酯基、[19F]氟或[18F]氟的部分取代。
该组中的优选化合物的实例如在图A中所示:
图A
Figure G2007800442838D00181
由结构式(VI-XVIII)定义的化合物,包括其盐,可单独地或协同组织生理学的其它PET标记(例如[18F]-氟化脱氧葡萄糖,[18F]-FDG)用于在患病的正常组织和恶性组织中检测缺氧。
本发明的放射性标记的化合物对患者的成像、检测和诊断疾病是有用的组合物。可使用众多的放射性标记来产生可用于成像和检测的放射性标记化合物。例如,可用于产生放射性标记化合物的放射性标记的非限制性清单包括11C、13N、15O、18F、52Fe、62Cu、64Cu、67Cu、67Ga、68Ga、76Br、86Y、89Zr、94mTc、94Tc、99mTc、111In、123I、124I、125I、131I、154-158Gd和175Lu。特别优选的放射性标记包括18F、64Cu、76Br、I124及其混合物,或者由它们组成。
作为实例,18F可在用质子轰击18O加浓水后得自回旋加速器。可以用具有反阳离子的碱中和含有H-18F的加浓水,所述碱为任何烷基铵、四烷基铵、烷基鏻(alkylphophosphonium)、烷基胍鎓(alkylquanidium)、烷基脒鎓(alkylamidinium)或碱金属(M),例如强烈螯合配体如六氧二氮双环二十六烷(Kryptofix)222(4,7,13,16,21,24-六氧杂-1,10-二氮杂双环[8.8.8]二十六烷)的钾、铯或其它单价离子,使得产生的碱金属-配体复合物自由溶解在有机溶剂如乙腈、二甲基亚砜或二甲基甲酰胺中。水可被蒸发出去,以产生反阳离子-18F的残留物,其可被溶解在有机溶剂中,以备进一步使用。一般而言,选择的反阳离子能使氟离子在有机相中与卤素快速反应。
因为氟是最负电性的元素,所以其具有变成水合物并失去其亲核特征的趋势。为使这种趋势最低,标记反应优选在无水条件下进行。例如,可将氟(作为氟化钾或作为与上述任一种的反离子的复合物)置于有机溶剂中,例如乙腈或THF。在结合反-阳离子的试剂如六氧二氮双环二十六烷2.2.2(4,7,13,16,21,24-六氧杂-1,10-二氮杂双环[8.8.8]二十六烷)的辅助下,氟离子在这些溶剂中变得非常亲核。然后可将剩余部分的本发明的螯合分子加至溶剂中,由此用18F标记螯合物。
尽管钾可以在依据本发明的反-阳离子中用作金属,但铯可能优于钾,因为铯是较大离子,具有更扩散的电荷。因此,铯与小氟原子具有较松散的离子相互作用,因此不干扰氟离子的亲核特性。由于相似的理由,钾可能优于钠,一般而言,镧系金属在依据本发明的反-阳离子中作为金属的适宜性随着周期表向下而增加。Ib族的试剂,例如银,也可用作符合本发明的反离子。此外,有机相转移型例子,如四烷基铵盐,也可以用作反阳离子。
本发明化合物的制剂
本发明的化合物优选可用于靶向肿瘤组织。本发明的化合物可直接地或与本领域已知的任何药学上可接受的载体或盐组合给予哺乳动物患者,例如人。药学上可接受的盐可包括在制药工业中常用的无毒的酸加成盐或金属复合物。酸加成盐的实例包括有机酸,例如乙酸、乳酸、扑酸、马来酸、柠檬酸、苹果酸、抗坏血酸、琥珀酸、苯甲酸、棕榈酸、辛二酸、水杨酸、酒石酸、甲磺酸、甲苯磺酸或三氟乙酸等;聚合酸,例如鞣酸、羧甲基纤维素等;和无机酸,例如盐酸、氢溴酸、硫酸、磷酸等。金属复合物包括锌、铁等。一种示例性的药学上可接受的载体为生理盐水。其它生理学上可接受的载体及其制剂是本领域技术人员已知的,描述于例如Remington′s Pharmaceutical Sciences,(第18版),A.Gennaro编著,1990,Mack Publishing Company,Easton,PA。
治疗有效量的本发明化合物或其药学上可接受的盐的药物制剂可在与适于常规给药的药学上可接受的载体的混合物经以下途径给予:口服、胃肠外(例如肌内、腹膜内、静脉内或皮下注射;吸入;皮内、滴眼剂或植入物)、鼻腔、阴道、直肠、舌下或局部。
本领域众所周知的制剂制备方法例如见于Remington′s Pharmaceutical Sciences(第18版),A.Gennaro编著,1990,MackPublishing Company,Easton,PA。按照本领域已知用于制备药物组合物的任何方法,可以固体或液体形式制备供口服用的组合物。组合物可任选含有甜味剂、矫味剂、着色剂、香料和/或防腐剂,以便提供更具适口性的制剂。供口服给药用的固体剂型包括胶囊剂、片剂、丸剂、粉剂和颗粒剂。在这些固体形式中,将活性化合物与至少一种药学上可接受的惰性载体或赋形剂混合。这些载体或赋形剂可包括例如惰性稀释剂,例如碳酸钙、碳酸钠、乳糖、蔗糖、淀粉、磷酸钙、磷酸钠或高岭土。也可使用粘合剂、缓冲剂和/或润滑剂(例如硬脂酸镁)。另外可用肠溶衣来制备片剂和丸剂。
供口服给药的液体剂型包括药学上可接受的乳剂、溶液剂、混悬剂、糖浆剂和软明胶胶囊剂。这些形式含有本领域常用的惰性稀释剂,例如水或油性介质。除了所述惰性稀释剂之外,组合物也可包括辅料,例如润湿剂、乳化剂和悬浮剂。
供胃肠外给药用的制剂包括无菌水性或非水性溶液剂、混悬剂或乳剂。合适溶媒的实例包括丙二醇、聚乙二醇、植物油、明胶、氢化萘和注射用有机酯,例如油酸乙酯。所述制剂也可含有辅料,例如防腐剂、润湿剂、乳化剂和分散剂。可使用生物相容的、生物降解的丙交酯聚合物、丙交酯/乙交酯共聚物或聚氧乙烯-聚氧丙烯共聚物,以控制化合物的释放。用于本发明的肽物质的其它潜在有用的胃肠外递送系统包括乙烯-乙酸乙烯酯共聚物颗粒、渗透泵、可植入的输注系统和脂质体。
通过例如截留细菌的滤器过滤、通过向组合物中掺入除菌剂或者通过对组合物进行辐照或加热,可以对液体制剂进行灭菌。或者,它们可被制备成无菌形式的固体组合物,临用前将固体组合物溶于无菌水或某些其它无菌注射介质中。
供直肠或阴道给药用的组合物优选为栓剂,除了活性物质外,其还可含有赋形剂,例如可可脂或栓剂用蜡。供鼻腔或舌下给药用的组合物也可用本领域已知的标准赋形剂制备。吸入制剂可含有赋形剂,例如乳糖,或者可以是含有例如聚氧乙烯-9-十二烷基醚、甘胆酸盐和脱氧胆酸盐的水溶液剂,或者可以是油性溶液剂,用于以滴鼻剂或喷雾剂或凝胶剂形式给药。
本发明组合物中的活性成分的量可以不同。本领域技术人员将会理解,可以依据包括要给予的化合物、给药时间、给药途径、制剂特性、排泄速率、患者病症的特点以及患者的年龄、体重、健康状况和性别在内的多种因素,对准确的个人剂量稍微进行调整。另外,本发明化合物所针对的病症的严重性也对剂量水平有影响。通常,给予的日剂量水平为0.1μg/kg-100mg/kg体重,可作为单剂量或分成多次剂量。优选地,一般剂量范围为每天250μg/kg-5.0mg/kg体重。考虑到不同给药途径的不同功效,预期所需剂量有很大差异。例如,预期口服给药通常比静脉内注射给药需要更高的剂量水平。这些剂量水平的差异可采用本领域众所周知的用于优化的标准经验性程序来调节。一般而言,精确的治疗有效剂量由主治医师根据以上所示的因素来确定。
本发明的化合物可使用如以下实施例所例举的简单直接的方法以高收率制备。要理解的是,尽管已结合本发明的优选的具体实施方案描述了本发明,但先前的描述以及随后的实施例旨在阐述而不是限制本发明的范围。在本发明范围内的其它方面、优势和修改对本发明所属领域的技术人员是显而易见的。
提供以下的实施例,以便本领域一般技术人员可了解如何制备和使用本发明的化合物。所述实施例无意限制本发明人所认作的本发明范围。所有的原料和试剂都市售可得。
实施例
实施例1:
Figure G2007800442838D00221
将起始原料(1)(460mg,1.8mmol)溶解在50ml THF中,并加入Et3N(0.5ml),之后滴加MsCl(0.28ml,3.6mmol)。于室温搅拌反应物20分钟。薄层色谱(TLC)表明,起始原料几乎完全反应。在后处理后,通过柱色谱(EtOAc)纯化粗反应产物,得到500mg所需的甲磺酸化产物(2)(收率为84%)。1HNMR(DMSO-d6,δppm):1.63(m,2H,CH2),1.90(m,4H,2xCH2),2.10(m,2H,CH2),2.24(t,2H,CH2,J=6.9Hz),2.48(m,2H,CH2),3.15(s,3H,CH3),4.41(t,2H,CH2,J=6.9Hz),4.60(m,1H,CH),7.15(d,1H,CH=,J=I.2Hz),7.65(d,1H,CH=,J=1.2Hz)。
将六氧二氮双环二十六烷222(270mg,0.72mmol)溶解在5ml乙腈(CH3CN)中。向该溶液加入无水氟化钾粉末(99.99+%,33mg,0.57mmol),之后加入甲磺酸酯(2)(80mg,0.24mmol)。将产生的混合物油浴(95-100℃)回流2小时。在后处理后,通过制备型TLC纯化粗反应产物,得到31mg氟化物(3,X)。总收率为50%。对于化合物(3,X):1HNMR(DMSO=d6,δppm):1.67(m,2H,CH2),1.92(m,4H,2xCH2),2.07(m,2H,CH2),2.23(t,2H3 CH2,J=6.6Hz),2.53(m,2H,CH2),4.13(brs,1H,CH),4.41(t,2H,CH2,J=6.9Hz),7.15(s,1H,咪唑),7.64(s,1H,咪唑)。13C NMR(DMSO-d6,δppm):27.34,35.87,48.32,51.40,54.83,58.84,128.41和128.58。
实施例2:
Figure G2007800442838D00231
将起始原料(4)(4g,14.85mmol)溶解在200ml THF中。向该溶液加入Et3N(5ml),之后滴加MsCl(3ml,38.8mmol)。于室温搅拌反应物30分钟。TLC表明,起始原料几乎被完全消耗。在后处理后,通过快速柱色谱(EtOAc)纯化粗反应产物,得到3.1g二甲磺酸化产物(5),收率为49.1%。1HNMR(DMSOd6,δppm):1.71(m,2H,CH2),1.93(m,2H,CH2),2.47(m,2H,CH2),2.68(m,4H,2xCH2),3.05(s,3H,CH3SO-),3.16(s,3H,CH3SO-),4.55(dd,1H,咪唑-CHa-,J=14.4Hz,8.7Hz),4.66(m,1H,O=CH),4.84(dd,1H,咪唑-CHa-,J=14.4Hz,8.7Hz),5.00(m,1H,O-CH),7.16(d,1H,咪唑,J=0.9Hz),7.59(d,1H,咪唑,J=0.9Hz)。
将六氧二氮双环二十六烷222(MW376.5,42mg,0.112mmol)溶解在2ml乙腈(CH3CN)中。向该溶液加入无水氟化钾(99.99+%,22mg,0.379mmol),之后加入二甲磺酸酯(5)(28mg,0.0658mmol)。在二甲磺酸酯(5)全部溶解后,回流混合物30分钟。在后处理后,通过制备型TLC纯化粗反应产物,得到20mg(87%得率)单氟交换化合物(6)。对于化合物(6):1HNMR(DMSO-d6,δppm):1.68(m,2H,CH2),1.90(m,2H,CH2),2.43(m,2H,CH2),2.62(m,2H,CH2),2.74-2.89(m,2H,哌啶-CH2),3.11(s,3H,CH3SO-),4.36-4.51(m,1H,咪唑-CH),4.68-4.90(m,2H,咪唑-CH,F-H),5.06(m,1H,O-CH),7.12(d,1H,咪唑,J=0.9Hz),7.19(d,1H,咪唑,J=0.9Hz)。13CNMR(DMSO-d6,δppm):25.89,32.06,50.21(d,JF-C=20.44Hz),55.32,60.15(d,JF-C=20.81Hz),65.89,89.63(d,JF-C=169.68Hz),127.55,128.46。
实施例3:
Figure G2007800442838D00241
将哌莫硝唑(3.7g,14.5mmol)、对甲苯磺酸酐(5.7g,17.5mmol)和DMAP(1.78g,14.5mmol)加至在0℃冰水浴中的100ml无水CH2Cl2中。在搅拌30分钟后,用水猝灭反应,并用乙酸乙酯萃取。用水洗涤有机相,经无水硫酸钠干燥,过滤,并浓缩。通过柱色谱(EtOAc-己烷=1∶1)纯化粗反应产物,得到4.1g(70%得率)所需甲苯磺酸酯(7,III)。对于化合物(7,III):1H NMR(CDCl3,δppm):1.41(m,2H,CH2),1.52(m,4H,2xCH2),2.33-2.67(m,6H,3xCH2),2.44(s,3H,CH3),4.29(dd,1H,咪唑-CHa-,J=14.4Hz,8.7Hz),4.87(m,1H,O-CH-),4.97(dd,1H,咪唑-CHb-,J=14.7Hz,J=2.7Hz),7.03(d,2H,苯,J=8.4Hz),7.25(d,1H,咪唑,J=0.6Hz),7.26(d,1H,咪唑,J=0.6Hz),7.54(d,2H,苯,J=8.4Hz)。13C NMR(CDCl3,δppm):21.87,24.17,26.10,52.08,55.58,60.04,77.42,127.59,127.67,128.38,130.22,132.38,145.82。
将六氧二氮双环二十六烷222(MW376.5,824mg,2.19mmol)溶解在6ml乙腈(CH3CN)中。向该溶液加入无水氟化钾(99.99+%,128mg,2.19mmol),接着加入甲苯磺酸酯(7,III)(300mg,0.73mmol)。在甲苯磺酸酯完全溶解后,95℃油浴回流反应混合物2小时。在后处理后,通过柱色谱(EtQAc-己烷=1∶1)纯化粗反应产物,得到600mg(32%得率)目标氟化产物(8,VI)连同550mg(29.4%得率)副产物(9,VII)。
对于化合物(8,VI):1H NMR(CDCl3,δppm):1.37(m,2H,CH2),1.52(m,4H,2xCH2),2.39(m,4H,2xCH2),2.49-2.66(m,2H,哌啶-CH2),4.45-4.58(m,1H,咪唑-CH),4.79-5.02(m,2H,咪唑-CH,F-H),7.10(d,1H,咪唑,J=0.9Hz),7.15(d,1H,咪唑,J=0.9Hz)。13C NMR(CDCl3,δppm):23.87,25.81,51.81(d,JF-C=21.2Hz),55.32,59.33(d,JF-C=21.8Hz),90.14(d,JF-C=174.6Hz),126.97,128.22。
对于化合物(9,VII):1H NMR(CDCl3,δppm):1.40(m,6H,3xCH2),2.37(m,2H,哌啶环:-N-Ha),2.68(m,2H,哌啶环:-N-Hc),2.82-3.32(m,1H,哌啶-CH),4.56(ddd,1H,F-Ha,JF-H=89.1Hz,JH-H=10.2Hz,3.9Hz),4.49(d,2H,CH2,J=6.9Hz),4.53-4.59(m,1H,F-Hb),7.08(d,1H,咪唑,J=0.9Hz),7.09(d,1H,咪唑,J=0.9Hz)。13C NMR(CDCl3,δppm):24.27,26.28,47.18(d,JF-C=7.4Hz),50.86,64.88(d,JF-C=17.8Hz),80.79(d,JF-C=172.5Hz),126.93,127.85。
实施例4:制备1-(2-羟基-3-(N′-1,1,1,3,3,3-六氟异丙基哌啶子基)-2-硝基咪唑(XVI)
将2-硝基咪唑(1摩尔当量)的丙酮溶液与表氯醇(1.1摩尔当量)和碳酸钾(0.001摩尔当量)混合。过夜回流混合物,并真空干燥,得到1-(2-羟基-3-氯丙基)-2-硝基咪唑。将1-(2-羟基-3-氯丙基)-2-硝基咪唑溶解在乙酸乙酯中,并与等体积的10%氢氧化钠水溶液混合,并于室温剧烈搅拌1小时。用水洗涤乙酸乙酯层,经无水硫酸钠干燥,得到1-(2,3-环氧丙基)-2-硝基咪唑。将溶解在丙酮中的1-(2,3-环氧丙基)-2-硝基咪唑(1摩尔当量)与N′-1,1,1,3,3,3-六氟异丙基哌嗪(1.1摩尔当量)混合,并过夜回流溶液。真空干燥反应溶液,得到1-(2-羟基-3-(N′-1,1,1,3,3,3-六氟异丙基哌啶子基)-2-硝基咪唑(XVI),其由乙醇重结晶。通过在乙醇中过夜回流加热1,1,1,3,3,3-六氟异丙基溴(1.0摩尔当量)和哌嗪(1.1摩尔当量)制备化学中间体N′-1,1,1,3,3,3-六氟异丙基哌嗪。通过使市售可得的1,1,1,3,3,3-六氟异丙醇(1摩尔当量)与三溴化磷(0.33摩尔当量)在乙醚中于室温过夜反应制备化学中间体1,1,1,3,3,3-六氟异丙基溴。
实施例5:
本发明的弱碱性2-硝基咪唑低氧化合物于高pH是比没有弱碱性部分的2-硝基咪唑如CCI-103F更灵敏的细胞内缺氧检测物。在短期缺氧条件下,在中国仓鼠V79-4肺成纤维细胞中比较对弱碱性哌莫硝唑和对CCI-103F的pH-依赖性结合。使用的pH范围(6.4-7.4)包括在人肿瘤中检测到的约90%的胞外pH。将含有4.5g/L葡萄糖但不含碳酸盐的Eagle最小必需培养基(MEM)于温室升温至37℃,并在5%CO2+95%氮气流下通过加入碳酸氢钠调节至pH 6.4、6.8和7.4。加入胎牛血清(FBS),以产生含10%FBS的Eagle pH调节的MEM。用EDTA-胰蛋白酶收获附着的V79-4细胞,用25mL pH调节的MEM以3×105个细胞/mL的浓度稀释。向该溶液加入一定量的哌莫硝唑HCl母液或CCI-103F母液,以便产生200μM终浓度。然后在5%CO2+95%氮气氛下搅拌温育细胞溶液3小时。通过ELISA分析细胞裂解物,将数据对蛋白含量标准化。一式三份进行两个标记的实验。
对于所测试的所有pH水平,哌莫硝唑的结合强度均大于CCI-103F的结合强度,差值在所测试的最高pH时最大(表1)。这些数据表明,弱碱性的2-硝基咪唑缺氧标记在所有pH都是优良的试剂,但对于其中细胞处于相对较高pH的组织微区域中的缺氧检测尤其有利。这是以下事实的直接结果:随着pH增加,弱碱性2-硝基咪唑的胞内浓度(Ci)相对于胞外浓度(Ce)急剧增加,而用没有弱碱性部分的2-硝基咪唑没有观察到该作用。因为肿瘤中的区域包括经历波动缺氧的细胞和相对高pH的微环境,所以于高pH表现出与细胞结合增加的本发明化合物对检测波动缺氧较佳。
表1.哌莫硝唑和CCI-103F结合缺氧V79细胞的pH依赖性
Figure G2007800442838D00271
*After Wardman,Advanced Topics on Radiosensitizers of HypoxicCells(A.Breccia,C.Rimondi和G.E.Adams编辑),Plenum Press,NewYork,49-75页,1982。
实施例6:
在类似于人中出现的自发性犬大肿瘤中检测时,本发明的弱碱性2-硝基咪唑缺氧化合物对于检测波动缺氧比没有弱碱性部分的化合物更有效。以0.5g/m2体表面积的剂量将弱碱性缺氧标记哌莫硝唑的盐酸盐给予12只狗。7小时后,全部12只狗都接受没有弱碱性部分的标记CCI-103F。由每个肿瘤中的存活区域取出2-4个远远分开的活检样品,并立即置于10%中性缓冲的冷福尔马林中。于4℃固定标本18-24小时,然后转移至冷的70%乙醇中,并储存于4℃,直至制作成在石蜡块中的标本。分别使用针对哌莫硝唑和CCI-103F加合物的原初兔多克隆抗血清,免疫染色福尔马林固定的石蜡包埋的活检样品的切片,用于哌莫硝唑和CCI-103F结合。利用Axioskop 50显微镜和Fluar物镜以400x详尽扫描免疫染色的切片,并测量对哌莫硝唑和CCI-103F加合物的免疫染色百分率。
平均起来,对哌莫硝唑结合的免疫染色比对CCI-103F的免疫染色更广泛(依据配对t检验的因子为1.25(p=0.032)),但重要的是,基于每一个肿瘤,该因子在1.0-1.65的范围内。而且,在一个肿瘤中,在部分区域中哌莫硝唑结合的程度类似于CCI-103F的结合程度(图1C和1D),但在其它区域中极大地超过CCI-103F的结合程度(图1A和1B),表现为显著的较亮免疫染色的组分更接近血管。预期在肿瘤巢中心内的慢性缺氧区域的细胞中有和没有弱碱性部分的2-硝基咪唑化合物之间的结合基本没有差异,因为这些区域处于不变化的低pH(Helmlinger等人,Nature,Medicine 3:177-182,1997;比较图1C和1D)。相比于慢性缺氧,在pH急剧增加的区域中发生接近血管的波动或急性缺氧(Helmlinger等人,Nature,Medicine 3:177-182,1997);相对于没有弱碱性部分的缺氧标记表现出的结合,本发明的弱碱性化合物在这些区域中表现出对细胞的结合增加(比较图1A和1B)。一般而言,没有弱碱性部分的缺氧标记在经历急性波动缺氧的区域中将表现出对细胞的结合降低,在包含肿瘤的区域中就存在这种情况,由此使肿瘤检测更困难。相比之下,急性、波动性低氧状况对本发明的弱碱性缺氧化合物的结合最佳,因此所述化合物对波动性、急性缺氧将比没有弱碱性部分的2-硝基咪唑缺氧标记更具响应性。
这些数据表明,对于在哺乳动物组织中非侵入性检测缺氧,用[18F]或[19F]标记的弱碱性2-硝基咪唑化合物比没有弱碱性部分的先有技术的缺氧标记更有效。
其它实施方案
在本说明书中提及的所有出版物和专利申请都在此引入作为参考,其程度如同每个单独的出版物或专利申请被具体并单独地指出引入作为参考一样。
尽管已结合本发明具体的实施方案描述了本发明,但要理解的是,可进一步修改本发明,本申请旨在涵盖本发明的任何变化、用途或修改,这些变化、用途或修改总体上遵循本发明的原则而仅仅包含本发明所属领域的已知或惯例实践范围内但是仍然适用于前文陈述的基本特征的对本文公开内容的改变。

Claims (39)

1.一种具有下式I的结构的化合物,
Figure A2007800442830002C1
其中:
R1为卤素、正电子放射性核素、非金属、被取代以包含卤素的低级烷基、被取代以包含正电子放射性核素的低级烷基、被取代以包含非金属的低级烷基、甲苯磺酸酯基、甲磺酸酯基、三氟甲磺酸酯基、氢或羟基;和
R2和R3独立地选自低级烷基或羟烷基,或者连接形成含有至少1个氮原子的5元、6元或7元杂环;
其中如果R1为氢或羟基,则R2、R3中的至少一个或所述杂环含有卤素、正电子放射性核素、非金属、被取代以包含卤素的低级烷基、被取代以包含正电子放射性核素的低级烷基、被取代以包含非金属的低级烷基、甲苯磺酸酯基、甲磺酸酯基或三氟甲磺酸酯基。
2.权利要求1的化合物,其中R2和R3连接形成所述5元、6元或7元杂环。
3.权利要求1的化合物,其中R2和R3连接形成所述5元、6元或7元杂环,且所述杂环含有2、3或4个氮原子;其中所述杂环的至少1个所述氮原子或碳原子共价键合连接低级烷基或羟烷基。
4.权利要求1的化合物,其中R1为甲苯磺酸酯基、甲磺酸酯基或三氟甲磺酸酯基,且R2和R3连接形成所述5元、6元或7元杂环。
5.权利要求1的化合物,其中R1为羟基,且R2和R3连接形成所述5元、6元或7元杂环,其中所述杂环的至少1个碳原子或氮原子被卤代烷基取代。
6.权利要求5的化合物,其中所述卤代烷基为含有[19F]或[18F]的氟代烷基。
7.权利要求5的化合物,其中所述杂环含有2个、3个或4个氮原子。
8.权利要求1的化合物,其中R1为甲苯磺酸酯基、甲磺酸酯基或三氟甲磺酸酯基,且R2和R3独立选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、羟甲基、羟乙基、羟丙基和羟丁基。
9.权利要求1的化合物,其中R1、R2、R3或所述杂环含有卤素、正电子放射性核素、非金属、被取代以包含卤素的低级烷基、被取代以包含正电子放射性核素的低级烷基或者被取代以包含非金属的低级烷基。
10.权利要求1的化合物,其中所述卤素为氟(F)、氯(Cl)、溴(Br)、碘(I)或砹(At)。
11.权利要求1的化合物,其中所述正电子放射性核素为[11C]、[13N]、[15O]、[18F]、[52Fe]、[55Co]、[61Cu]、[62Cu]、[64Cu]、[62Zn]、[63Zn]、[70As]、[71As]、[74As]、[76Br]、[79Br]、[82Rb]、[86Y]、[89Zr]、[110In]、[120I]、[124I]、[122Xe]、[94mTc]、[94Tc]或[99mTc]。
12.权利要求11的化合物,其中所述正电子放射性核素为[18F]、[79Br]或[124I]。
13.权利要求1的化合物,其中所述化合物具有式III-VI或VIII-XVIII的结构。
14.一种生产含有正电子放射性核素的化合物的方法,所述方法包括:
(a)提供具有下式I的结构的化合物:
Figure A2007800442830004C1
其中:
R1为甲苯磺酸酯基、甲磺酸酯基、三氟甲磺酸酯基;和
R2和R3独立地选自低级烷基或羟烷基,或者连接形成含有至少1个氮原子的5元、6元或7元杂环;和
(b)使所述化合物与游离形式或盐形式的正电子放射性核素在引起含所述正电子放射性核素的化合物形成的条件下反应。
15.权利要求14的方法,其中R2和R3独立选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、羟甲基、羟乙基、羟丙基和羟丁基。
16.权利要求14的方法,其中所述正电子放射性核素为[11C]、[13N]、[15O]、[18F]、[52Fe]、[55Co]、[61Cu]、[62Cu]、[64Cu]、[62Zn]、[63Zn]、[70As]、[71As]、[74As]、[76Br]、[79Br]、[82Rb]、[86Y]、[89Zr]、[110In]、[120I]、[124I]、[122Xe]、[94mTc]、[94Tc]或[99mTc]。
17.权利要求16的方法,其中所述正电子放射性核素为[18F]。
18.权利要求16的方法,其中所述正电子放射性核素为[79Br]。
19.权利要求16的方法,其中所述正电子放射性核素为[124I]。
20.权利要求14的方法,其中R2和R3连接形成所述5元、6元或7元杂环,且所述杂环含有2、3或4个氮原子;其中所述杂环的至少1个所述氮原子或碳原子共价键合连接卤代烷基。
21.权利要求20的方法,其中所述卤代烷基为含有[19F]或[18F]的氟烷基。
22.一种在哺乳动物中检测正常组织、患病的正常组织或恶性组织的缺氧细胞的方法,所述方法包括给予所述哺乳动物权利要求9的化合物,其中所述化合物含有正电子放射性核素或被取代以含有正电子放射性核素的低级烷基,并通过非侵入性正电子发射断层显相术(PET)检测在所述正常组织、患病的正常组织或恶性组织中保持的全部所述化合物。
23.权利要求22的方法,其中所述正电子放射性核素为[11C]、[13N]、[15O]、[18F]、[52Fe]、[55Co]、[61Cu]、[62Cu]、[64Cu]、[62Zn]、[63Zn]、[70As]、[71As]、[74As]、[76Br]、[79Br]、[82Rb]、[86Y]、[89Zr]、[110In]、[120I]、[124I]、[122Xe]、[94mTc]、[94Tc]或[99mTc]。
24.权利要求23的方法,其中所述正电子放射性核素为[18F]。
25.一种在哺乳动物中检测正常组织、患病的正常组织或恶性组织中的缺氧细胞的方法,所述方法包括:
(a)给予所述哺乳动物具有下式I结构的化合物,
Figure A2007800442830005C1
其中:
R1为卤素、被取代以包含卤素的低级烷基、非金属、被取代以包含非金属的低级烷基、甲苯磺酸酯基、甲磺酸酯基、三氟甲磺酸酯基、氢或羟基;和
R2和R3独立地选自低级烷基或羟烷基,或者连接形成含有至少1个氮原子的5元、6元或7元杂环;
其中如果R1为氢或羟基,则R2、R3中的至少一个或所述杂环含有卤素、非金属、被取代以包含卤素的低级烷基、被取代以包含非金属的低级烷基、甲苯磺酸酯基、甲磺酸酯基或三氟甲磺酸酯基;和
(b)通过非侵入性磁共振波谱(MRS)或磁共振成像(MRI)检测在所述正常组织、患病的正常组织或恶性组织中保持的全部所述化合物。
26.权利要求25的方法,其中所述卤素为[19F]。
27.权利要求25的方法,其中所述非金属为[31P]或[13C]。
28.权利要求25的方法,其中所述氢为氘。
29.一种验证组织缺氧的正电子发射断层显相术(PET)、磁共振波谱(MRS)或磁共振成像(MRI)分析的方法,该方法包括使肿瘤组织与抗体接触,所述抗体特异性结合肿瘤细胞中存在的蛋白、多肽、多糖或多核苷酸与权利要求1的化合物反应后产生的加合物,并检测所述抗体与所述肿瘤组织的结合,其中所述抗体与肿瘤组织的结合相对于所述抗体与正常组织的结合增加证实了使用PET、MRS和MRI的组织缺氧的测定结果。
30.权利要求29的方法,其中所述抗体为多克隆抗体或单克隆抗体。
31.权利要求29的方法,其中所述肿瘤组织与含有所述抗体的抗血清接触。
32.权利要求29的方法,其中使用免疫荧光、免疫过氧化物酶、血细胞计数、流式细胞术或酶联免疫吸附测定(ELISA)检测所述抗体与肿瘤组织的结合。
33.权利要求29的方法,其中所述组织缺氧分析包括[18F]PET、[19F]MRS或[19F]MRI。
34.一种用于生产抗体的方法,所述方法包括用加合物免疫哺乳动物,所述加合物是肿瘤细胞中存在的蛋白、多肽、多糖或多核苷酸与权利要求1的化合物反应后产生的加合物,并由所述哺乳动物收集抗血清或抗体。
35.权利要求34的方法,其中所述哺乳动物为兔、猴或山羊。
36.一种药盒,所述药盒包含含有权利要求1的化合物的容器、含有单克隆抗体或多克隆抗体或包含所述单克隆抗体或多克隆抗体的单克隆抗血清或多克隆抗血清的容器,以及使用所述药盒检测组织中的缺氧细胞的说明书,其中所述单克隆抗体或多克隆抗体特异性结合所述化合物与肿瘤细胞中存在的蛋白、多肽、多糖或多核苷酸反应后产生的加合物。
37.权利要求36的药盒,其中所述说明书提供使用所述药盒通过免疫荧光、免疫过氧化物酶、血细胞计数、流式细胞术或酶联免疫吸附测定(ELISA)检测所述加合物的方法。
38.一种具有下式II的结构的化合物,
Figure A2007800442830007C1
其中:
R1为卤素、正电子放射性核素、非金属、被取代以包含卤素的低级烷基、被取代以包含正电子放射性核素的低级烷基、被取代以包含非金属的低级烷基、甲苯磺酸酯基、甲磺酸酯基、三氟甲磺酸酯基、氢或羟基;和
R2和R3独立地选自低级烷基或羟烷基,或者连接形成含有至少1个氮原子的5元、6元或7元杂环;
其中如果R1为氢或羟基,则R2、R3中的至少一个或所述杂环含有卤素、正电子放射性核素、非金属、被取代以包含卤素的低级烷基、被取代以包含正电子放射性核素的低级烷基、被取代以包含非金属的低级烷基、甲苯磺酸酯基、甲磺酸酯基或三氟甲磺酸酯基。
39.权利要求38的化合物,其中所述化合物具有式VII的结构。
CN200780044283.8A 2006-10-06 2007-10-01 用于非侵入性检测组织缺氧的弱碱性2-硝基咪唑 Expired - Fee Related CN101616695B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/544,698 2006-10-06
US11/544,698 US9056136B2 (en) 2006-10-06 2006-10-06 Weakly basic 2-nitroimidazoles for the non-invasive detection of tissue hypoxia
PCT/US2007/080062 WO2008063749A2 (en) 2006-10-06 2007-10-01 Weakly basic 2- nitroimidazoles for the non-invasive detection of tissue hypoxia

Publications (2)

Publication Number Publication Date
CN101616695A true CN101616695A (zh) 2009-12-30
CN101616695B CN101616695B (zh) 2016-03-16

Family

ID=39275087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780044283.8A Expired - Fee Related CN101616695B (zh) 2006-10-06 2007-10-01 用于非侵入性检测组织缺氧的弱碱性2-硝基咪唑

Country Status (6)

Country Link
US (1) US9056136B2 (zh)
EP (1) EP2086592A4 (zh)
JP (1) JP5404405B2 (zh)
CN (1) CN101616695B (zh)
CA (1) CA2665494C (zh)
WO (1) WO2008063749A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113387927A (zh) * 2021-06-17 2021-09-14 首都医科大学脑重大疾病研究中心(北京脑重大疾病研究院) 一种用于制备乏氧显像剂的硝基咪唑类衍生物及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9056136B2 (en) 2006-10-06 2015-06-16 Natural Pharmacia International, Inc. Weakly basic 2-nitroimidazoles for the non-invasive detection of tissue hypoxia
US7842278B2 (en) 2006-10-27 2010-11-30 Natural Pharmacia International, Inc. Hypoxia-selective, weakly basic 2-nitroimidazole delivery agents and methods of use thereof
US10695446B2 (en) 2015-05-01 2020-06-30 Vanderbilt University Composition and method for detecting hypoxia

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4241060A (en) * 1977-08-19 1980-12-23 Hoffmann-La Roche Inc. Nitroimidazoles and compositions thereof
US4797397A (en) * 1987-07-31 1989-01-10 Warner-Lambert Company 2-nitroimidazole derivatives useful as radiosensitizers for hypoxic tumor cells
US5674693A (en) * 1994-03-18 1997-10-07 Natural Pharmacia International Inc. Derivatives of 2-nitro-imidazoles as hypoxic cell markers

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282232A (en) 1979-04-26 1981-08-04 Research Corporation Nitroimidazole radiosensitizers for hypoxic tumor cells and compositions thereof
FR2614890B1 (fr) 1987-05-04 1989-08-11 Centre Nat Rech Scient Compose resultant du couplage d'une molecule a structure chimiosensibilisante et d'une molecule a structure cytotoxique, procede de preparation, application a titre de medicament et compositions pharmaceutiques le contenant
CA1329206C (en) * 1987-06-10 1994-05-03 Tsutomu Kagiya Fluorine-containing nitroazole derivatives and radiosensitizer comprising the same
JP2848602B2 (ja) * 1987-06-24 1999-01-20 京都大学長 新規含フッ素2−ニトロイミダゾールおよびそれを含む放射線増感剤
US5086068A (en) 1988-02-26 1992-02-04 Alberta Cancer Board Immunochemical detection of hypoxia in normal and tumor tissue
GB9113487D0 (en) 1991-06-21 1991-08-07 Amersham Int Plc Agents for hypoxic cells
US5728843A (en) 1993-10-04 1998-03-17 Wallace Technologies (2'-nitro-1'-imidazolyl)-2,3-isopropylidene-y-tosylbutanol, a precursor to 18 F!fluoroerythronitroimidazole PET imaging agent
US5721265A (en) 1994-08-05 1998-02-24 Sri International Fluorinated 2-nitroimidazole analogs for detecting hypoxic tumor cells
US20050026974A1 (en) 1996-02-08 2005-02-03 Trustees Of The University Of Pennsylvania Detection of hypoxia
EP2098514A1 (en) * 1999-07-21 2009-09-09 The Trustees Of The University Of Pennsylvania Preparation of compounds useful for the detection of hypoxia
UA76977C2 (en) * 2001-03-02 2006-10-16 Icos Corp Aryl- and heteroaryl substituted chk1 inhibitors and their use as radiosensitizers and chemosensitizers
US20040138121A1 (en) 2002-10-24 2004-07-15 Anil Gulati Method and composition for preventing and treating solid tumors
US9056136B2 (en) 2006-10-06 2015-06-16 Natural Pharmacia International, Inc. Weakly basic 2-nitroimidazoles for the non-invasive detection of tissue hypoxia
US7842278B2 (en) 2006-10-27 2010-11-30 Natural Pharmacia International, Inc. Hypoxia-selective, weakly basic 2-nitroimidazole delivery agents and methods of use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4241060A (en) * 1977-08-19 1980-12-23 Hoffmann-La Roche Inc. Nitroimidazoles and compositions thereof
US4797397A (en) * 1987-07-31 1989-01-10 Warner-Lambert Company 2-nitroimidazole derivatives useful as radiosensitizers for hypoxic tumor cells
US5674693A (en) * 1994-03-18 1997-10-07 Natural Pharmacia International Inc. Derivatives of 2-nitro-imidazoles as hypoxic cell markers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113387927A (zh) * 2021-06-17 2021-09-14 首都医科大学脑重大疾病研究中心(北京脑重大疾病研究院) 一种用于制备乏氧显像剂的硝基咪唑类衍生物及其制备方法和应用

Also Published As

Publication number Publication date
CA2665494A1 (en) 2008-05-29
US9056136B2 (en) 2015-06-16
EP2086592A2 (en) 2009-08-12
WO2008063749A2 (en) 2008-05-29
CA2665494C (en) 2016-05-17
US20080085237A1 (en) 2008-04-10
WO2008063749A3 (en) 2008-08-28
JP2010505864A (ja) 2010-02-25
JP5404405B2 (ja) 2014-01-29
CN101616695B (zh) 2016-03-16
EP2086592A4 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
RU2631500C2 (ru) Способы и устройство для синтезирования радиофармацевтических препаратов и их промежуточных продуктов
Shoup et al. Evaluation of (4-[18 F] Fluorophenyl) triphenylphosphonium ion. A potential myocardial blood flow agent for PET
US20110117012A1 (en) Radiolabeled gallium complexes, methods for synthesis and use for pet imaging of egfr expression in malignant tumors
US11865194B2 (en) Benzene ring-containing glucose derivative and use thereof
Liu et al. PET imaging of VEGFR and integrins in glioma tumor xenografts using 89Zr labelled heterodimeric peptide
CN101616695B (zh) 用于非侵入性检测组织缺氧的弱碱性2-硝基咪唑
US20220133919A1 (en) ONE STEP 64Cu-BaBaSar-RGD2 PRODUCTION METHOD
Yang et al. Synthesis and bioevaluation of radioiodinated nitroimidazole hypoxia imaging agents by one-pot click reaction
Hu et al. Harnessing the PD-L1 interface peptide for positron emission tomography imaging of the PD-1 immune checkpoint
JP4554202B2 (ja) 放射性標識神経ペプチドyy5受容体拮抗薬
CN101528270A (zh) 基于68Ga标记的肽的放射性药物
Murugesan et al. Technetium-99m-cyclam AK 2123: a novel marker for tumor hypoxia
US20080138283A1 (en) Radiolabeled compounds and uses thereof
Mikołajczak et al. Radiopharmaceuticals in cardiology
Kiritsis et al. Synthesis and preclinical evaluation of rhenium and technetium-99m “4+ 1” mixed-ligand complexes bearing quinazoline derivatives as potential EGFR imaging agents
US20080138282A1 (en) Radiolabeled Arylsulfonyl Compounds and Uses Thereof
Laurens et al. Radiolabelling and evaluation of novel haloethylsulfoxides as PET imaging agents for tumor hypoxia
US9290463B2 (en) Radiolabeled compounds and uses thereof
Zhang et al. RSC Chemical Biology
Falzon et al. F‐18 labelled N, N‐bis‐haloethylamino‐phenylsulfoxides—a new class of compounds for the imaging of hypoxic tissue
Farn et al. Synthesis, radiolabeling, and preliminary in vivo evaluation of [68ga] ipcat-nota as an imaging agent for dopamine transporter
Zhang PET Radiotracers for Tumor Imaging
Du et al. Evaluation of 18F-AlF-labeled IF7 dimer as a promising molecular probe for tumor targeting PET imaging in mice
Crudo et al. Labeling of the anti-melanoma 14f7 monoclonal antibody with rhenium-188-MAG 3 chelate: Conjugation optimization, in vitro stability and animal studies
Tewson Labeled antibiotics: Positron tomography as a tool for measuring tissue distribution

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160316

Termination date: 20201001