CN101596869A - 混合动力客车气压与再生制动协调控制系统 - Google Patents

混合动力客车气压与再生制动协调控制系统 Download PDF

Info

Publication number
CN101596869A
CN101596869A CNA2009100672686A CN200910067268A CN101596869A CN 101596869 A CN101596869 A CN 101596869A CN A2009100672686 A CNA2009100672686 A CN A2009100672686A CN 200910067268 A CN200910067268 A CN 200910067268A CN 101596869 A CN101596869 A CN 101596869A
Authority
CN
China
Prior art keywords
brake
motor
torque
air pressure
regenerative brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2009100672686A
Other languages
English (en)
Inventor
初亮
房永�
尚明利
孙万峰
郭建华
张永生
欧阳�
姚亮
晁黎波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CNA2009100672686A priority Critical patent/CN101596869A/zh
Publication of CN101596869A publication Critical patent/CN101596869A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

本发明涉及一种混合动力汽车的气压和再生制动协调控制系统,属于混合动力汽车技术领域。该系统包括再生制动控制子系统和气压制动控制子系统。安装一个制动踏板位移传感器,用来测量制动踏板开度;安装两个常开电磁阀,用来调节前后轴的制动力分配;安装两个压力传感器,用来测量前后制动管路中的气压制动压力。协调控制系统根据踏板位移传感器计算所能达到的制动强度和需求的制动扭矩,根据制动强度对前后制动力进行分配,并按照当前的制动力分配系数调整电机输出扭矩和气压制动扭矩,对于电机的控制误差,利用气压制动力来动态补偿。本发明在保证汽车制动安全性和平顺性基础上最大限度发挥电机再生制动功能,提高整车能量利用率和经济性。

Description

混合动力客车气压与再生制动协调控制系统
技术领域
本发明属于混合动力电动汽车技术领域,特别涉及一套气压与再生制动协调控制系统。
背景技术
经检索,有以下八个专利申请与本发明相关。
其一为日产自动车株式会社的“车辆制动控制系统”,专利申请号为200320128501。该专利涉及的制动控制系统主要有一个制动方式选择部分。不同的制动方式有不同的控制方法优先级。
其二为中国第一汽车集团公司的“提高混合动力汽车制动能量回收的控制方法”,申请号为200510016977。该专利仅仅通过整车控制器在加速踏板处于关闭时控制离合器断开发动机与传动系的联结,同时指令电机进行再生制动。
其三为中国第一汽车集团公司的“混合动力汽车下坡时制动能量回收的控制方法”,申请号为200510016980。该专利主要根据车速和加速度2个参数确定电机的再生制动力矩,保持车速稳定为目的。也没有涉及到制动能量回收和再生制动的协调控制。
其四为吉林大学的“混合动力商用汽车的气压制动防抱死控制系统”,申请号为200610017245。该专利为气压防抱死控制,其制动力的分配和再生制动与防抱死的协调控制方法与本发明也完全不同。
其五为清华大学的“混合动力车串联式制动系统”,申请号为200510001757。该专利也没有将再生制动和气压防抱死控制统一起来。
其六为韩国现代自动车株式会社的“用于混合动力汽车的制动系统及其控制方法”,申请号为200710139814。该专利通过计算最大再生制动力矩来调节液压制动力矩,以满足目标主动转矩,所适用的对象为混合动力轿车,且未涉及与防抱死系统的协调控制。
其七为美国环球技术公司的“在混合动力电动车辆中延长再生制动的系统和方法”,申请号为200810124959。该专利通过调节电动机的转矩输出,来满足车辆的制动和能量的回收,电池电量超过阈值时,通过调节发电机的工作效率来消耗回收的电能和电池的电能。
其八为吉林大学的“混合动力轿车再生制动与防抱死集成控制系统”,申请号为200710055687。该专利的适用对混合动力轿车,所涉及的为液压制动控制系统。
发明内容
本发明的目的在于解决目前混合动力客车的制动能量回收和气压制动的协调控制,实现再生制动过程的平顺安全,提出一种混合动力客车的气压与再生制动协调控制系统,使之具有如下优点:在结构上充分利用现有的普通气压制动系统和再生制动系统的部件资源,通过协调再生制动控制和气压制动控制,保证最大限度地回收制动能量,补偿电机在实际控制中出现的误差,提高整车的经济性,能防止车轮抱死,提高了整车的主动安全性。
本发明是通过以下技术方案实现上述目的,结合附图说明如下:
一种混合动力客车的气压与再生制动协调控制系统,包括一个再生制动子系统和一个气压制动子系统,所述的再生制动子系统利用再生制动力进行汽车制动,所述的气压制动子系统利用气压制动力进行汽车制动,再生制动子系统和气压制动子系统通过气压与再生制动协调控制单元33设定前后制动力的分配并设定所需的目标再生制动力矩,在当前电机转速下,对电机所能提供的最大制动扭矩能够满足后轴所需制动扭矩时,后轴制动扭矩全部由电机提供,如果电机提供制动扭矩不能满足后轴所需的制动扭矩时,对电机制动扭矩和气压制动扭矩进行动态协调控制。
所述的气压与再生制动协调控制单元33与整车控制器36通过CAN总线35通讯,获取电机、电池的状态信号,发出再生制动控制指令,并直接向制动气压压力调节装置发出气压调节指令;
所述的气压与再生制动协调控制单元33直接通过装在前、后鼓式制动器上的轮速传感器获取车轮轮速信号;通过装在制动踏板17处的制动踏板位移传感器18获取制动踏板位移信号;通过装在前、后制动管路上的前、后制动管路压力传感器获得前后轴的制动压力信号;通过分别串联在前后制动管路中的两个常开电磁阀调解前后轴的制动力分配。
所述的气压与再生制动协调控制单元33根据前后制动力分配系数计算出前后轴所需的制动扭矩,在电机输出扭矩稳定之前,电机输出扭矩与后轴需求扭矩之间的差值由气压制动扭矩来补偿。如果需求的电机目标转矩大于等于电机实际的输出转矩则增加气压制动力,如果需求的电机目标转矩小于电机实际的输出转矩,减小气压制动力。
电机输出扭矩稳定之后,所述的气压与再生制动协调控制单元33根据电机当前的电流和电压计算出电机稳定状态下的实际输出扭矩,实际输出扭矩与电机目标输出扭矩进行对比,电机的稳态误差由气压制动扭矩来补偿。
如果需求的电机目标转矩大于等于电机实际的输出转矩则增加气压制动力,如果需求的电机目标转矩小于电机实际的输出转矩,减小气压制动力。
该协调系统可以根据驾驶员的需求和制动强度来调整前后轴制动力的分配。
本发明不局限于说明书中所列的具体的混合动力汽车结构类型和具体的气压控制逻辑和具体的再生制动控制逻辑;本发明包括适用于任何汽车结构类型的与本发明思想等价的控制逻辑变体。此外,在应用于各种汽车结构类型的各种再生制动和气压控制逻辑中,只要包含某个本发明中所列的元素也属于本发明的范围。
本发明涉及的再生制动控制子系统和气压制动控制子系统,两控制子系统既相互独立又相互统一。相互独立是指气压制动控制子系统根据车轮的制动状态对气压压力进行控制,不受再生制动控制子系统工作状态的限制,同理,再生制动控制子系统也根据车轮的制动状态对后轴的再生制动力矩进行控制,不受气压控制子系统工作状态的限制。两制动控制子系统相互统一是指两控制子系统在作用效果上是协调统一的,能够实现能量回收和气压制动防抱死的协调统一。本发明主要解决了在保证汽车制动安全性和平顺性基础上最大限度的发挥电机的再生制动功能,提高整车的能量利用率和经济性。
本发明的技术效果是:与现有的混合动力制动技术相比,在结构上充分利用现有的普通气压制动系统和再生制动系统的部件资源,通过动态调整气压制动扭矩补偿了电机输出扭矩的误差。通过协调再生制动控制和气压制动控制,保证最大限度地回收制动能量,提高了整车的经济性,又能防止车轮抱死,提高了整车的主动安全性。
附图说明
图1为混合动力客车气压与再生制动协调控制系统的结构示意图;
图2为混合动力客车防制动抱死系统管路布置图;
图3为混合动力客车气压与再生制动协调控制策略流程图;
图4为再生制动与气压制动动态协调控制流程图;
图5为电机再生制动目标扭矩与后轴需求制动扭矩之间的关系示意图;
图6为电机实际输出转矩与电机再生制动目标转矩之间的关系示意图;
图7为混合动力客车前后轴制动力分配系数动态调整示意图;
图8为混合动力客车制动力分配系数的上下限值。
图中:1为右后轮鼓式制动器,2为右后轮速传感器,3为右后制动气压调节装置,4为AMT变速箱控制单元TCU,5为主减速器,6为左后轮速传感器,7为左后制动气压调节装置,8为左后鼓式制动器,9为AMT变速箱,10为电机,11为电机控制单元MCU,12为电池组,13为电池能量控制单元BCU,14为发动机管理系统ECU,15为发动机,16为气压制动动力源,17为制动踏板(制动阀),18为制动踏板位移传感器,19为左前鼓式制动器,20为左前轮速传感器,21为左前制动气压调节装置,22为前制动管路,23为三通,24前制动管路常开电磁阀,25为后制动管路常开电磁阀,26为前制动管路压力传感器,27为右前制动气压调节装置,28为右前轮速传感器,29为右前鼓式制动器,30为信号线,31为再生制动控制单元,32为气压制动防抱死控制单元,33为气压与再生制动协调控制单元,34为后制动管路压力传感器,35为CAN总线,36为整车控制器,37为后制动管路,38为右后制动气室,39为快放阀,40为左后制动气室,41为继动阀,42为气泵,43为卸载阀,44为手动阀,45为湿储气筒,46为四回路保护阀,47为储气筒,48为左前制动气室,49为右前制动气室。
具体实施方式
以下对优选实施方式的说明仅仅是示范性的,它决不用于限制本发明及其使用或应用。
一种用于后轮驱动的混合动力客车的气压与再生制动协调控制系统,它由以下部分组成:
一个再生制动子系统,该部分利用再生制动力进行汽车制动;
一个气压制动子系统,该部分利用气压制动力进行汽车制动;
一个对作用于车轮上的再生制动力矩和气压制动力进行控制的气压与再生制动协调控制器;
其中协调控制器设定前后制动力的分配并设定所需的目标再生制动力矩,当前电机转速下,对电机所能提供的最大制动扭矩能够满足后轴所需制动扭矩时,后轴制动扭矩全部由电机提供,如果电机提供的制动扭矩不能满足后轴所需的制动扭矩时,对电机制动扭矩和气压制动扭矩进行动态协调控制。
所说的协调控制器与整车控制器通过CAN总线通讯,获取电机、电池的状态信号;协调控制器直接通过轮速传感器获取车轮轮速信号、踏板位移传感器和压力信号,协调控制器通过CAN总线与整车控制器通讯发出再生制动控制指令,并直接向制动气压压力调节装置发出气压控制指令。
踏板位移传感器安装在混合动力客车的制动踏板下,测量制动踏板的行程,用来确定驾驶员的制动需求,踏板位移传感器的信号输出端与所说的气压与再生制动协调控制器连接。
气压与再生制动协调控制系统中有两个压力传感器。一个安装在前制动管路中,另一个安装在后制动管路中。
所说的混合动力客车的气压与再生制动协调控制系统,制动管路中自串联了两个常开电磁阀,一个串联在前制动管路中,另一个串联在后制动管路中。
在电机输出扭矩稳定之前,所说的气压与再生制动协调控制系统根据前后制动力分配系数计算出前后轴所需的制动扭矩,电机输出扭矩与后轴需求扭矩之间的差值由气压制动扭矩来补偿。
电机输出扭矩稳定之前,所说的气压与再生制动协调控制系统根据电机当前的电流和电压计算出电机动态运行时的实际输出扭矩,实际输出扭矩与电机目标输出扭矩进行比较,电机的动态误差值由气压制动扭矩来动态补偿。
电机输出扭矩稳定之后,所说的气压与再生制动协调控制系统根据电机当前的电流和电压计算出电机稳定状态下的实际输出扭矩,实际输出扭矩与电机目标输出扭矩进行对比,电机的稳态误差由气压制动扭矩来补偿。
所说的气压与再生制动协调控制系统可以根据踏板位移传感器测量出驾驶员的需求扭矩,进而计算出整车的制动强度,所说的气压与再生制动协调控制器可以根据制动强度来动态改变混合动力客车前后轴的制动力分配系数,并根据当前的制动力分配系数来协调电机制动扭矩和气压制动扭矩。
该协调控制系统,其中一个再生制动子系统包括感应电机、变速器、主减速器、踏板位移传感器、压力传感器、常开电磁阀、电池及相关连接电路;其中一个气压制动子系统包括设置在各个车轮上的与气压防抱死控制装置信号连接的车轮轮速传感器、车轮鼓式制动器、储气筒、制动气压压力调节装置和制动踏板;其中一个气压与再生制动协调控制单元,该控制单元与整车控制器以CAN总线连接。
参考图1,所示为混合动力客车气压与再生制动协调控制系统的机构框图,可知该混合动力客车为后轮驱动,只在后轮进行再生制动。但本发明不局限于图中的混合动力客车类型,同样适用于其他类型的混合动力汽车。图中的动力源由气泵、卸载阀和储气筒组成,上述部件与其他一些部件参阅图2。
参考图2,所示为混合动力汽车制动防抱死系统布置图。驾驶员踩下制动踏板17后,制动阀17上、下腔与前后制动气室38、40、48、49联通。对前制动管路,储气筒47前腔中的高压气体通过制动阀17的下腔、三通23、左右前制动气压调节装置21、27进入左前制动气室48和右前制动气室49,促动左前鼓式制动器19和右前鼓式制动器29动作;对后制动管路,储气筒47后腔中的高压气体通过制动阀17的上腔、快放阀39、右、左后制动气压调节装置3、7进入右后制动气室38和左后制动气室40,促动右后鼓式制动器1和左后鼓式制动器8动作。各制动器建立的制动扭矩,使车轮出现制动减速,当车轮制动减速度触发气压制动防抱死控制单元32中减速度门限时,就触发了制动防抱死控制,气压制动防抱死控制单元对制动气压调节装置发出增压、减压和保压的指令,调节各车轮制动气室的压力,防止车轮抱死。
图1中,气压与再生制动协调控制系统在制动防抱死控制系统基础上加入了两个常开电磁阀,分别串联在前后制动管路中,用来调节前后轴的制动力分配;两个压力传感器,用来测量前后制动管路中的制动气压;踏板位移传感器,安装在制动踏板下,用来测量踏板行程,进而计算驾驶员需求的制动扭矩和所能达到的制动强度。
如果驾驶员制动轻踩制动踏板,需求较小制动减速度时,车轮减速度可能不会触发制动防抱死,这时的部分制动扭矩可以由电机拖动来产生,同时回收部分制动能量。具体过程为,车辆制动时,整车带动车轮、主减速器5、AMT变速器9转动,AMT变速箱通过动力耦合装置带动电机转动,电机处于发电机工作状态,所产生的电能存储在电池组12内。
发动机管理系统ECU14、AMT变速箱控制单元TCU4、电机控制单元MCU11和电池能量控单元BCU通过CAN总线35与整车控制器36通讯,整车控制器36通过CAN总线35跟气压与再生制动协调控制单元33通讯,向其提供电机10和电池组12的状态信号并获取气压与再生制动协调控制单元33发出的电机控制信号。左前轮轮速传感器20、右前轮轮速传感器28、左后轮轮速传感器6和右后轮轮速传感器2直接将各自的轮速信号直接传给气压与再生制动协调控制单元33。前制动管路压力传感器26、后制动管路压力传感器34和制动踏板位移传感器18也将前后制动管路的压力信号和踏板行程信号直接传给气压与再生制动协调控制单元33。气压与再生制动协调控制单元33发出的气压调节指令直接传给前、后4个气压调节装置3、7、21、27和前制动管路常开电磁阀24、后制动管路常开电磁阀25,进行前后轴和各车轮的制动气压力调节。
电机当前可提供的最大再生制动力矩信号和当前电机产生的实际再生制动力矩信号及电池的电量状态信号SOC均通过CAN总线35传给整车控制器,气压与再生制动协调控制单元33则通过与整车控制器36进行CAN通讯来获取。
气压与再生制动协调控制单元33输出的再生制动控制指令,通过CAN总线35传给整车控制器36,整车控制器36通过CAN总线35将控制指令传给电机控制单元11。
参考图3,所示为气压与再生制动协调控制控制策略,首先步骤S1,气压与再生制动协调控制单元33读取制动踏板位移传感器的信号,算出制动踏板17的开度,获取驾驶员的制动需求,计算当前制动踏板开度下所能达到的整车制动减速度。步骤S2中,气压与再生制动协调控制单元33,根据驾驶员需求计算出产生相应制动减速度所需的制动扭矩。
步骤S3中读取制动力分配系数的上下限值。由于混合动力客车为后轴驱动,根据法规要求,前轴必须有制动力,所以不能像前轮驱动汽车那样某些情况下可以由前轴提供全部的制动力。前后制动力的分配需要满足法规要求,图8所示为根据ECE法规计算出的制动力分配系数的上、下限值,上限值和下限值之间的区域为满足法规要求的制动力分配系数值。对于分配系数的下限值,制动力可以最大限度分配到后轴上,在制动强度很小,所需制动扭矩不大,而电机提供的制动扭矩能够满足后轴制动,则制动力分配系数采用下限值;制动强度较大时,所需制动扭矩较大,电机提供的制动扭矩随着制动强度的增大逐渐不能满足后轴制动的需求,则逐渐增大制动力分配系数,使制动力多向前轴分配,直至分配系数的上限值。对分配系数随制动强度的增大可采用线性方式,也可采用非线性方式,各种方式都包含在本发明之中。图7所示为制动力分配系数随制动强度按分段函数的非线性方式增加。
步骤S4中,根据图7所示的制动力分配系数方法计算出当前制动强度下的制动力分配系数,对前后轴进行制动力分配,即计算出前轴所需的制动扭矩和后轴所需的制动扭矩。气压与再生制动协调控制单元33根据前制动管路压力传感器26、后制动管路压力传感器34和电机的输出扭矩信号,获取前后轴的制动扭矩,并计算出前后轴的制动力分配系数,当前后制动分配系数的当前值与需求的制动力分配系数不符时,如果需求的制动扭矩大于电机所能提供的最大扭矩时,气压与再生制动协调控制单元33向前制动管路常开电磁24和后制动管路常开电磁阀25发出控制指令,在满足整车制动力需求的前提下,调整前后的气压制动力;如果后轴需求的制动扭矩小于电机所能提供的最大扭矩,则协调控制器向前制动管路和电机发车控制指令,调整前轴的气压制动力和后轴的电机输出扭矩。
步骤S5中,计算电机所能提供的最大再生制动扭矩。
步骤S6中,气压与再生制动协调控制单元33对电机提供的最大再生制动扭矩与后轴需求的制动扭矩作比较,如果电机最大扭矩能够满足后轴需求的制动扭矩,则进入步骤S7,如果不能满足则进入步骤S8.
步骤S7中,气压与再生制动协调控制单元33向发出电机控制指令,电机控制指令通过整车控制器36传递给电机控制器11,对电机执行控制,使电机的输出扭矩等于后轴所需的制动扭矩;同时气压与再生制动协调控制单元33向后制动管路常开电磁阀25发出指令,将其关闭。
步骤S8中,气压与再生制动协调控制单元33发出电机控制指令和压力调节指令,使电机发出最大制动扭矩,并打开后轴常开电磁阀25,需求制动扭矩与电机输出扭矩之差由气压制动力来补偿,参考图5所示。
在步骤S8中,需求的电机输出扭矩称为电机的目标输出扭矩,电机实际输出的扭矩称为实际输出扭矩。由于电机的性能缺陷,电机的实际输出扭矩不能实时等于目标输出扭矩,而是在目标扭矩附近波动,参考图6所示,电机控制的误差,可以用气压制动力来动态修正。
参考图4,所示为对电机输出扭矩的动态协调控制,步骤S9中,气压与再生制动协调控制单元33根据电机当前的电流和电压计算出电机当前实际的输出扭矩。
步骤S10中,气压与再生制动协调控制单元33对电机目标输出转矩和实际输出转矩进行比较,如果目标输出转矩大于实际的输出转矩,则气压与再生制动协调控制单元33向后制动管路常开电磁阀25发出控制质量,打开电磁阀,对后轴增压,反之则对后轴减压。
综合上述气压与再生制动协调控制策略,本发明提出的气压与再生制动协调控制系统主要方案如下:根据踏板位移传感器计算所能达到的制动强度和需求的制动扭矩,根据制动强度调整前后制动力的分配,并按照当前的制动力分配系数调整电机输出扭矩和气压制动扭矩,对于电机的控制误差,利用气压制动力来动态补偿。

Claims (7)

1、一种混合动力客车的气压与再生制动协调控制系统,包括一个再生制动子系统和一个气压制动子系统,其特征在于,所述的再生制动子系统利用再生制动力进行汽车制动,所述的气压制动子系统利用气压制动力进行汽车制动,再生制动子系统和气压制动子系统通过气压与再生制动协调控制单元(33)设定前后制动力的分配并设定所需的目标再生制动力矩,在当前电机转速下,对电机所能提供的最大制动扭矩能够满足后轴所需制动扭矩时,后轴制动扭矩全部由电机提供,如果电机提供制动扭矩不能满足后轴所需的制动扭矩时,对电机制动扭矩和气压制动扭矩进行动态协调控制。
2、根据权利要求1所述的混合动力客车的气压与再生制动协调控制系统,其特征在于,所述的气压与再生制动协调控制单元(33)与整车控制器(36)通过CAN总线(35)通讯,获取电机、电池的状态信号,发出再生制动控制指令,并直接向制动气压压力调节装置发出气压调节指令。
3、根据权利要求1所述的混合动力客车的气压与再生制动协调控制系统,其特征在于,所述的气压与再生制动协调控制单元(33)直接通过装在前、后鼓式制动器上的轮速传感器获取车轮轮速信号;通过装在制动踏板(17)处的制动踏板位移传感器(18)获取制动踏板位移信号;通过装在前、后制动管路上的前、后制动管路压力传感器获得前后轴的制动压力信号;通过分别串联在前后制动管路中的两个常开电磁阀调解前后轴的制动力分配。
4、根据权利要求1所述的混合动力客车的气压与再生制动协调控制系统,其特征在于,所述的气压与再生制动协调控制单元(33)根据前后制动力分配系数计算出前后轴所需的制动扭矩,在电机输出扭矩稳定之前,电机输出扭矩与后轴需求扭矩之间的差值由气压制动扭矩来补偿。
5、根据权利要求1所述的混合动力客车的气压与再生制动协调控制系统,其特征在于,电机输出扭矩稳定之后,所述的气压与再生制动协调控制单元(33)根据电机当前的电流和电压计算出电机稳定状态下的实际输出扭矩,实际输出扭矩与电机目标输出扭矩进行对比,电机的稳态误差由气压制动扭矩来补偿。
6、根据权利要求4所述的混合动力客车的气压与再生制动协调控制系统,其特征在于,如果需求的电机目标转矩大于等于电机实际的输出转矩则增加气压制动力,如果需求的电机目标转矩小于电机实际的输出转矩,减小气压制动力。
7、根据权利要求1所述的混合动力客车的气压与再生制动协调控制系统,其特征在于,该协调系统可以根据驾驶员的需求和制动强度来调整前后轴制动力的分配。
CNA2009100672686A 2009-07-08 2009-07-08 混合动力客车气压与再生制动协调控制系统 Pending CN101596869A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2009100672686A CN101596869A (zh) 2009-07-08 2009-07-08 混合动力客车气压与再生制动协调控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2009100672686A CN101596869A (zh) 2009-07-08 2009-07-08 混合动力客车气压与再生制动协调控制系统

Publications (1)

Publication Number Publication Date
CN101596869A true CN101596869A (zh) 2009-12-09

Family

ID=41418529

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2009100672686A Pending CN101596869A (zh) 2009-07-08 2009-07-08 混合动力客车气压与再生制动协调控制系统

Country Status (1)

Country Link
CN (1) CN101596869A (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101791978A (zh) * 2010-03-26 2010-08-04 重庆长安汽车股份有限公司 一种混合动力汽车制动力补偿方法
CN101992762A (zh) * 2010-10-19 2011-03-30 吉林大学 混合动力客车气压与再生制动协调控制方法
CN102951027A (zh) * 2012-11-27 2013-03-06 东南(福建)汽车工业有限公司 一种电动汽车制动能量回收自适应控制方法
CN102975702A (zh) * 2012-12-12 2013-03-20 奇瑞汽车股份有限公司 一种串联式再生制动控制方法
CN103129403A (zh) * 2013-03-20 2013-06-05 南车株洲电力机车有限公司 一种混合制动控制方法及装置
CN103140404A (zh) * 2010-10-21 2013-06-05 日野自动车株式会社 再生控制装置、混合动力汽车、再生控制方法、以及程序
CN103991384A (zh) * 2014-05-26 2014-08-20 北京理工大学 一种电动车辆的复合制动系统及其复合制动方法
CN104002686A (zh) * 2014-06-13 2014-08-27 上海振华重工(集团)股份有限公司 集装箱跨运车的制动系统和方法
CN105730247A (zh) * 2014-12-12 2016-07-06 北汽福田汽车股份有限公司 制动能量回馈控制方法和系统
CN106043263A (zh) * 2016-07-04 2016-10-26 吉林大学 智能纯电动客车制动控制系统及其控制方法
CN106627170A (zh) * 2016-12-28 2017-05-10 安徽安凯汽车股份有限公司 一种混合动力客车用双源辅助制动控制系统的控制方法
CN107009903A (zh) * 2017-04-25 2017-08-04 中国第汽车股份有限公司 一种带有缓速器的混合动力牵引车制动系统及其控制方法
CN109476224A (zh) * 2016-06-10 2019-03-15 海因茨·威尔斯乔夫 无需外接充电的电动车辆
CN109466525A (zh) * 2018-10-30 2019-03-15 瑞立集团瑞安汽车零部件有限公司 一种用于无轨电车的制动力分配方法及系统
CN109591604A (zh) * 2018-12-04 2019-04-09 北京新能源汽车股份有限公司 车辆的控制方法、装置及车辆
CN110962615A (zh) * 2019-12-19 2020-04-07 东风商用车有限公司 再生制动控制系统
CN112706621A (zh) * 2020-12-31 2021-04-27 北京金万安汽车电子技术研发有限公司 新能源车辆串联式能量回收系统的减速度防抖控制方法
CN113232522A (zh) * 2021-06-25 2021-08-10 三一重型装备有限公司 一种车辆缓行控制方法及装置、存储介质、计算机设备

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101791978B (zh) * 2010-03-26 2013-05-08 重庆长安汽车股份有限公司 一种混合动力汽车制动力补偿方法
CN101791978A (zh) * 2010-03-26 2010-08-04 重庆长安汽车股份有限公司 一种混合动力汽车制动力补偿方法
CN101992762A (zh) * 2010-10-19 2011-03-30 吉林大学 混合动力客车气压与再生制动协调控制方法
CN103140404B (zh) * 2010-10-21 2016-03-30 日野自动车株式会社 再生控制装置、混合动力汽车以及再生控制方法
CN103140404A (zh) * 2010-10-21 2013-06-05 日野自动车株式会社 再生控制装置、混合动力汽车、再生控制方法、以及程序
CN102951027A (zh) * 2012-11-27 2013-03-06 东南(福建)汽车工业有限公司 一种电动汽车制动能量回收自适应控制方法
CN102975702A (zh) * 2012-12-12 2013-03-20 奇瑞汽车股份有限公司 一种串联式再生制动控制方法
CN103129403A (zh) * 2013-03-20 2013-06-05 南车株洲电力机车有限公司 一种混合制动控制方法及装置
CN103991384A (zh) * 2014-05-26 2014-08-20 北京理工大学 一种电动车辆的复合制动系统及其复合制动方法
CN103991384B (zh) * 2014-05-26 2016-04-20 北京理工大学 一种电动车辆的复合制动系统及其复合制动方法
CN104002686A (zh) * 2014-06-13 2014-08-27 上海振华重工(集团)股份有限公司 集装箱跨运车的制动系统和方法
CN105730247B (zh) * 2014-12-12 2018-10-09 北京宝沃汽车有限公司 制动能量回馈控制方法和系统
CN105730247A (zh) * 2014-12-12 2016-07-06 北汽福田汽车股份有限公司 制动能量回馈控制方法和系统
CN109476224A (zh) * 2016-06-10 2019-03-15 海因茨·威尔斯乔夫 无需外接充电的电动车辆
CN106043263A (zh) * 2016-07-04 2016-10-26 吉林大学 智能纯电动客车制动控制系统及其控制方法
CN106627170A (zh) * 2016-12-28 2017-05-10 安徽安凯汽车股份有限公司 一种混合动力客车用双源辅助制动控制系统的控制方法
CN107009903A (zh) * 2017-04-25 2017-08-04 中国第汽车股份有限公司 一种带有缓速器的混合动力牵引车制动系统及其控制方法
CN107009903B (zh) * 2017-04-25 2023-09-26 中国第一汽车股份有限公司 一种带有缓速器的混合动力牵引车制动系统及其控制方法
CN109466525A (zh) * 2018-10-30 2019-03-15 瑞立集团瑞安汽车零部件有限公司 一种用于无轨电车的制动力分配方法及系统
CN109466525B (zh) * 2018-10-30 2020-07-07 瑞立集团瑞安汽车零部件有限公司 一种用于无轨电车的制动力分配方法及系统
CN109591604A (zh) * 2018-12-04 2019-04-09 北京新能源汽车股份有限公司 车辆的控制方法、装置及车辆
CN110962615A (zh) * 2019-12-19 2020-04-07 东风商用车有限公司 再生制动控制系统
CN112706621A (zh) * 2020-12-31 2021-04-27 北京金万安汽车电子技术研发有限公司 新能源车辆串联式能量回收系统的减速度防抖控制方法
CN113232522A (zh) * 2021-06-25 2021-08-10 三一重型装备有限公司 一种车辆缓行控制方法及装置、存储介质、计算机设备

Similar Documents

Publication Publication Date Title
CN101596869A (zh) 混合动力客车气压与再生制动协调控制系统
CN101054065B (zh) 混合动力轿车再生制动与防抱死集成控制系统
CN105683009B (zh) 制动力控制系统
CN102745183B (zh) 一种能量回馈主动控制式气压制动系统
CN102574455B (zh) 备用四轮驱动车辆的驱动控制装置
US9457669B2 (en) Brake control device and brake control method
CN103180184B (zh) 制动器控制装置
CN102481907B (zh) 制动控制装置
CN100491153C (zh) 电动汽车混合制动系统
KR101840093B1 (ko) 제동력 제어 시스템 및 차량, 및 제동력 제어 방법
US9981649B2 (en) System and method for controlling a brake system in a vehicle
CN105228870A (zh) 制动装置
CN103930324B (zh) 混合动力车辆的控制装置
JP3921109B2 (ja) 車両のハイブリッドシステム
CN110614921B (zh) 一种电动商用车制动能量回收系统及控制方法
CN102490617B (zh) 具有主动辅助制动功能的混合制动系统及控制方法
CN112677772B (zh) 基于电子液压制动的汽车再生制动控制系统的控制方法
CA2836450A1 (en) Electric vehicle power management driver control system
CN102837687A (zh) 车辆用制动装置
CN101073992A (zh) 基于abs的汽车再生与常规制动集成控制器及控制方法
JP6056340B2 (ja) 制動制御装置
WO2000000363A1 (fr) Dispositif de freinage pour automobile
CN100422015C (zh) 混合动力商用汽车的气压制动防抱死控制系统
CN112810588B (zh) 一种分布式驱动电动汽车电液复合制动防抱死方法及系统
CN108688474A (zh) 电动汽车制动能量回收控制算法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20091209