CN101603819B - Real-time measurement method for wood deformation microstructure characteristics - Google Patents
Real-time measurement method for wood deformation microstructure characteristics Download PDFInfo
- Publication number
- CN101603819B CN101603819B CN 200910089770 CN200910089770A CN101603819B CN 101603819 B CN101603819 B CN 101603819B CN 200910089770 CN200910089770 CN 200910089770 CN 200910089770 A CN200910089770 A CN 200910089770A CN 101603819 B CN101603819 B CN 101603819B
- Authority
- CN
- China
- Prior art keywords
- axis
- deformation
- cell
- measured material
- loading
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002023 wood Substances 0.000 title claims abstract description 30
- 238000000691 measurement method Methods 0.000 title claims description 5
- 238000000034 method Methods 0.000 claims abstract description 30
- 230000008569 process Effects 0.000 claims abstract description 18
- 230000006835 compression Effects 0.000 claims abstract description 15
- 238000007906 compression Methods 0.000 claims abstract description 15
- 238000005259 measurement Methods 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims description 68
- 238000012360 testing method Methods 0.000 claims description 17
- 210000004027 cell Anatomy 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 5
- 238000005452 bending Methods 0.000 claims description 4
- 210000002421 cell wall Anatomy 0.000 claims description 3
- 230000007547 defect Effects 0.000 abstract description 3
- 238000011002 quantification Methods 0.000 abstract description 2
- 238000001816 cooling Methods 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 8
- 230000006399 behavior Effects 0.000 description 7
- 239000002131 composite material Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000013480 data collection Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明公开了一种木材形变微观结构特征实时测量方法,包括如下步骤:1)对待检测木材进行加载;2)在加载过程中通过显微单元放大待测区域;3)通过图像采集单元采集图像信息后,通过图像处理单元计算出在每个图像采集时刻加载表面每个细胞的X轴长度X0~Xn、Y轴长度Y0~Yn;4)根据每个细胞变形前的X轴长度X0和Y轴长度Y0、及细胞变形后的X轴长度Xn和Y轴长度Yn计算单个细胞在X轴和Y轴的压或拉应变εxn和εyn,εxn=(Xn-X0)/Xn,εyn=(Yn-Y0)/Yn;5)将通过显微单元放大的待测区域内所有单个细胞在X轴和Y轴的压和拉应变εxn和εyn,取平均值得到表征木材整体在X轴和Y轴的压和拉应变εx和εy。本发明能够对微区组织和细胞应变进行测量,实现微区变形量化;能够对微区缺陷进行监控。
The invention discloses a method for real-time measurement of wood deformation microstructure features, comprising the following steps: 1) loading the wood to be detected; 2) enlarging the area to be tested through a microscopic unit during the loading process; 3) collecting images through an image acquisition unit After information, the image processing unit calculates the X-axis length X 0 ~X n and the Y-axis length Y 0 ~Y n of each cell on the loading surface at each image acquisition moment; 4) According to the X-axis length of each cell before deformation Length X 0 and Y-axis length Y 0 , and X-axis length X n and Y-axis length Y n after cell deformation calculate the compressive or tensile strain ε xn and ε yn of a single cell on the X-axis and Y-axis, ε xn =( X n -X 0 )/X n , ε yn =(Y n -Y 0 )/Y n ; 5) Compression and tension of all individual cells on the X-axis and Y-axis in the area to be tested enlarged by the microscopic unit The strains ε xn and ε yn are averaged to obtain the compressive and tensile strains ε x and ε y of the overall wood on the X-axis and Y-axis. The invention can measure micro-area tissue and cell strain, realize micro-area deformation quantification, and monitor micro-area defects.
Description
技术领域 technical field
本发明涉及一种木材及木质复合材料压缩或拉伸等力学强度性能与形变微观结构特征实时测量方法。 The invention relates to a real-time measurement method for mechanical strength properties such as compression or tension and deformation microstructure characteristics of wood and wood composite materials. the
背景技术 Background technique
木材及木质复合材料在生产加工和使用过程中,不可避免的会遇到压缩或拉伸等力学行为,对于材料的力学性能检测是保证后续产品质量及其合理使用的关键,但该力学行为对材料或产品的性能及微观结构影响以及微观结构特征对材料整体性能的影响情况均尚不清晰。 In the process of production, processing and use of wood and wood composite materials, it is inevitable to encounter mechanical behaviors such as compression or tension. The detection of mechanical properties of materials is the key to ensuring the quality of subsequent products and their rational use. The performance and microstructural effects of materials or products, as well as the influence of microstructural features on the overall performance of materials, are still unclear. the
对于目前的检测手段,主要以单一的宏观力学性能检测为主。这种检测手段具有诸多缺陷和缺点: For the current detection methods, the single macroscopic mechanical property detection is the main one. This detection method has many defects and shortcomings:
1、仅以宏观力学行为来判断木质材料的性能,是对材料本身性能掌握的不足; 1. Judging the performance of wood materials only by macroscopic mechanical behavior is insufficient to grasp the performance of the material itself;
2、仅能了解材料力学行为的结果,而不知形成该力学行为的原因; 2. Only the result of the mechanical behavior of the material can be understood, but the cause of the mechanical behavior is not known;
3、检测过程不能将被测材料的温度、含水率等影响因素加以考虑; 3. The testing process cannot take into account the temperature, moisture content and other influencing factors of the tested material;
4、检测过程得到的应变是材料整体的平均应变,体现不出材料不同组织结构的应变情况;不能反应木材各部分结构与整体应力、应变之间的关系; 4. The strain obtained during the detection process is the average strain of the material as a whole, which does not reflect the strain of different organizational structures of the material; it cannot reflect the relationship between the structure of each part of the wood and the overall stress and strain;
5、对于木材这种具有各项异性的不均质材料,得到的应变结果单一,不能真实反映木材各组织结构的应力应变结果; 5. For an anisotropic heterogeneous material such as wood, the obtained strain results are single, which cannot truly reflect the stress-strain results of each tissue structure of wood;
6、检测结束后,不能及时得到被测材料的回弹情况,不能分析被测材料的残余应力。 6. After the test is over, the springback of the tested material cannot be obtained in time, and the residual stress of the tested material cannot be analyzed. the
发明内容 Contents of the invention
本发明要解决的技术问题是提供一种木材形变微观结构特征实时测量 方法,能够在线实时测量材料变形的微观结构特征和力学性能。 The technical problem to be solved by the present invention is to provide a real-time measurement method for wood deformation microstructure characteristics, which can measure the microstructure characteristics and mechanical properties of material deformation online in real time. the
为了解决上述问题,本发明提供了一种木材形变微观结构特征实时测量方法,包括如下步骤: In order to solve the above problems, the invention provides a real-time measurement method for wood deformation microstructure characteristics, comprising the following steps:
1)对被测材料进行加载; 1) Load the material to be tested;
2)在加载过程中通过显微单元放大待测区域; 2) Magnify the area to be tested through the microscopic unit during the loading process;
3)通过图像采集单元采集图像信息后,通过图像处理单元计算出在每个图像采集时刻加载表面每个细胞的X轴长度X0~Xn、Y轴长度Y0~Yn,作为加载过程中被测材料的形变情况数据; 3) After the image information is collected by the image acquisition unit, the X-axis length X 0 to X n and the Y-axis length Y 0 to Y n of each cell on the loading surface at each image acquisition moment are calculated by the image processing unit as the loading process The deformation data of the tested material;
4)根据每个细胞变形前的X轴长度X0和Y轴长度Y0、及细胞变形后的X轴长度Xn和Y轴长度Yn计算单个细胞在X轴和Y轴的压或拉应变εxn和εyn,εxn=(Xn-X0)/Xn,εyn=(Yn-Y0)/Yn,(n=1,2,3......N); 4) According to the X-axis length X 0 and Y-axis length Y 0 of each cell before deformation, and the X-axis length X n and Y-axis length Y n after cell deformation, calculate the compression or tension of a single cell on the X-axis and Y-axis Strain ε xn and ε yn , ε xn =(X n -X 0 )/X n , ε yn =(Y n -Y 0 )/Y n , (n=1, 2, 3...N );
5)将通过显微单元放大的待测区域内所有单个细胞在X轴和Y轴的压或拉应变εxn和εyn,取平均值得到εx和εy,代表被测材料在X轴和Y轴上整体的压或拉应变, 5) The compressive or tensile strains ε xn and ε yn of all individual cells in the area to be tested enlarged by the microscopic unit on the X-axis and Y-axis are averaged to obtain ε x and ε y , which represent the measured material in the X-axis and the overall compressive or tensile strain on the Y axis,
优选地,在所述图像处理单元计算中,还包括如下步骤: Preferably, in the calculation of the image processing unit, the following steps are also included:
3.1)计算出在每个图像采集时刻加载表面各类实体细胞胞壁的组织比量Ai(i=0,1,2,...,I),作为加载过程中被测材料的形变情况数据; 3.1) Calculate the tissue ratio A i (i=0, 1, 2, ..., I) of various types of solid cell walls on the loading surface at each image acquisition moment, as the deformation of the measured material during the loading process data;
4.1)根据细胞变形前的组织比量A0和变形后的组织比量Ai计算被测材料的整体应变εA,εA=(Ai-A0)/Ai。 4.1) Calculate the overall strain ε A of the measured material according to the tissue ratio A 0 before cell deformation and the tissue ratio A i after deformation, ε A =(A i -A 0 )/A i .
优选地,在拉伸或压缩等力学行为结束后,还包括如下步骤: Preferably, after the mechanical behaviors such as stretching or compression end, the following steps are also included:
5)通过所述图像采集单元连续拍摄被测材料至该被测材料变形回弹完全停止状态; 5) The measured material is continuously photographed by the image acquisition unit until the deformation and rebound of the measured material completely stops;
6)所述图像处理单元计算被测材料受压或受拉后任何一个时刻的整体厚度或长度Lk,从而计算回弹量R和回弹率Rr,R=Lk-L0,Rr(%)=(Lk-L0)×100/L0;其中,k=0,1,2,...,K,“0”代表测试刚结束的时刻。 6) The image processing unit calculates the overall thickness or length L k at any moment after the material under test is compressed or tensioned, thereby calculating the rebound amount R and the rebound rate R r , R=L k -L 0 , R r (%)=(L k −L 0 )×100/L 0 ; where, k=0, 1, 2, . . . , K, “0” represents the moment just after the test.
优选地,在所述测量过程将被测材料的温度控制在一定的范围。 Preferably, the temperature of the material to be tested is controlled within a certain range during the measurement process. the
优选地,在所述测量过程将被测材料的含水率控制在一定的范围。 Preferably, the moisture content of the material to be tested is controlled within a certain range during the measurement process. the
优选地,所述加载包括:拉伸、压缩、弯曲、扭转或剪切。 Preferably, said loading includes: tension, compression, bending, torsion or shear. the
本发明具有如下优点: The present invention has the following advantages:
1、本发明将连续的力学测试过程与木材动态的结构变化相结合,能够实时反映木材或木质复合材料力学性能和微观结构特征变化之间的关系。 1. The present invention combines the continuous mechanical testing process with the dynamic structural changes of wood, and can reflect the relationship between the mechanical properties of wood or wood composite materials and the changes in microstructure characteristics in real time. the
2、本发明将力学加载过程、材料性能数据结果、微观结构变化图像与时间数据点之间完全同步,任意二者之间可建立二维关系,并达到了真正的实时“监”和“测”。 2. The present invention fully synchronizes the mechanical loading process, material performance data results, microstructure change images and time data points, and can establish a two-dimensional relationship between any two, and achieves real real-time "monitoring" and "measurement" ". the
3、本发明能够对微区的组织和细胞应变进行测量,实现微区变形量化;能够对微区缺陷进行监控。 3. The present invention can measure the tissue and cell strain of the micro-area, realize the quantification of the deformation of the micro-area, and monitor the defects of the micro-area. the
4、本发明能够测试木材或木质复合材料力学性能和微观结构变化之间的关系,同时能够量化力学加载过程后材料的变形回弹情况。 4. The present invention can test the relationship between the mechanical properties and microstructure changes of wood or wood composite materials, and can quantify the deformation and springback of materials after the mechanical loading process. the
5、本发明将动态力学测试延伸到低温或高温范畴内,能够建立起温度与力学性能和微观结构变化之间的关系。 5. The present invention extends the dynamic mechanical test to the range of low temperature or high temperature, and can establish the relationship between temperature and mechanical properties and microstructure changes. the
6、本发明将动态力学测试延伸到含水率变化范畴内,能够建立起含水率与力学性能和微观结构变化之间的关系。 6. The present invention extends the dynamic mechanical test to the scope of water content change, and can establish the relationship between water content, mechanical properties and microstructure changes. the
7、本发明采用了自动调焦系统,能够有效提高图像采集精度,缩短图像采集间隔。 7. The present invention adopts an automatic focusing system, which can effectively improve the image acquisition precision and shorten the image acquisition interval. the
8、本发明可实现电脑全自动化运行,避免人为控制和各系统分开控制所易造成的误差。 8. The present invention can realize fully automatic computer operation, avoiding errors easily caused by manual control and separate control of each system. the
9、本发明所得到的应力-应变曲线和微尺度变形机理能够抓住木质材料和木质复合材料延展性及强度的关键。 9. The stress-strain curve and micro-scale deformation mechanism obtained by the present invention can grasp the key to the ductility and strength of wood materials and wood composite materials. the
10、本发明的适用范围广,压缩或拉伸等力学加载载荷范围宽,适合于 10. The present invention has a wide range of applications, and the range of mechanical loading loads such as compression or tension is wide, and it is suitable for
各种类型/形状和尺寸的样品进行研究,包括实木材料、木质复合材料、其他木材衍生产品等。 Samples of all types/shapes and sizes are studied, including solid wood materials, wood composites, other wood derived products, etc. the
附图说明Description of drawings
图1为本发明结构示意图; Fig. 1 is a structural representation of the present invention;
图2为本发明被测材料的示意图。 Fig. 2 is a schematic diagram of the tested material of the present invention. the
具体实施方式Detailed ways
如图1所示,本发明包括:加载单元1、控温箱3、传感器4、计算机5(即图像处理单元)、光学显微镜6、数码相机7和摄像机8。加载单元1用于被测材料2进行压缩、拉伸、或弯曲、剪切、扭转等力学行为。控温箱3与拉压单元1和计算机5相连,用于控制待检木材的温度(理论范畴-140~600℃)。光学显微镜6与数码相机7、摄像机8和计算机5相连,用于受压或受拉被测材料表面形变图像的采集。3套传感器4,一套与加载单元1中的进尺系统12相连,用于测量被测材料2的整体位移;一套与载荷控制(控压或控拉等)系统13相连,测量载荷值(压力或拉力等);一套与导热部件(如导热压块或拉伸夹等)11相连,用于控温箱控制被测材料2的温度。数码相机7和摄像机8均与计算机5相连,用于应力和形变图像的数据采集。计算机5用于接收进尺系统12、力学控制系统13、数码相机7和摄像机8的检测数据和图像数据,并根据位移数据结果通过软件计算得到所述被测材料的应变信息和回弹量,同时得到应力应变曲线及被测材料实时微观结构变化结果。
As shown in FIG. 1 , the present invention includes: a loading unit 1 , a
如图1所示,光学显微镜6可以为普通光三目生物显微镜,由聚光照明系统61、目镜62、物镜63、载物台64和调焦机构组成,并与数码相机7和摄像机8相连,用于受力木材表面形变图像的采集;其中,调焦机构为自动对焦系统65,设置在光学显微镜上,一端连接计算机5,用于控制光学显微镜物镜63的焦点调节,由计算机5控制调焦的间隔时间。
As shown in Figure 1, the optical microscope 6 can be an ordinary light trinocular biological microscope, which is composed of a
如图1所示,加载单元1由导热部件11、进尺系统12、载荷控制系统13、冷却系统14组成,用于对待检木材2进行压缩、拉伸或弯曲等力学行为;其中,冷却系统14分为水冷和氮冷两套,水冷用于加载单元中导热部件11和载荷控制系统13由高温冷却到室温状态,氮冷用于加载单元中导热部件11由室温降到低温的状态,从而控制被测材料的温度。
As shown in Figure 1, the loading unit 1 is composed of a heat conducting component 11, a
本发明由于采用自动对焦系统65实时自动调节光学显微镜6的物镜63的焦距,从而能够有效提高图像采集精度,缩短图像采集间隔。另外,本发 明由于采用摄像机8,能够实时观察受力被测材料的整体厚度或长度等外型尺寸变化,从而通过与之相连的计算机5计算出受力后任意时刻被测材料的回弹量和回弹率。本发明中,自动对焦可以采用常规的自动对焦方法。
Since the present invention adopts the
具体的测定步骤如下,如图1所示: The specific measurement steps are as follows, as shown in Figure 1:
1)首先测量被测材料2的径向尺寸LR、弦向尺寸LT、纵向尺寸LL(如图2所示),输入到计算机5中,作为该被测材料的原始数据;
1) First measure the radial dimension L R , the chord dimension L T , and the longitudinal dimension L L (as shown in Figure 2 ) of the tested
2)将被测材料2放置于加载单元1上,在计算机5中设定最大受力(压缩或拉伸等)载荷、最大压缩率(或拉伸率、挠度)、加载速度等参数;
2) Place the measured
3)在光学显微镜6上选择倍数合适的物镜63,用自动对焦系统65调整到合理焦距,使被测材料2表面在数码相机7和摄像机8中所呈图像清晰完整;在计算机5中设定数码相机拍照时间间隔,如5sec、10sec等;同时设定自动对焦系统65的自动调焦时间间隔,与数码相机设定的拍照时间间隔相同,保证每次拍照前自动调焦完毕;
3) Select an
4)如果需要被测材料2升温或降温,先在计算机5中设定被测材料最终温度,并需在测定开始前十分钟(最短时间)打开控温箱3开关,使被测材料2逐步升温(或降温)到设定温度;
4) If the temperature of the tested
5)同时启动加载单元1、数码相机7、摄像机8、自动调焦系统65,开始测试;
5) start loading unit 1,
6)计算机5通过传感器4控制载荷控制系统13,得到实时加载载荷δ的大小;通过进尺系统12得到被测材料实时的位移数据,计算机5计算出被测材料实时应变εB;通过数码相机7和摄像机8得到被测材料表面清晰的实时变形图像;以上数据被实时传送到计算机5中直至测试结束;
6) The
7)测试结束后,迅速将被测材料从加载单元1上取下,平放在光学显微镜载物台上对准物镜中心,继续用摄像机8连续拍摄受力结束后全部的被测材料至数天后,将摄像机8拍摄的图像被实时输入到计算机5中;
7) After the test is over, quickly remove the material to be tested from the loading unit 1, place it flat on the stage of the optical microscope and align it with the center of the objective lens, and continue to use the
8)计算机5根据数码相机7传回的图像数据,利用两种由图像计算应变的方法计算出被测材料的实时X轴应变εx、Y轴应变εy、整体应变εA,并将之与通过进尺系统12得到的位移数据计算出的实时应变εB对比;
8) According to the image data returned by the
9)计算机5根据摄像机8传回的图像数据,计算出被测材料受力后任何一个时刻的厚度(或长度)Lk,利用公式计算出受压(或受拉)后被测材料在任何一个时刻的回弹量R,R=Lk-L0,和回弹率Rr,Rr(%)=Lk-L0)×100/L0;其中,k=0,1,2,...,K,“0”代表测试刚结束的时刻。
9) The
通过上述测定步骤,就能够得到材料在整个加载过程中的应力-应变曲线,得到材料的压缩(或拉伸等)力学性能表征结果,例如,弹性变形阶段、塑性变形阶段、屈服点、破坏阶段,以及与之相对应的材料显微结构形变图像。 Through the above measurement steps, the stress-strain curve of the material during the entire loading process can be obtained, and the mechanical properties of the material in compression (or tension, etc.) can be obtained, such as elastic deformation stage, plastic deformation stage, yield point, and failure stage. , and the corresponding deformation images of the material microstructure. the
上述测定步骤中,加载单元1、控温箱3、数码相机7、摄像机8、自动对焦系统65均由计算机5统一控制、同步运转,各机构所获得数据也实时传送回计算机5中,这样,以上各机构所得载荷、温度、应变和图像数据均可以时间为参照物建立二维关系。
In the above-mentioned measurement steps, the loading unit 1, the
另外,在上述测量过程中,还可以将被测材料2的含水率控制在一定的范围,从而将动态力学测试延伸到含水率变化范畴内,建立含水率与力学性能和微观结构变化之间的关系。
In addition, in the above measurement process, the moisture content of the
另外,本发明包含了三种测量应变方法,①利用差动传感器测量平均形变从而计算平均应变εB的方法,②通过图像测量每个组成单元(木材中为细胞)X轴形变和Y轴形变,进而计算被测材料整体X轴和Y轴平均应变εx、εy的方法,③通过图像测量组成单元实体部分(木材中的实体部分为细胞壁)的组织比量的变化,从而计算被测材料整体平均应变εA的方法。三种方法所得数据可以进行对比和互补。 In addition, the present invention includes three methods of measuring strain, ① using a differential sensor to measure the average deformation to calculate the average strain ε B , ② measuring the X-axis deformation and Y-axis deformation of each component unit (cells in wood) through images , and then calculate the overall X-axis and Y-axis average strain ε x , ε y of the measured material, ③ measure the change of the tissue ratio of the solid part of the unit (the solid part in wood is the cell wall) through the image, so as to calculate the measured The method for the overall average strain ε A of the material. The data obtained by the three methods can be compared and complemented.
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,因此,凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 In summary, the above are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Therefore, any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention. the
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910089770 CN101603819B (en) | 2009-07-23 | 2009-07-23 | Real-time measurement method for wood deformation microstructure characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910089770 CN101603819B (en) | 2009-07-23 | 2009-07-23 | Real-time measurement method for wood deformation microstructure characteristics |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101603819A CN101603819A (en) | 2009-12-16 |
CN101603819B true CN101603819B (en) | 2011-11-16 |
Family
ID=41469647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200910089770 Expired - Fee Related CN101603819B (en) | 2009-07-23 | 2009-07-23 | Real-time measurement method for wood deformation microstructure characteristics |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101603819B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104613888B (en) * | 2015-02-03 | 2017-06-13 | 清华大学 | Smog deformation of body measuring method is passed through under a kind of flame smoky environment |
CN104897465A (en) * | 2015-06-10 | 2015-09-09 | 长安大学 | Equipment for measuring tensile deformation recovery capacity of epoxy resin joist |
CN105334104A (en) * | 2015-09-23 | 2016-02-17 | 中国特种设备检测研究院 | Magnetic signal detection apparatus |
CN106198249A (en) * | 2016-06-23 | 2016-12-07 | 大连盛辉钛业有限公司 | Test the method and system of medical TC4 titanium alloy ballistic properties |
CN106644704B (en) * | 2017-03-09 | 2019-02-22 | 中国工程物理研究院核物理与化学研究所 | A kind of test method of material microdeformation |
CN109696351A (en) * | 2019-01-21 | 2019-04-30 | 中国林业科学研究院木材工业研究所 | It is a kind of for recombinating the long-term tensile load test device of composite construction bamboo |
CN109682818A (en) * | 2019-02-28 | 2019-04-26 | 华南理工大学 | A kind of device and method of real-time measurement cellulose or lignin material bulking coefficient |
CN111156919A (en) * | 2020-03-10 | 2020-05-15 | 广州特种承压设备检测研究院 | A method for measuring microscopic deformation of metal materials |
CN114757918B (en) * | 2022-04-15 | 2024-09-17 | 国际竹藤中心 | Method and device for detecting biomass material, electronic equipment and storage medium |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1800838A (en) * | 2004-12-30 | 2006-07-12 | 戚大伟 | Non-destructive test device for wood |
-
2009
- 2009-07-23 CN CN 200910089770 patent/CN101603819B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1800838A (en) * | 2004-12-30 | 2006-07-12 | 戚大伟 | Non-destructive test device for wood |
Non-Patent Citations (2)
Title |
---|
D.Choi et al.Image analysis to measure strain in wood and paper.《Wood Sci. Technol.》.1991,第25卷251-260. * |
Federica De Magistris et al.Deformation of wet wood under combined shear and compression.《Wood Sci. Technol.》.2005,第39卷460-469. * |
Also Published As
Publication number | Publication date |
---|---|
CN101603819A (en) | 2009-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101603819B (en) | Real-time measurement method for wood deformation microstructure characteristics | |
CN101603820A (en) | A real-time detection system for changes in wood microstructure characteristics | |
CN102221503B (en) | Single-shaft tensile overall true stress-true strain curve testing technique | |
CN103487315B (en) | A kind of material mechanical performance proving installation | |
CN103728186A (en) | On-line observable high-temperature three-point bend test system | |
CN104913974A (en) | Material micro-mechanical property biaxial tension-fatigue test system and test method thereof | |
CN204255763U (en) | Based on the high speed strain proving installation of line-scan digital camera | |
CN111337347B (en) | Plant micromechanics detection device and detection method thereof | |
CN106198206A (en) | A kind of thin film high temperature mechanical property measuring device and method | |
CN109781516A (en) | A material strain in-situ EBSD observation test fixture and the test method | |
CN106248502A (en) | The method that cantilever beam bending obtains material elastic plastic mechanical properties | |
CN100573150C (en) | A kind of equipment of crack resistance at low-temperature of test architecture material | |
CN113049398B (en) | A high temperature creep rupture test method and device reflecting multiaxial stress | |
CN102788727A (en) | Multipurpose in-situ microscale mechanical property tester under scanning electron microscope | |
CN101694444B (en) | Measuring methods for mechanical properties of fiber fabrics and textile structural composites | |
CN105527311B (en) | Mass concrete meso fracture pilot system | |
CN106483016A (en) | A kind of concrete sample uniaxial tension Complete stress-strain curve experimental rig | |
CN109708969A (en) | A method to determine the characteristics of anisotropy and tension-compression asymmetry in metallic materials | |
CN103808567A (en) | Mechanical property testing device and mechanical property testing method for soldered joint | |
CN202256050U (en) | In-situ stretch/compression material mechanical test platform based on quasi-static loaded scanning electron microscope | |
CN2856995Y (en) | Surface observer under conditions of dynamic loading | |
CN105334105A (en) | Method for acquiring high speed blanking crack generation critical damage threshold, and apparatus thereof | |
CN102679931B (en) | Novel method for measuring fatigue crack propagation length in situ | |
CN209606222U (en) | A kind of Fracture of Metal Material toughness specimen crack length on-Line Monitor Device | |
CN112857989B (en) | Device for testing in-situ mechanical properties of pipe under service working condition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111116 Termination date: 20160723 |