CN101595381A - 电化学测定用电极板、具有该电极板的电化学测定装置、和使用该电极板对目标物质进行定量的方法 - Google Patents

电化学测定用电极板、具有该电极板的电化学测定装置、和使用该电极板对目标物质进行定量的方法 Download PDF

Info

Publication number
CN101595381A
CN101595381A CNA2008800019299A CN200880001929A CN101595381A CN 101595381 A CN101595381 A CN 101595381A CN A2008800019299 A CNA2008800019299 A CN A2008800019299A CN 200880001929 A CN200880001929 A CN 200880001929A CN 101595381 A CN101595381 A CN 101595381A
Authority
CN
China
Prior art keywords
electrode
peristome
upper strata
lower floor
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008800019299A
Other languages
English (en)
Other versions
CN101595381B (zh
Inventor
佐佐木英弘
冲明男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN101595381A publication Critical patent/CN101595381A/zh
Application granted granted Critical
Publication of CN101595381B publication Critical patent/CN101595381B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明的目的在于提供一种电化学测定用电极板,其能够以良好的灵敏度检测和定量微量地含有在生物体内的物质。本发明的电化学测定用电极板(10),在基板本体(32S)的两面具备通过相同面积的上层开口部(31W)和下层开口部(33w)而被开口的氧化电极(32W)和还原电极(32w),并且具备从氧化电极(32W)的上表面贯通至还原电极(32w)的下表面的多个贯通孔(32H),通过对氧化电极(32W)施加能够使还原体进行氧化反应的电位并对还原电极(32w)施加能够使氧化体进行还原反应的电位,形成在氧化电极(32W)和还原电极(32w)间表现出氧化还原循环效果的电极对。

Description

电化学测定用电极板、具有该电极板的电化学测定装置、和使用该电极板对目标物质进行定量的方法
技术领域
本发明涉及以良好的灵敏度检测和定量微量地含有在生物体内的物质的电化学测定用电极板。
背景技术
近年来,正在开发将具有酶所具有的特异的催化作用与具有电极反应活性的电子介体组合,对生物体中的血液中所含的蔗糖(sucrose)、葡萄糖等糖类的浓度进行定量的电化学测定用电极板。
在这样的电化学测定用电极板中,利用糖类和酶的反应,采用电化学方法对糖类的浓度进行定量。首先,在血液样本中混合酶和电子介体制成试样液后,使糖类和酶之间发生酶反应,然后,采用电化学方法测定其中共存的电子介体,由此通过电子介体间接地对试样液中所含的糖类进行定量。
在该方法中,酶的反应对糖类的特异性高,操作时温度的影响小,定量装置的结构也简便,因此通过使用该方法,普通人在家庭等中就能够简易地对自己血液中的糖类的浓度进行定量。
电化学测定用电极板适于生物体中所含的微量溶液样本的分析。因此,尝试着将电化学测定用电极板与各种各样的有机材料或者无机材料组合应用于传感器等。由于电化学测定用电极板的电极应答速度随着电化学测定用电极板具有的微小电极的面积的减小而增高,所以研讨各种各样的电极形状、电极的细微化。
但是,随着电极面积的减小,得到的电流值减少。例如,如果将电极面积细微化至几百μm2左右,则能够检测的电流值降低至几十~几nA数量级。所以,在测定时发生噪声应答的增加和灵敏度降低。因此,为了消除这样的不良状况,在专利文献1~4中对聚集多个微小电极的电化学测定用电极板进行研究。
在专利文献1~4中,提出了大量且再现性良好地在基板上制作与邻接的微小电极之间的距离保持一定的微小电极。
图1表示专利文献1中记载的现有的电化学测定用电极板的结构。
该电化学测定用电极板10层叠绝缘性的基板1/作为氧化电极发挥功能的下部电极2/绝缘层3/作为还原电极发挥功能的表面电极4而成。在表面电极4的表面形成有圆筒形的多个细微孔5,下部电极2的表面在该细微孔5露出。
绝缘性的基板1由例如在硅基板1a的主表面覆盖有氧化膜1b的所谓带有氧化膜的硅基板构成。下部电极2是由金属、准金属、碳材料、或半导体在基板1上的氧化膜1b的表面(即,绝缘体的表面)上形成的氧化电极。表面电极4是在绝缘层3上,与下部电极2同样,由金属、准金属或者半导体形成的还原电极。由下部电极2和表面电极4构成作用电极对。即,下部电极2和表面电极4均作为作用电极发挥功能,进一步详细而言,如上所述,下部电极2作为氧化电极发挥功能,表面电极4作为还原电极发挥功能。其中,在图1中,7是用于使外部引线与下部电极2的一端部连接而开口的电极引出用的开口部。这里所谓的细微孔,是指完全贯通绝缘层3和表面电极4、到达下部电极2的表面的孔。
在使用如上所述的电化学测定用电极板的电化学测定装置中,为了获得电流应答,在下部电极2和表面电极4之间施加电位。在电化学测定装置由下部电极2、表面电极4、对电极(未图示)三个电极构成的情况下,使对电极在试样用液中显示的电位为零,在下部电极2-对电极之间、表面电极4-对电极之间施加电位。此外,在电化学测定装置由下部电极2、表面电极4、参考电极(未图示)和辅助电极(未图示)四个电极构成的情况下,使参考电极在试样液中显示的电位为零,在下部电极2-参考电极之间、表面电极4-参考电极之间施加电位。
在专利文献4和非专利文献1中,提出了使圆筒形的细微孔5的间隔大于其直径的电化学测定用电极板,并报告了使用该电极板的电化学测定结果。在这些文献中,作为大电极的表面电极4具有比作为微小电极的集合体的下部电极2大的面积。在测定时,分别施加在下部电极2上能够引起氧化反应、并且在表面电极4上能够引起还原反应的电位。由此,在下部电极2和表面电极4之间发生自引发氧化还原循环,得到表观上高的电流应答。
这样一来,通过试样液中存在的电子介体,对糖类等目标物质进行定量。
此外,对下部电极2施加引起还原反应的电位,对上部电极4施加引起氧化反应的电位,也能够发现同样的自引发氧化还原循环。
这里,使用图2说明专利文献4、非专利文献1和2中记载的自引发氧化还原循环。
图2的自引发氧化还原循环在两个作用电极,即在微小电极21和大电极22上进行。
在微小电极21的表面,发生还原体23的氧化反应,生成氧化体24,由此在微小电极21中流通氧化电流。
在大电极22中靠近微小电极21的部分22a的表面,氧化体24被还原,成为还原体25,由此在大电极22中流通还原电流。
并且,还原体25扩散到达微小电极21的表面,由此再次引起从还原体23到氧化体24的氧化反应,在微小电极21中流通氧化电流。结果,在大电极22a的表面,使由微小电极21生成的氧化体24还原,成为还原体25,由此能够对微小电极21表面供给还原体23。
由此,在微小电极21和大电极22a之间发生氧化反应和还原反应进行循环的所谓氧化还原循环反应,结果,在微小电极21中流通恒定的电流,能够进行微量地含有在试样液中的目标物质的检测和定量。
并且,为了提高高灵敏度测定的有效性,在基板上形成更多的微小电极21,并且尽可能多地形成由进行氧化还原循环的氧化电极和还原电极构成的电极对。
专利文献1:专利第2556993号公报(第6项,第一图)
专利文献2:专利第2564030号公报(第7项,第二图)
专利文献3:特开2006-78404号公报(第25项,图1)
专利文献4:专利第3289059号公报(第16页,图5)
专利文献5:特开2007-010429号公报(图3、图4)
非专利文献1:J.Electrochem.Soc.,138卷,12号,3551项(1991)
非专利文献2:青木幸一等著「微小電
Figure A20088000192900091
を用ぃる電気化学測定法」(《使用微小电极的电化学测定法》)(社)电子情报通信学会编平成10年2月10日发行48-49,70-71项。
发明内容
如图1所示,通过使作为还原电极发挥功能的表面电极4的面积比作为氧化电极发挥功能的下部电极2的面积大很多,发生自引发氧化还原循环,但也因此出现下述问题。
在大电极22a上生成的还原体25扩散,其不仅到达微小电极21(相当于的图1中的下部电极2),还如图2的右侧所示,其一部分也到达大电极22(相当于图2中的表面电极4)中距离微小电极21远的部分22b上。这样的还原体26通过氧化反应成为氧化体27。即,在大电极22上也引起氧化反应(参照特开平3-246460号公报的第四图)。
接着,该氧化体27扩散,到达大电极22中靠近微小电极21的部分22b上。在此通过还原反应,成为还原体25。还原体25扩散到达微小电极21表面,再次被氧化,成为氧化体24(或者,再次到达大电极22中距离微小电极21远的部分22b)。
即,在图1的表面电极4上,同时引起氧化反应和还原反应。其结果是,希望在下部电极2检测出的还原体的氧化也在表面电极4上同时发生。
因此,在表面电极4上生成的还原体不能有效地在下部电极2上氧化,在高灵敏度化方面出现问题。
并且,如图1所示,在仅在基板的一个面构成电化学测定用电极板的结构中,能够形成电极的面积受到限制,由此,也在高灵敏度化方面出现问题。
此外,由于表面电极4作为大电极发挥作用,因而施加电位时的充电电流大。因此,也出现与作为微小电极的下部电极2相比,达到反应稳定状态的时间变长的问题。
解决上述问题的本发明的电化学测定用电极板10包括:
由绝缘体构成的基板32;
在上述基板32的上表面设置的由绝缘体构成的上层31;和
在上述基板32的下表面设置的由绝缘体构成的下层33,
上述基板32包括:夹在上述基板32的上表面和上述上层31之间的多个氧化电极32W;和
夹在上述基板32的下表面和上述下层33之间的多个还原电极32w,
上述上层31具有多个上层开口部31W,
上述各氧化电极32W从上述各上层开口部31W露出,
上述下层33具有多个下层开口部33w,
上述各还原电极32w从上述各下层开口部33w露出,
在上述基板32上设置有从上述各氧化电极32W的上表面至上述各还原电极32w的下表面贯通的多个贯通孔32H,
上述各上层开口部31W的面积与上述各下层开口部33w的面积相同,
上述各上层开口部31W的面积为10000μm2以下,
上述各下层开口部33w的面积为10000μm2以下。
优选上述各上层开口部的面积为225μm2以上,上述各下层开口部的面积为225μm2以上。
优选上述贯通孔的截面积为1μm2以上2500μm2以下。
优选上述下层的厚度为5μm以上100μm以下。
该电化学测定用电极板10与参考电极42和辅助电极43组合,或者与对电极组合,构成电化学测定装置。该电化学测定装置也包含在本发明的主要内容中。
并且,利用该电化学测定装置的如下所述的对含有电子介体的试样液中所含的目标物质进行定量的方法也包含在本发明的主要内容中。
本发明提供一种方法,其利用包括参考电极、辅助电极和电化学测定用电极板,或者包括对电极和电化学测定用电极板的电化学测定装置,对试样液中所含的目标物质进行定量,其特征在于,
上述方法包括以下工序:
调制含有电子介体的试样液的工序;
准备上述电化学测定用电极板的工序;
接触工序,在该工序中,使上述参考电极、上述辅助电极和上述电化学测定用电极板与上述试样液接触,或者使土述对电极和上述电化学测定用电极板与上述试样液接触;
电流测定工序,在该工序中,对上述氧化电极板扫描施加正电位,并且对上述还原电极板施加负电位,或者对上述氧化电极板施加正电位,并且对上述还原电极板扫描施加负电位,由此测定在上述氧化电极板和上述还原电极的各自中流通的电流;和
根据通过上述电流测定工序得到的电流计算上述目标物质的量的计算工序,其中,
在准备上述电化学测定用电极板的工序中,上述电化学测定用电极板包括:
由绝缘体构成的基板;
在上述基板的上表面设置的由绝缘体构成的上层;和
在上述基板的下表面设置的由绝缘体构成的下层,
上述基板包括:
夹在基板的上表面和上述上层之间的多个氧化电极;和
夹在上述基板的下表面和上述上层之间的多个还原电极,
上述上层具有多个上层开口部,
上述各氧化电极从上述各上层开口部露出,
上述下层具有多个下层开口部,
上述各还原电极从上述各下层开口部露出,
在上述基板上设置有从上述各氧化电极的上表面至上述各还原电极的下表面贯通的多个贯通孔,
上述各上层开口部的面积与上述各下层开口部的面积相同,
上述各上层开口部的面积为10000μm2以下,
上述各下层开口部的面积为10000μm2以下。
优选上述辅助电极的表面积为上述氧化电极的集合体的10倍以上。
也可以在上述上层的上表面设置网状的过滤器。
优选上述参考电极形成于上述上层的上表面,上述辅助电极形成于上述下层的下表面。
根据本发明,能够提供一种以良好灵敏度检测和定量微量地含有在生物体内的物质的电化学测定用电极板、具有该电极板的电化学测定装置、以及使用该电极板对目标物质进行定量的方法。
参照附图从以下的优选实施方式的详细说明中,可以明白本发明的上述目的、其它目的、特征和优点。
附图说明
图1是表示专利文献1中记载的现有的电化学测定用电极板的(A)整体立体图和(B)放大立体图。
图2是表示专利文献4、非专利文献1和2中记载的自引发氧化还原循环的机理的图。
图3是本发明的实施方式1的电化学测定用电极板的分解立体图。
图4是具有本发明的实施方式1的电化学测定用电极板的电化学测定装置的示意图。
图5是本发明的实施例1的电化学测定用电极板的制作工艺的工序截面图。
图6是本发明的比较例1的现有的电化学测定用电极板的制作工艺的工序截面图。
图7是本发明的实施例2的电化学测定用电极板的制作工艺的工序截面图。
图8是本发明的实施例3的电化学测定用电极板的制作工艺的工序截面图。
图9是本发明的实施例4的电化学测定用电极板的制作工艺的工序截面图。
图10是本发明的实施例5的电化学测定用电极板的制作工艺的工序截面图。
图11是本发明的实施方式2的电化学测定用电极板的分解立体图。
图12是本发明的实施例6的电化学测定用电极板的制作工艺的工序截面图。
图13是本发明的实施方式3的电化学测定用电极板的分解立体图。
图14是本发明的实施例7的电化学测定用电极板的制作工艺的工序截面图。
图15是表示校正曲线的一例的曲线图。
符号说明
1:基板;1a:硅基板;1b:氧化膜;2:下部电极;3:绝缘膜(SiO2膜);4:氧化电极;5:细微孔;7:下部电极2的开口部;10:电化学测定用电极板;21:微小电极;22:大电极(微小电极附近);23:大电极(微小电极远方);24:还原体1;25:氧化体1;26:还原体2;27:还原体3;28:氧化体2;31:上层;31I:绝缘体;31W:上层开口部;32:基板;32S:基板本体;32E:氧化电极板;32H:贯通孔;32T:氧化电极引线;32W:氧化电极;32e:还原电极板32t:还原电极引线;32w:还原电极;33:下层;33i:绝缘体;33w:下层开口部;41:氧化电极32W的集合体;42:参考电极;43:辅助电极;44:试样液容器;45:控制装置;46:记录器;50:基板;51:氧化电极;52:还原电极;53:上层;54:上层开口部;55:下层;56:下层开口部;57:上侧孔;58:下侧孔;59:贯通孔60:基板;61:下部电极;62:绝缘层;63:表面电极64:抗蚀剂;65:细微孔80a:基板(氧化电极侧);80b:基板(还原电极侧);80A:氧化电极形成基板;80B:还原电极形成基板;90:铸型;100:工作台;111M:过滤器;131E:参考电极131T:参考电极引线133e:辅助电极;133t:辅助电极引线。
具体实施方式
下面,参照附图说明本发明的实施方式。
(实施方式1)
图3是本实施方式1的电化学测定用电极板的分解立体图。
如图3所示,实施方式1的电化学测定用电极板10,从下侧依次层叠有下层33、基板32和上层31而构成。下层33和上层31都是绝缘体。
基板32由绝缘体构成的基板本体32S构成,在该基板本体32S的上表面具备氧化电极板32E,在该基板本体32S的下表面具备还原电极板32e。如图3所示,氧化电极板32E被夹在基板本体32S和上层31之间,同样,还原电极32e板被夹在基板本体32S和下层33之间。
上层31具有多个上层开口部31W。在图3中,设置有9个上层开口部31W。氧化电极板32E的一部分从各上层开口部31W露出。氧化电极板32E中,从各上层开口部31W露出的部分,即在图3中在氧化电极板32E上划有斜线的部分,与试样液接触,作为氧化电极32W发挥功能。在图3中,设置有9个氧化电极32W。氧化电极板32E中,形成有上层31的部分,即在图3中在氧化电极板32E上没有划斜线、以空白表示的部分,不与试样液接触。因此,该部分不作为氧化电极发挥功能。
与上层31同样,下层33也具有多个下层开口部33W。在图3中,设置有9个下层开口部33W。还原电极板32e的一部分从各下层开口部33W露出。还原电极板32e中,从各下层开口部33w露出的部分,即在图3中在还原电极板32e上划有斜线的部分作为还原电极32w发挥功能。在图3中,设置有9个还原电极32w。还原电极板32e中,形成有下层33的部分,即在图3中在还原电极板32e上没有划斜线、以空白表示的部分,不与试样液接触。因此,该部分不作为还原电极发挥功能。
可以对氧化电极板32E和还原电极板32e分别独立地施加电位,能够在各个电极上进行目标物质的电化学反应,进一步具体而言,进行氧化反应和还原反应。通过氧化电极32W上的电化学反应而产生的电信号在氧化电极板32E上传递,能够经由氧化电极引线32T,利用电流计等计测器进行定量。同样,通过还原电极32w上的电化学反应而产生的电信号在还原电极板32e上传递,能够经由还原电极引线32t,利用电流计等计测器进行定量。
各氧化电极32W和各还原电极32w将平面基板本体32S夹在中间并重合。在图3中,纵向3列×横向3行的氧化电极32W和纵向3列×横向3行的还原电极32w将基板本体32S夹在中间并重合。
在图3中,为了便于说明,还原电极板32e与基板本体32S分离表示,但实际上,还原电极板32e形成在基板本体32S的下表面。
氧化电极板32E在其一端具有氧化电极引线32T。在氧化电极板32E得到的电信号能够从氧化电极引线32T取出。还原电极板32e也同样与还原电极引线32t电导通,在还原电极板32e得到的电信号能够从还原电极引线32t取出。
在基板32上设置有多个贯通孔32H。并且,各贯通孔32H从各氧化电极32W的上表面到各还原电极32w的下表面贯通。在图3中,表示出9个由一个氧化电极32W、一个贯通孔32H和一个还原电极32w构成的组。
如果没有贯通孔32H,从后述的比较例1可以理解,不能高灵敏度地进行目标物质的定量,并且直至达到定量时的稳定状态为止需要较多的时间。
各上层开口部31W的面积,即各氧化电极32W的面积为10000μm2以下。当超过10000μm2时,会发生如图2的右侧所示的不希望的反应,结果,在高灵敏度化方面出现问题。即,如后述的比较例2所示,不能以高灵敏度进行目标物质的定量,并且直至达到定量时的稳定状态为止需要较多的时间。同样,各下层开口部33w的面积,即各还原电极32w的面积也为10000μm2以下。
其中,各上层开口部31W的面积(即,各氧化电极32W的面积)和各下层开口部33w的面积(即,各还原电极32w的面积)的下限没有特别限定,优选为225μm2以上。
各上层开口部31W的面积和各下层开口部33w的面积实质上相同。即,多个上层开口部31W的面积均相同。同样,多个下层开口部33W的面积均相同。并且,这些上层开口部31W的面积和这些下层开口部33W的面积也均相同。优选各贯通孔32H的截面积相同。
通过使各上层开口部31W的面积与各下层开口部33w的面积相同,能够缩短达到稳定状态为止所需要的时间。另外,在各上层开口部31W的面积与各下层开口部33w的面积不同的情况下,发生图2所示的反应,所以高灵敏度变得困难。
贯通孔32H的截面积当然比上层开口部31W的面积和下层开口部33W的面积的任一个都小。可以对于一个氧化电极32W和一个还原电极32w的组,设置2个以上的贯通孔32H。但是,在设计上,对于一个氧化电极32W和一个还原电极32w的组,设置一个贯通孔32H就足够了。
贯通孔32H的截面积的大小尽可能地小,这样就能够在基板32上形成更多的贯通孔。这一方式能够更多地配置氧化电极32W和还原电极32w构成的电极对,因而优选。但是,通过减小贯通孔32H的截面积,存在试样液中所含的电子介体穿过孔时的电导增加的趋势。另一方面,截面积的值过大的贯通孔32H,会导致毫无意义缩小面积必须为10000μm2以下的各氧化电极32W和各还原电极32w的面积。因此,优选贯通孔32H的截面积的值为1μm2以上2500μm2以下。
优选下层33的厚度为5μm以上100μm以下。邻接的还原电极32w之间的距离通常为7μm左右,因此在下层33的厚度不足5μm的情况下,事实上,邻接的2个以上的还原电极32w作为连续的一个还原电极32w发挥功能。因此,容易发生图2的右侧所示的不希望的反应。
换言之,在下层33的厚度不足5μm的情况下,与在还原电极32w产生的还原型的电子介体通过贯通孔32H到达氧化电极32W相比,在还原电极32w产生的还原对的电子介体容易在邻接的还原电极32w上被氧化而变成氧化型的介体。另一方面,在下层33的厚度超过100μm的情况下,为了进行正确的测定所必要的试样液的量就会增加,不能说优选。这一点对于上层31也是同样的。
作为基板本体32S的材料,例如可以列举双面被氧化的硅、玻璃、氧化铝、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、硅树脂、聚酰亚胺及其衍生物、环氧树脂、高分子热固化物、感光性树脂等。
在本发明的电化学测定用电极板中,由于贯通孔32H成为试样液的通道,所以在试样液为水溶液的情况下,优选贯通孔32H的内壁为亲水性。因此,作为基板本体32S,优选选择硅基板、玻璃基板等具有亲水性表面的基板,或者亲水性的聚对苯二甲酸乙二醇酯或聚萘二甲酸乙二醇酯基板等由聚酯材料构成的基板。在使用具有疏水性的基板时,优选利用乙醇、异丙醇等对贯通孔32H的内壁实施亲水化处理。
作为氧化电极板32E(包括氧化电极引线32T)的材料和还原电极板32e(包括还原电极引线32t)的材料,可以列举具有导电性的材料。具体而言,作为金属,可以列举金、铂、钯、银、铬、钛、镍,作为半导体,可以列举p型硅、n型硅、p型锗、n型锗、硫化镉、二氧化钛、氧化锌、磷化镓、砷化镓、磷化铟、二砷化钼、硒化钨、二氧化铜、氧化锡、氧化铟、铟锡氧化物等。此外,还可以使用科琴黑等导电性碳。
其中,优选使用作为电极材料稳定的金、铂、钯。在它们的形成时采用将蒸镀、溅射等成膜方法和蚀刻方法组合的方法。可以采用使用掩模的丝网印刷、激光磨削、或者使用导电性油墨的旋涂法、基于喷墨印刷法的直接描画手法。
作为贯通孔32H的形成方法,可以列举利用干式蚀刻法、湿式蚀刻法、提离(Lift off)法、基于会聚离子束照射的加工法等,在已形成电极的基板上形成孔的方法。也可以代替上述方法,使用金属掩模,在基板上形成贯通孔32H的图案,然后进行利用上述方法的孔形成加工,从而形成基板。此外,还有在具有贯通孔32H的凸型图案的铸模中形成基板,在该基板上形成电极板,然后抽出铸模的方法。也可以考虑利用已加热的铸模,在带有电极板的基板上形成贯通孔,然后抽出铸模的方法。
作为形成上层开口部31W和下层开口部33w的方法,可以列举利用干式蚀刻法、湿式蚀刻法、提离法、基于会聚离子束照射的加工方法等,在绝缘体31I和绝缘体33i上形成开口部的方法。另外,也可以使用阳型抗蚀剂或阴型抗蚀剂、干膜抗蚀剂等感光性树脂材料,采用组合遮光掩模和曝光方法的方法形成。
在通过旋涂形成氧化电极板32E(包括氧化电极引线32T)、还原电极板32e(包括还原电极引线32t)、上层31、下层33的情况下,优选涂布器的工作台使用多孔体。这是由于在基板本体32S的两面形成电极板(氧化电极板32E和还原电极板32e)和绝缘层(上层31和下层33),为了稳定地固定基板,基于多孔体的真空吸附法与使用在Teflon(注册商标)等的材料上设置有几处吸附用的孔的涂布器头的情况相比,进行吸附固定的面积增大,因而优选。
其中,图3的结构与专利文献5的图3、图4所记载的结构类似,但是在专利文献5中只不过公开了细胞电位测定用容器,而对于具备氧化电极和还原电极的电化学测定用电极板、具有该电极板的电化学测定装置、以及使用该电极板对目标物质进行定量的方法,则没有公开,也没有给出任何启示。
图4表示具有实施方式1的电化学测定用电极板的电化学测定装置(以下简称为“测定装置”)。
如图4所示,将电化学测定用电极板10、参考电极42和辅助电极43浸入装满试样液容器44的试样液中。由此,这些电极与试样液接触。并且,在电化学测定用电极板10的表面形成多个氧化电极32W,形成氧化电极32W的集合体41。虽然未图示,但是在电化学测定用电极板10的背面,还原电极32w也同样形成集合体。
参考电极44是作为施加在电化学测定用电极板10上的电位的基准的电极。将参考电极44在试样液中显示的电位作为零,分别对氧化电极32W和还原电极施加电位。
辅助电极43是为了在测定装置中使安培法则成立而用于补偿电流的电极。测定装置45经由氧化电极引线32T和还原电极引线32t与电化学测定用电极板10电连接,同样也与参考电极42和辅助电极43电连接。利用记录器46记录从测定装置45输出的电流应答。
(电化学测定方法的说明)
下面,说明试样液中所含的电子介体的定量方法。
采用循环伏安法等方法,预先测定电子介体的氧化反应进行的电位和还原反应进行的电位,用作后文说明的氧化电极的电位的值和还原电极的电位的值。其中,电位的基准是参考电极42在试样液中显示的平衡电位。即,分别对氧化电极32W和还原电极32w施加的电位为以参考电极42为0V时的相对电位。
在将氧化电极32W和还原电极32w的电位输入控制装置45之后,开始进行测定。在后述的实施例中进行详细说明,具体而言,对氧化电极32E,从0V开始缓慢施加正电压。在后述的实施例中,使对氧化电极32E施加的电压从0V开始缓慢连续地变化到+0.7V。其中,将其称为“扫描施加”。即,在本说明书中使用的用语“扫描施加”表示使电位连续地变化的意思。与此相对照,在本说明书中使用的用语“施加”表示急剧地变化到预先设定的电位。
此时,优选对还原电极继续施加与参考电极相同的电位(大多情况下为0V)。对氧化电极32E施加电压的速度(以下称为“扫描施加速度”)通常为5mV/秒以上500mV/秒以下。在后述的实施例中,为100mV/秒。
其中,在上述说明中,对氧化电极板32E扫描施加正电位,对还原电极板32e施加负电位。但是,也可以对氧化电极板32E施加正电位,对还原电极板32e扫描施加负电位。
经由氧化电极引线32T,由控制装置45检测通过氧化电极32W的氧化反应得到的电流。同样,经由还原电极引线32t,由控制装置45检测通过还原电极的还原反应得到的电流。检测出的电流被输出到记录器46,将被记录的氧化电流值与标准试样的氧化电流值的测定结果(后述的校正曲线)进行比较,能够对试样液中的检测对象物质进行定量。
将记录在记录器46中的还原电流值与标准试样的还原电流测定结果进行比较,也能够对试样液中的检测对象物质进行定量。因此,优选预先使用本实施方式的检测装置作成标准试样的校正曲线。
这里,对于使用校正曲线对试样液中的检测对象物质进行定量的方法,即计算试样液中的检测对象物质的浓度的方法进行说明。
首先,准备标准试样。该标准试样中含有浓度已知的还原型电子介体(这里假定为亚铁氰化钾)。使用该浓度已知的标准试样作为试样液,利用图4所示的电化学测定装置,将还原型电子介体的浓度与由电化学测定装置测定的反应电流值之间的关系制成图表。该图表的一个例子如图15所示。
如图15所示,这里,在还原型的电子介体的浓度为100μM的情况下,假定反应电流值为10μA;在还原型的电子介体的浓度为300μM的情况下,假定反应电流值为30μA;在还原型的电子介体的浓度为500μM的情况下,假定反应电流值为50μA。将它们标绘在图表上,画出校正曲线。这样一来,根据浓度已知的标准试样得到校正曲线。
接着,使用浓度未知的试样液,利用图4所示的电化学测定装置获得反应电流值。在这里得到的反应电流值为20μA的情况下,能够根据校正曲线得知试样液中所含的还原型的电子介体的浓度。由该还原型的电子介体的浓度,计算出试样液中所含的(或者已包含的)目标物质的量。
此外,实际上,校正曲线的制作和目标物质的量的计算等都可以在计算机上进行,这是无需赘言的。
(关于参考电极、辅助电极的说明)
也可以使用一个对电极代替参考电极42和辅助电极43这两个电极进行测定。但是优选参考电极42和辅助电极43独立地设置。这是因为,在作为电位基准的参考电极或者对电极中流通电流的期间,在其表面进行电极反应,如果伴随反应进行的电子介体的浓度变化增大,本实施方式的检测装置的作为基准的电位就会发生变动,不能进行正确的测定。
因此,优选尽可能将输入阻抗设定得较大,使得电流不流入参考电极42。优选的阻抗的值为10的6次方以上。参考电极42可以使用银氯化银电极、饱和甘汞电极等。
优选辅助电极43的表面积较大。辅助电极43的优选的表面积为氧化电极32W的集合体41的10倍以上。其理由是,在辅助电极43的电极表面积小、没有流通足够的电流的情况下,由电化学测定用电极板10得到的电流不会充分地流入控制装置45,有时不能得到正确的电流值,或者有时为了流通电流而导致辅助电极43的电位较大地变动,会发生水的电解等不希望的反应。
作为辅助电极43,优选使用难以引起电极本身的氧化还原反应和腐蚀反应的贵金属电极。例如,优选使铂黑在铂线中析出、具有较大的电极面积的铂电极。
(实施方式2)
如图11所示,在本实施方式2中,在上层31的上表面设置有网状的过滤器111M。
在使用从血液中分离的血浆成分作为测定所使用的试样液的情况下,有时没有完全分离而混入的血细胞成分、蛋白成分、固化的血栓等会堵塞贯通孔32H。
为了防止这样的情况,在电极系统外经过利用过滤器的过滤,向电极供给试样液,在此基础上,通过在上层31上形成具有过滤功能的过滤器111M,能够防止贯通孔32H被血栓等堵塞。
根据需要,也可以在下层33的下侧设置过滤器(未图示)。
(实施方式3)
如图13所示,在本实施方式3中,不仅氧化电极板32E、还原电极板32e,也可以一体地形成参考电极131E、辅助电极133e。在该结构中,不必附加图4所示的参考电极42和辅助电极43,因而能够使装置小型化。
参考电极131E优选形成于上层31的上表面。参考电极133e优选形成于下层33的下表面。
此外,在将实施方式2所示的过滤器设置在该实施方式3所示的电化学测定用电极板上时,可以在过滤器111M上设置参考电极131E,相反也可以在过滤器111M下设置参考电极131E。
在实施方式1~3的说明中,为了方便,氧化电极32W设置在基板本体32S的上侧,还原电极32w设置在基板本体32S的下侧。这只不过是为了说明的方便。将各图所示的电化学测定用电极板翻转过来的情况,当然也包括在本发明的范围内。实施方式3的参考电极131E和辅助电极133e也是同样。即,也可以参考电极131E设置在下层33的下侧,辅助电极133e设置在上层31的上侧。
(实施例)
下面,利用实施例和比较例,进一步对本发明进行详细的说明。
(实施例1)
图5是本发明的实施例1中的电化学测定用电极板的制作工艺的工序截面图。并且,在图5至图10、图12和图14中,仅表示出一个贯通孔32H,但实际上设置有在各实施例、比较例中说明的数量的贯通孔32H。
首先,如图5(a)和图5(b)所示,在由表面形成有1μm的SiO2膜的厚度为0.5mm的硅基板(信越化学工业株式会社生产)构成的基板50的上表面,如下所述,利用溅射法形成氧化电极板51。
即,将基板50安装在溅射装置(株式会社ULVAC生产)内的规定位置之后,依次使铬和金成膜。具体而言,在压力1.3Pa、氩气气氛中,进行10秒的铬的溅射、50秒的金的溅射,形成总体为130nm的膜厚。由此形成氧化电极板51。
接着,如图5(c)所示,在基板50的下表面,与氧化电极板51同样地形成还原电极板52。
进一步,如图5(d)所示,如下所述在氧化电极板51上形成上层53和上层开口部54。即,采用旋涂法,在氧化电极板51的上表面涂覆2μm厚度的感光性树脂材料(化药Microchem株式会社生产:SU-82000)。然后,在70℃进行30分钟烘焙之后,使用具有上层开口部54的图案的铬掩模,进行60秒的密合曝光,由此将掩模图案复制到树脂材料上。然后,在显影液中在20℃进行300秒的显影,并进行水洗、干燥,在上层53上形成矩阵状的上层开口部54。
这里,关于实施例1中的上层开口部54进行详细说明。该上层开口部54为正方形。其一边为15μm,面积为225μm2。上层开口部54的个数为10000个,邻接的上层开口部54的中心点之间的距离为18μm。
如图5(e)所示,与形成上层开口部54的顺序同样,在还原电极板52的下侧形成下层55和下侧开口部56。
接着,通过对氧化电极板51进行蚀刻,如下所述形成上侧孔57。即,在氧化电极板51上涂覆厚度为4~5μm的抗蚀剂材料(东京应化工业株式会社生产:TSMR-8900LB)。将该涂覆有抗蚀剂的基板50放入烘箱中,在100℃、30分钟的条件下进行预烘焙工序,在120℃、30分钟的条件下进行后期烘焙工序。然后,使用具有孔57的图案的铬掩模,利用掩模对准器(Mask Aligner)(MIKASA株式会社生产),进行60秒的密合曝光。接着,在显影液中在25℃进行120秒显影,并进行水洗、干燥,将掩模图案复制在抗蚀剂上。
接着,如图5(f)所示,将基板放入氩气研磨装置中,在氩气流量12sccm、压力0.03Pa、电子束电流90mA的条件下依次对由金和铬构成的氧化电极板31E进行蚀刻。由此,在基板上形成多个上侧孔57。所形成的上侧孔57为圆形,其面积为78.5μm2。在基板50上形成的上侧孔57的个数为10000个。其中,各上侧孔57的中心形与上侧开口54的中心一致。
进一步,如图5(g)所示,与在氧化电极板51形成上侧孔57的顺序完全相同地在还原电极板52形成下侧孔58。
最后,如图5(h)所示,接着将形成有上侧孔57和下侧孔58的基板50放入反应性离子蚀刻装置,以下侧孔58作为掩模图案,在C2F6气体的流量25sccm、压力0.25Pa、150W的条件下对基板50进行15分钟的蚀刻。由此,在基板50上形成多个贯通孔59(图5(h))。
由此,得到实施例1的电化学测定用电极板。
(比较例1)
为了进行比较,制作现有的电化学测定用电极板。以下表示其制作顺序。
如图6所示,在作为基板60的表面形成有1μm的SiO2膜的厚度为0.5mm的硅基板(信越化学工业株式会社)的上表面,使由铬和金构成的下部电极61成膜。成膜条件与图5(b)相同。
接着,如图6(c)所示,使用等离子体CVD装置(株式会社ULVAC生产),在下部电极61的上表面堆积厚度430nm的由SiO2构成的绝缘层62。
成膜条件为,硅烷气体流量10sccm,N2O气体流量200sccm、压力80Pa、功率50W、基板温度300℃。
并且,如图6(d)所示,使由铬和金构成的表面电极63成膜。成膜条件与图5(b)相同。
接着,如图6(e)所示,在表面电极63的上表面,涂覆厚度为2~3μm的抗蚀剂材料64,并进行显影、水洗、干燥,将掩模图案复制在抗蚀剂64上。所使用的抗蚀剂和形成抗蚀剂图案的条件与关于图5(d)所说明的条件相同。
然后,如图6(f)所示,形成细微孔65。利用氩气研磨装置,依次对未形成抗蚀剂64的部分,即露出的表面电极63的部分进行蚀刻。氩气研磨的条件为,氩气气体的流量12sccm,压力0.03Pa,电子束电流90mA。
最后,使用反应性离子蚀刻装置,在绝缘层62形成多个细微孔65。反应性离子蚀刻的条件为,C2F6气体的流量25sccm,压力0.25Pa,功率150W。
这里,对于比较例1的细微孔65进行详细说明。该细微孔65为圆形。其直径为10μm,面积为78.5μm2。细微孔65的个数为10000个,邻接的细微孔65的中心点之间的距离为70μm。其中,如图6(f)所示,该细微孔65没有贯通下部电极61、基板60。
(实施例1和比较例1的电化学测定)
使用实施例1和比较例的电化学测定用电极板,如图4所示,组成电化学测定装置,进行电子介体的定量评价。
将1mM的亚铁氰化钾和1mM的铁氰化钾(共计2mM)添加到含有50mM的支持电解质(氯化钾)的水溶液中,由此调制试样液。
作为参考电极,使用银/氯化银电极(BAS株式会社生产)。其中,以下的氧化电极的电位和还原电极的电位都是相对于该用作参考电极的银/氯化银电极的电位。
通过引线将实施例1的电化学测定用电极板与双恒电位仪(bipotentiostat)(CHinstruments公司生产:ALS740A)连接。将氧化电极板51的电位设定为0V、还原电极板52的电位设定为0V、氧化电极板51的电位的扫描施加速度设定为100mV/s之后,直至最终的氧化电极板51的电位成为+0.7V为止,利用循环伏安法测定在氧化电极板51中流通的反应电流。其反应为化学式1所示的亚铁氰化钾的氧化反应。
氧化电极板51的电位为+0.6V到+0.7V之间观测到恒定电流。+0.7V的反应电流为39.8μA。
同样,使用比较例1的电化学测定用电极板,将作为氧化电极发挥功能的下部电极2的电位以扫描施加速度100mV/s从0扫描施加到+0.7V。作为还原电极发挥功能的表面电极4的电位设定为0V。
其结果,即使在下部电极,也观察到伴随化学式1所示的亚铁氰化钾的氧化反应的氧化电流。在下部电极61的电位为+0.6至+0.7V之间观测到恒定电流。+0.7V的反应电流为22.5μA。
【化学式1】
Fe(CN)6 -4→Fe(CN)6 -3+e-
实施例1和比较例1的实验结果总结在下述表1中。
【表1】
  稳定状态电流值(μA)
  实施例1   39.8
  比较例1   22.5
  比较例2   20.7
  实施例2   53.2
  实施例3   64.8
  实施例4   42.6
可以认为这是因为:如果适用图2的自引发氧化还原循环的说明图考虑,在比较例1中距离微小电极远的部分的大电极22b被氧化后的亚铁氰化钾没有被用于微小电极21上的氧化反应,与此相对,实施例1中全部的亚铁氰化钾仅在微小电极21上被氧化,因此氧化反应的电流值有效地增加。
在本实施例的电化学测定用电极板中,在基板上配置有多个具有相同形状和面积的微小电极对。由此,各个电极对彼此之间的反应面积相同,如上所述的大电极上的亚铁氰化钾的反应不发生或者显著减少。由此,在两电极间进行有效的氧化还原反应。
另外,对于比较例1的构成微小电极的下部电极61和实施例1的构成电化学测定用电极的氧化电极板51,对施加+0.4V的电位而得到的氧化电流的时间依赖性进行评价。实施例1的还原电极板52的电位和比较例1的表面电极63的电位保持为0V。
其结果,实施例1的氧化电流值用6秒达到稳定状态,而比较例1的氧化电流值达到稳定状态则需要26秒(表2)。可以认为这是因为:由于与比较例1的下部电极相比,上部电极的面积大,所以需要达到稳定状态的时间,与此相对,实施例1的氧化电极与具有相同面积的还原电极形成电极对,所以两极间立即达到稳定状态。
【表2】
  达到稳定状态所需时间
  实施例1   6
  比较例1   26
  比较例2   35
  实施例2   10
  实施例3   9
  实施例4   15
由以上结果可以确认本实施例的电化学测定用电极板的效果。
(比较例2)
为了验证实施例1的上层开口部54和下层开口部56的面积对电子介体的定量评价的影响,按照以下顺序制作比较例2的电化学测定用电极板。
基本的制作顺序与图5相同,所以仅说明不同点。在比较例2中,正方形的上层开口部54的一边为1000μm,面积为1000000μm2。上层开口部54的个数为10个,邻接的上层开口部54的中心点之间的距离为1500μm。
使用该电极,与实施例1同样,利用循环伏安法进行反应电流的计测,在氧化电极板51的电位为+0.6至+0.7V之间观测到恒定电流。+0.7V的反应电流为20.7μA。同样,也评价氧化电流的时间依赖性。在比较例2的氧化电极中流动的电流达到稳定状态需要35秒(表2)。
推测这是因为:在本发明的电化学测定用电极板中设置的开口部的面积为1000000μm2的较大的情况下,如图2所示,出现在还原电极上距离氧化电极较近的部分和较远的部分,应该在氧化电极上氧化的还原体在还原电极上发生反应,因而没有在氧化电极上发生有效的反应。
(实施例2)
图7是本发明的实施例2的电化学测定用电极板的制作工艺的工序截面图。直至氧化电极板51和还原电极板52的形成工序(a~c)为止与实施例1同样进行。
接着,按照实施例1中采用的顺序,依次蚀刻参考电极板51、基板50、还原电极板52,以等间距的方式形成5000个截面积为100μm2的贯通孔59(c~e)。
接着,在氧化电极板51的上侧形成上层53和上层开口部54。并且,在还原电极板52的下层形成下层55和下层开口部56。
上层53和下层55的材料使用厚度为5μm的干膜抗蚀剂(旭化成工业株式会社生产,SUNFORT)。上层开口部54和下层开口部56各形成5000个。这些开口部的截面积为900μm2。上层开口部和下层开口部的形成方法与实施例1相同(f~i)。
经过以上工序,得到本实施例的电化学测定用电极板。
使用本实施例的电化学测定用电极板,进行与实施例1同样的试验。如表1所示,在氧化电极51观测到的电流值比比较例1的下部电极61的电流值大。进一步如表2所示,在氧化电极51观测到的电流值达到稳定状态所需要的时间为10秒,比比较例1所需的时间短。
由以上结果可以确认本实施例的电化学测定用电极板的效果。
(实施例3)
图8是实施例3的电化学测定用电极板的制作工艺的工序截面图。在本实施例中,经过与实施例1同样的氧化电极板51和还原电极板52的形成工序(b1、b2)、上层和下层形成工序(c1、c2)、上层开口部和下层开口部形成工序(d1、d2)、上侧贯通孔和下侧贯通孔形成工序(e1、e2、f1、f2)。其结果,形成氧化电极形成基板80A、还原电极形成基板80B。
通过将上述2个基板以各自的下表面粘合,得到本实施例的电化学测定用电极板(g)。上层开口部54和下层开口部56的截面积为900μm2,将它们等间距地形成1000个。贯通孔59的截面积为314μm2
使用本实施例的电化学测定用电极,进行与实施例1同样的试验,结果如表1所示得到与实施例1相同的结果。由以上结果可以确认本实施例的电化学测定用电极板的效果。
(实施例4)
图9是实施例4的电化学测定用电极板的制作工艺的工序截面图。绝缘性基板50使用厚度为0.5mm的热固性的酚醛树脂材料(PM-8200住友Bakelite生产)。在上述基板上形成氧化电极板51和还原电极板52(a~c)。
接着,进行上述的形成电极板后的基板的贯通孔形成加工。将铸型90加热到160℃,从还原电极板52的下表面完全贯通至氧化电极51的上表面,保持这样的温度10分钟(d)。接着,以5℃/分钟的速度逐渐冷却至室温,然后在室温保持10分钟。接着,抽出铸型90,从而形成1000个贯通孔59。这些贯通孔的截面积为314μm2
接着,按照与实施例2同样的顺序形成1000个上层53和上层开口部54、下层55和下层开口部56(f~i)。这些开口部的面积为6400μm2。由此,得到本实施例的电化学测定用电极板。
使用本实施例的电化学测定用电极板,进行与实施例1同样的试验,结果如表1所示得到与实施例1同样的结果,由以上结果可以确认本实施例的电化学测定用电极板的效果。
(实施例5)
图10是实施例5的电化学测定用电极板的制作工艺的工序截面图。基板50使用在表面形成有1μm的SiO2膜的直径为4英寸、厚度为0.5mm的硅基板(信越化学工业株式会社生产)。
在其两面的整个表面形成10nm的钛膜。接着,通过真空吸附,将其下表面固定在涂料器的工作台100上(a)。工作台100使用有孔卡盘(porous-chuck)(株式会社吉冈精工生产)。其吸附部由经过烧结的氧化铝多孔体形成。
在上述基板50的上表面的整个面上涂覆直径5nm的钯颗粒分散液(溶剂:己烷),使其厚度为500nm。接着,利用附带排气设备的电炉进行300℃、3小时的烧制,形成氧化电极51。然后,在下表面也同样涂覆钯颗粒分散液,经烧制形成还原电极52(b)。
接着,按照与实施例1同样的顺序形成1000个贯通孔59。贯通孔的截面积为2500μm2(c~e)。
接着,按照与实施例2同样的顺序,形成1000个上层53和上层开口部54、下层55和下层开口部56。开口部的截面积为1000μm2(f~i)。经过以上的工序,得到本实施例的电化学测定用电极板。
利用原子间力显微镜观察所获得的电化学测定用电极板的氧化电极表面和还原电极表面。其结果,能够确认在氧化电极表面和还原电极表面聚集有直径大约为50nm的微粒的结构。另一方面,采用成膜方法制作的钯电极表面,仅观察到反映出在基板的研磨中形成的研磨伤的形状,不能确认微粒结构。
下面进行本实施例的电化学测定用电极板的氧化电极表面积的估计。如果单纯地假定直径为50nm的钯颗粒的半球覆盖基板50的表面,则半球的表面积的总和为几何面积的大约30倍。采用成膜方法制作的电极表面几乎为平坦的,因此其表面积几乎与几何面积一致。由此可知,本实施例的电化学测定用电极板具有比采用成膜方法制作的电极更大的电极面积。这与电极的反应面积增大相关。由此,可以确认本发明的电化学测定用电极板具有优选的性质。
下面,使用图12说明实施方式2的电化学测定用电极板的制作工序。
(实施例6)
图12是实施例6的电化学测定用电极板的制作工艺的工序截面图。采用实施例1的顺序,在基板50上形成氧化电极板51、还原电极板52、上层53、上层开口部54、下层55、下层开口部56和贯通孔59。贯通孔的截面积为100μm2,开口部的截面积为10000μm2,分别形成2500个(a~i)。
最后,将由硼硅酸盐纤维玻璃构成的口径为42μm的过滤器113M(日本Millipore株式会社生产)切割为规定的大小之后,使用硅粘合剂固定于上层53上(j)。
经过以上工序,得到本实施例的电化学测定用电极板。
将血液中的血浆成分插入本实施例的电化学测定用电极板,结果,没有完全分离的血细胞成分、蛋白成分、血栓被过滤器113M阻挡,仅血浆成分经过上层开口部54、贯通孔59被供给到下层开口部。另一方面,未形成有过滤器113M的同形状的电化学用测定电极板被部分血栓堵塞,因而贯通孔59不能发挥功能。这一结果可以通过目视确认。由以上结果可以确认本实施方式的电化学测定用电极板的效果。
接着,使用图14说明实施方式3的电化学测定用电极板的制作工序。
(实施例7)
图14是实施例7的电化学测定用电极板的制作工艺的工序截面图。采用实施例1的顺序,在基板50上形成氧化电极板51、还原电极板52、上层53、上层开口部54、下层55、下层开口部56和贯通孔59。贯通孔的截面积为100μm2,开口部的截面积为2500μm2,分别形成5000个(a~i)。
接着,在上层53和下层55上覆盖金属掩模,使铂形成100nm的膜(j)。在除去金属掩模后,留出引线部分向在上层53形成的铂薄膜涂覆银/油墨(BAS株式会社生产)。然后,在电炉中以40℃进行30分钟干燥,得到参考电极131E。接着,将平均粒径为1.0~10.0μm的铂粉末(田中贵金属工业株式会社生产)分散在乙醇中,制作浆料。留出引线部分向在下层55上形成的铂薄膜涂覆制作的浆料,并进行干燥,得到辅助电极133e。经过以上工序,得到本实施例的电化学测定用电极。
使用由本实施例制作的电化学测定用电极板与比较例1的电化学测定用电极板,组装电化学测定装置。此时,本实施例的电化学测定用电极板的厚度为0.5mm左右,与此相对,比较例1的电化学测定用电极板由于从外部导入参考电极和辅助电极,因此厚度为5cm左右。因此,测定中使用的试样液的量增加到几1000倍。
这表示通过将测定所必需的电极一体地形成在电极板上,能够得到作为寻求小型化的各种传感器用电极的优选的结构。由此可知,本实施例的电化学测定用电极板适合用作小型传感器用电极。
根据上述说明,本领域的技术人员可知本发明的许多改良和其它实施方式。因此,上述说明仅应该理解为例示,以向本领域技术人员示教实施本发明的优选方式为目的提供。在不脱离本发明精神的范围内,实质上能够变更其结构和/或者功能的详细内容。
产业上的可利用性
本发明的电化学测定用电极板具有高氧化还原循环的效果,作为构成以葡萄糖传感器为代表的生物体物质等微量成分的传感设备的电极非常有用。另外,也能够应用于构成色谱分析的检测器的电极的用途等。

Claims (18)

1.一种电化学测定用电极板,其特征在于,包括:
由绝缘体构成的基板;
在所述基板的上表面设置的由绝缘体构成的上层;和
在所述基板的下表面设置的由绝缘体构成的下层,
所述基板包括:
夹在所述基板的上表面和所述上层之间的多个氧化电极;和
夹在所述基板的下表面和所述下层之间的多个还原电极,
所述上层具有多个上层开口部,
所述各氧化电极从所述各上层开口部露出,
所述下层具有多个下层开口部,
所述各还原电极从所述各下层开口部露出,
在所述基板上设置有从所述各氧化电极的上表面至所述各还原电极的下表面贯通的多个贯通孔,
所述各上层开口部的面积与所述各下层开口部的面积相同,
所述各上层开口部的面积为10000μm2以下,
所述各下层开口部的面积为10000μm2以下。
2.如权利要求1所述的电化学测定用电极板,其特征在于:
所述各上层开口部的面积为225μm2以上,
所述各下层开口部的面积为225μm2以上。
3.如权利要求1所述的电化学测定用电极板,其特征在于:
所述贯通孔的截面积为1μm2以上2500μm2以下。
4.如权利要求1所述的电化学测定用电极板,其特征在于:
所述下层的厚度为5μm以上100μm以下。
5.一种电化学测定装置,其包括参考电极、辅助电极和电化学测定用电极板,或者包括对电极和电化学测定用电极板,其特征在于:
所述电化学测定用电极板包括:
基板;
在所述基板的上表面设置的由绝缘体构成的上层;和
在所述基板的下表面设置的由绝缘体构成的下层,
所述基板包括:
夹在所述基板的上表面和所述上层之间的多个氧化电极;和
夹在所述基板的下表面和所述下层之间的多个还原电极,
所述上层具有多个上层开口部,
所述各氧化电极从所述各上层开口部露出,
所述下层具有多个下层开口部,
所述各还原电极从所述各下层开口部露出,
在所述基板上设置有从所述各氧化电极的上表面至所述各还原电极的下表面贯通的多个贯通孔,
所述各上层开口部的面积与所述各下层开口部的面积相同,
所述各上层开口部的面积为10000μm2以下,
所述各下层开口部的面积为10000μm2以下。
6.如权利要求5所述的电化学测定装置,其特征在于:
所述各上层开口部的面积为225μm2以上,
所述各下层开口部的面积为225μm2以上。
7.如权利要求5所述的电化学测定装置,其特征在于:
所述贯通孔的截面积为1μm2以上2500μm2以下。
8.如权利要求5所述的电化学测定装置,其特征在于:
所述下层的厚度为5μm以上100μm以下。
9.如权利要求5所述的电化学测定装置,其特征在于:
所述辅助电极的表面积为所述氧化电极的集合体的10倍以上。
10.如权利要求5所述的电化学测定装置,其特征在于:
在所述上层的上表面设置有网状的过滤器。
11.如权利要求5所述的电化学测定装置,其特征在于:
所述参考电极形成于所述上层的上表面,所述辅助电极形成于所述下层的下表面。
12.一种利用电化学测定装置对试样液中所含的目标物质进行定量的方法,该电化学测定装置包括参考电极、辅助电极和电化学测定用电极板,或者包括对电极和电化学测定用电极板,该方法的特征在于,
所述方法包括以下工序:
调制含有电子介体的试样液的工序;
准备所述电化学测定用电极板的工序;
接触工序;
电流测定工序;和
根据通过所述电流测定工序得到的电流计算所述目标物质的量的计算工序,其中,
在准备所述电化学测定用电极板的工序中,所述电化学测定用电极板包括:
由绝缘体构成的基板;
在所述基板的上表面设置的由绝缘体构成的上层;和
在所述基板的下表面设置的由绝缘体构成的下层,
所述基板包括:
夹在基板的上表面和所述上层之间的多个氧化电极;和
夹在所述基板的下表面和所述上层之间的多个还原电极,
所述上层具有多个上层开口部,
所述各氧化电极从所述各上层开口部露出,
所述下层具有多个下层开口部,
所述各还原电极从所述各下层开口部露出,
在所述基板上设置有从所述各氧化电极的上表面至所述各还原电极的下表面贯通的多个贯通孔,
所述各上层开口部的面积与所述各下层开口部的面积相同,
所述各上层开口部的面积为10000μm2以下,
所述各下层开口部的面积为10000μm2以下,并且,
在接触工序中,使所述参考电极、所述辅助电极和所述电化学测定用电极板与所述试样液接触,或者使所述对电极和所述电化学测定用电极板与所述试样液接触,
在电流测定工序中,对所述氧化电极板扫描施加正电位,并且对所述还原电极板施加负电位,或者对所述氧化电极板施加正电位,并且对所述还原电极板扫描施加负电位,由此测定在所述氧化电极板和所述还原电极的各自中流通的电流。
13.如权利要求12所述的方法,其特征在于:
所述各上层开口部的面积为225μm2以上,
所述各下层开口部的面积为225μm2以上。
14.如权利要求12所述的方法,其特征在于:
所述贯通孔的截面积为1μm2以上2500μm2以下。
15.如权利要求12所述的方法,其特征在于:
所述下层的厚度为5μm以上100μm以下。
16.如权利要求12所述的方法,其特征在于:
所述辅助电极的表面积为所述氧化电极的集合体的10倍以上。
17.如权利要求12所述的方法,其特征在于:
在所述上层的上表面设置有网状的过滤器。
18.如权利要求12所述的方法,其特征在于:
所述参考电极形成于所述上层的上表面,所述辅助电极形成于所述下层的下表面。
CN2008800019299A 2007-07-20 2008-07-15 电化学测定用电极板、具有该电极板的电化学测定装置、和使用该电极板对目标物质进行定量的方法 Active CN101595381B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007189006 2007-07-20
JP189006/2007 2007-07-20
PCT/JP2008/001893 WO2009013876A1 (ja) 2007-07-20 2008-07-15 電気化学測定用電極板、およびこの電極板を有する電気化学測定装置、ならびにこの電極板を用いて目的物質を定量する方法

Publications (2)

Publication Number Publication Date
CN101595381A true CN101595381A (zh) 2009-12-02
CN101595381B CN101595381B (zh) 2012-11-14

Family

ID=40281138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800019299A Active CN101595381B (zh) 2007-07-20 2008-07-15 电化学测定用电极板、具有该电极板的电化学测定装置、和使用该电极板对目标物质进行定量的方法

Country Status (4)

Country Link
US (1) US7638035B2 (zh)
JP (1) JP4283880B2 (zh)
CN (1) CN101595381B (zh)
WO (1) WO2009013876A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105866181A (zh) * 2011-12-26 2016-08-17 日产自动车株式会社 检查方法和检查系统
CN106164243A (zh) * 2014-03-31 2016-11-23 松下知识产权经营株式会社 电化学测定器件
CN107003265A (zh) * 2014-12-12 2017-08-01 松下知识产权经营株式会社 电化学测量器件及具备该电化学测量器件的电化学测量装置
CN107121479A (zh) * 2017-05-17 2017-09-01 中国科学院长春应用化学研究所 一种电化学系统
CN107170794A (zh) * 2016-03-08 2017-09-15 中国科学院苏州纳米技术与纳米仿生研究所 应用于tem进行原位电化学反应测量的芯片
CN109019788A (zh) * 2018-08-30 2018-12-18 福建安冠环境科技有限公司 一种混合电化学废水处理装置
CN111344389A (zh) * 2018-03-13 2020-06-26 松下知识产权经营株式会社 电反应计测装置、电反应处理方法以及程序
CN111505090A (zh) * 2015-11-20 2020-08-07 日本航空电子工业株式会社 电化学测定方法、电化学测定装置以及转换器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960300B (zh) 2008-05-28 2013-05-29 松下电器产业株式会社 使用电化学测定装置检测或者定量目标物质的方法、电化学测定装置以及电化学测定用电极板
CA2903295A1 (en) * 2013-03-05 2014-09-12 Micromass Uk Limited Charging plate for enhancing multiply charged ions by laser desorption
CN104792845A (zh) * 2014-08-07 2015-07-22 中国科学院微电子研究所 传感装置
JP6514336B2 (ja) 2014-12-23 2019-05-15 ヘレウス センサー テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング 導電性及び/又は分極性粒子を検出するセンサ、センサシステム、センサを作動させる方法、このタイプのセンサを製造する方法及びこのタイプのセンサの使用
SG10201607523RA (en) 2016-09-09 2018-04-27 Heraeus Materials Singapore Pte Ltd Coated wire
EP4060018A4 (en) * 2019-11-14 2023-03-01 NOK Corporation DEVICE FOR MEASUREMENT OF EXTRACELLULAR POTENTIAL

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2556993B2 (ja) 1989-04-10 1996-11-27 日本電信電話株式会社 電気化学測定用微細孔電極セル及びその製造方法
JP2564030B2 (ja) 1990-09-28 1996-12-18 日本電信電話株式会社 電気化学測定用カーボン薄膜電極の製造方法
JP2992603B2 (ja) * 1991-06-24 1999-12-20 日本電信電話株式会社 ウォールジェット型電気化学的検出器およびその製造方法
JP3108499B2 (ja) * 1992-02-14 2000-11-13 日本電信電話株式会社 電気化学検出用微小電極セル及びその製造方法
JP3289059B2 (ja) * 1992-05-11 2002-06-04 日本電信電話株式会社 電気化学検出方法および検出装置
JPH09101283A (ja) * 1995-10-03 1997-04-15 Nippon Telegr & Teleph Corp <Ntt> 電気化学検出器およびその製造方法
DE19907164C2 (de) * 1999-02-19 2002-10-24 Micronas Gmbh Meßeinrichtung sowie Verfahren zu deren Herstellung
DE10058397A1 (de) * 2000-11-24 2002-06-06 Siemens Ag Anordnung für ein elektrochemisches Analyseverfahren und deren Verwendung
ATE468531T1 (de) * 2001-05-30 2010-06-15 I Sens Inc Biosensor
JP4691407B2 (ja) 2005-06-29 2011-06-01 パナソニック株式会社 細胞電位測定用容器
JP3902156B2 (ja) * 2003-06-03 2007-04-04 日本電信電話株式会社 オンラインカテコールアミンセンシングデバイス
US7250115B2 (en) * 2003-06-12 2007-07-31 Agilent Technologies, Inc Nanopore with resonant tunneling electrodes
JP4750394B2 (ja) 2004-09-10 2011-08-17 三菱化学メディエンス株式会社 多層電極及び多層電極カートリッジ、電気化学分析装置及び電気化学分析方法、電気化学発光分析装置及び電気化学発光分析方法、並びに電気化学発光素子
JP2006322813A (ja) 2005-05-19 2006-11-30 Kobe Steel Ltd 電気化学センサアレイ及びその製造方法
CN2886565Y (zh) * 2005-12-30 2007-04-04 中国科学院长春应用化学研究所 电化学毒气传感器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105866181A (zh) * 2011-12-26 2016-08-17 日产自动车株式会社 检查方法和检查系统
CN106164243A (zh) * 2014-03-31 2016-11-23 松下知识产权经营株式会社 电化学测定器件
CN106164243B (zh) * 2014-03-31 2018-04-27 松下知识产权经营株式会社 电化学测定器件
US10457907B2 (en) 2014-03-31 2019-10-29 Panasonic Intellectual Property Management Co., Ltd. Electrochemical measurement device
CN107003265A (zh) * 2014-12-12 2017-08-01 松下知识产权经营株式会社 电化学测量器件及具备该电化学测量器件的电化学测量装置
CN111505090A (zh) * 2015-11-20 2020-08-07 日本航空电子工业株式会社 电化学测定方法、电化学测定装置以及转换器
CN111505090B (zh) * 2015-11-20 2023-08-22 日本航空电子工业株式会社 电化学测定方法、电化学测定装置以及转换器
CN107170794A (zh) * 2016-03-08 2017-09-15 中国科学院苏州纳米技术与纳米仿生研究所 应用于tem进行原位电化学反应测量的芯片
CN107121479A (zh) * 2017-05-17 2017-09-01 中国科学院长春应用化学研究所 一种电化学系统
CN107121479B (zh) * 2017-05-17 2019-12-27 中国科学院长春应用化学研究所 一种电化学系统
CN111344389A (zh) * 2018-03-13 2020-06-26 松下知识产权经营株式会社 电反应计测装置、电反应处理方法以及程序
CN109019788A (zh) * 2018-08-30 2018-12-18 福建安冠环境科技有限公司 一种混合电化学废水处理装置

Also Published As

Publication number Publication date
WO2009013876A1 (ja) 2009-01-29
CN101595381B (zh) 2012-11-14
US7638035B2 (en) 2009-12-29
JP4283880B2 (ja) 2009-06-24
JPWO2009013876A1 (ja) 2010-09-30
US20090145780A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
CN101595381B (zh) 电化学测定用电极板、具有该电极板的电化学测定装置、和使用该电极板对目标物质进行定量的方法
Liao et al. Highly selective and sensitive glucose sensors based on organic electrochemical transistors using TiO2 nanotube arrays-based gate electrodes
US20090194415A1 (en) Pair of measuring electrodes, biosensor comprising a pair of measuring electrodes of this type, and production process
Janata Potentiometric microsensors
Li et al. Photo-electrochemical detection of dopamine in human urine and calf serum based on MIL-101 (Cr)/carbon black
CN101960300B (zh) 使用电化学测定装置检测或者定量目标物质的方法、电化学测定装置以及电化学测定用电极板
Inoue et al. Advanced LSI-based amperometric sensor array with light-shielding structure for effective removal of photocurrent and mode selectable function for individual operation of 400 electrodes
Zina et al. Novel sensitive impedimetric microsensor for phosphate detection based on a novel copper phthalocyanine derivative
CN107202826A (zh) 使用电化学式生物传感器的物质测定方法和测定装置
Liu et al. Dual-pipet techniques for probing ionic reactions
TWI768560B (zh) 生化試片
Li et al. Fabrication of nanoporous thin-film working electrodes and their biosensingapplications
Fan et al. A Label‐free Electrochemiluminescence Sensing for Detection of Dopamine Based on TiO2 Electrospun Nanofibers
CN101627301B (zh) 电化学测定用电极板、和具有该电化学测定用电极板的电化学测定装置、以及用该电化学测定用电极板定量目标物质的方法
Chakraborty et al. Characterization of enzyme-redox hydrogel thin-film electrodes for improved utilization
Lacina et al. Redox‐Pair‐Defined Electrochemical Measurements: Biamperometric Setup for Elimination of Interferent Effects and for Sensing of Unstable Redox Systems
Lin et al. Antidelaminating, thermally stable, and cost-effective flexible kapton platforms for nitrate sensors, mercury aptasensors, protein sensors, and p-type organic thin-film transistors
JP2012181085A (ja) 電気化学測定用電極およびその製造方法
Ognjanović et al. Construction of sensor for submicromolar detection of riboflavin by surface modification of SPCE with thermal degradation products of nickel acetate tetrahydrate
CN112162026B (zh) 基于纳米传感通道电化学掺杂的土壤三价砷检测方法
Borsos et al. A new electrode for acid-base titration based on poly (copper phthalocyanine)
Yang et al. Iridium oxide-reduced graphene oxide nanohybrid thin film modified screen-printed electrodes as disposable electrochemical paper microfluidic pH sensors
Dalal et al. Ion-Sensitive Three-Terminal Device as a Universal Hybrid Platform With TiO 2 Nanowires on the Channel
TWI381052B (zh) 酵素電極與其製造方法
Nakazato Chemistry integrated circuit: chemical system on a complementary metal oxide semiconductor integrated circuit

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant