CN101594045A - A Specific Harmonic Elimination Method for Modular Multilevel Converter - Google Patents

A Specific Harmonic Elimination Method for Modular Multilevel Converter Download PDF

Info

Publication number
CN101594045A
CN101594045A CNA2009100880000A CN200910088000A CN101594045A CN 101594045 A CN101594045 A CN 101594045A CN A2009100880000 A CNA2009100880000 A CN A2009100880000A CN 200910088000 A CN200910088000 A CN 200910088000A CN 101594045 A CN101594045 A CN 101594045A
Authority
CN
China
Prior art keywords
cos
specific
harmonic elimination
harmonics
specific harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2009100880000A
Other languages
Chinese (zh)
Inventor
李强
贺之渊
苑春明
丁冠军
汤广福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Original Assignee
China Electric Power Research Institute Co Ltd CEPRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Electric Power Research Institute Co Ltd CEPRI filed Critical China Electric Power Research Institute Co Ltd CEPRI
Priority to CNA2009100880000A priority Critical patent/CN101594045A/en
Publication of CN101594045A publication Critical patent/CN101594045A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明提出了一种新型模块化多电平换流器的特定消谐方法。本发明将特定消谐方法应用于三相模块化多电平换流器,通过合理选择子模块的开关角,改善其输出电压谐波特性,提高波形质量,达到更小的输出电压谐波畸变率。同时针对工程应用,提出了窄脉冲优化策略,以提高其工程适用性。

Figure 200910088000

The invention proposes a specific harmonic elimination method for a novel modular multilevel converter. The invention applies the specific harmonic elimination method to the three-phase modular multi-level converter, and through reasonable selection of the switching angle of the sub-modules, improves the harmonic characteristics of the output voltage, improves the waveform quality, and achieves smaller harmonic distortion of the output voltage Rate. At the same time, for engineering applications, a narrow pulse optimization strategy is proposed to improve its engineering applicability.

Figure 200910088000

Description

一种模块化多电平换流器的特定消谐方法 A Specific Harmonic Elimination Method for Modular Multilevel Converter

技术领域 technical field

本发明属于电力系统柔性输配电、电力电子、电力拖动、电机驱动和用户电力技术领域,具体涉及一种模块化多电平换流器的特定消谐领域。The invention belongs to the technical fields of flexible power transmission and distribution of power systems, power electronics, electric drive, motor drive and user electric power, and specifically relates to the field of specific harmonic elimination of a modular multilevel converter.

背景技术 Background technique

多电平换流器是近年来比较受欢迎一种大功率电力电子换流器,并且已经成功应用在很多工业领域,如静止无功补偿器、电力拖动、FACTS、高压直流输电和有源滤波器等。传统多电平换流器有多种不同的结构,常见的有二极管箝位型(NPC)、飞跨电容型(FLC)和级联H桥型(CHC)。模块化多电平换流器(Modular Multilevel Converter,简称MMC)作为一种新的多电平换流器,兼具了传统多电平换流器开关频率低、开关损耗小、高频噪声低、电压变化率小的优点。同时,与NPC型和FLC型多电平换流器相比,模块化程度高,开关器件数量不会随电平数的增加呈现非线性增长,结构设计简单;与CHC型相比,功率可以双向流动,开关器件也减少了一倍。Multilevel converter is a popular high-power electronic converter in recent years, and has been successfully applied in many industrial fields, such as static var compensator, electric drive, FACTS, HVDC transmission and active filter etc. Traditional multilevel converters have many different structures, and the common ones are diode clamped (NPC), flying capacitor (FLC) and cascaded H-bridge (CHC). As a new multilevel converter, Modular Multilevel Converter (MMC) has the advantages of low switching frequency, low switching loss and low high frequency noise of traditional multilevel converters. , The advantage of small voltage change rate. At the same time, compared with the NPC type and FLC type multilevel converter, the degree of modularization is high, the number of switching devices will not increase non-linearly with the increase of the number of levels, and the structural design is simple; compared with the CHC type, the power can be Bi-directional flow, switching devices are also doubled.

传统多电平换流器可以采用的调制策略有多种,如正弦脉宽调制(Pulse WidthModulation,简称PWM)、空间矢量脉宽调制(SVPWM)和特定消谐脉宽调制(SHEPWM)。而SHEPWM是比较受欢迎的一种,它可以消除指定次谐波,减小电压电流波形畸变率。There are many modulation strategies that can be used in traditional multilevel converters, such as sinusoidal pulse width modulation (Pulse Width Modulation, PWM for short), space vector pulse width modulation (SVPWM) and specific harmonic elimination pulse width modulation (SHEPWM). And SHEPWM is a more popular one, it can eliminate the specified harmonics and reduce the distortion rate of voltage and current waveforms.

发明内容 Contents of the invention

为了使得MMC输出电压波形畸变更小、波形质量更好,有必要研究SHEPWM应用于MMC的方法。In order to make the waveform distortion of MMC output voltage smaller and the waveform quality better, it is necessary to study the method of applying SHEPWM to MMC.

针对模块化多电平换流器MMC拓扑结构,本发明提出了适用于该拓扑的特定消谐方法。该方法能在较低的开关频率下优化MMC输出电压谐波特性,提高波形质量。Aiming at the MMC topology of the modular multilevel converter, the present invention proposes a specific harmonic elimination method suitable for the topology. The method can optimize the harmonic characteristics of the MMC output voltage at a lower switching frequency and improve the waveform quality.

模块化多电平换流器MMC每相上、下半桥臂都是由独立的数个子模块(Submodule)级联而成,并且每个子模块都可以独立控制开断。利用这一优点,合理选择每个子模块的开关角,以消除输出电压中特定次谐波,减小波形畸变,提高波形质量。具体方法如下:In the modular multilevel converter MMC, the upper and lower half bridge arms of each phase are formed by cascading several independent submodules (Submodules), and each submodule can independently control the disconnection. Taking advantage of this advantage, the switching angle of each sub-module is reasonably selected to eliminate specific harmonics in the output voltage, reduce waveform distortion, and improve waveform quality. The specific method is as follows:

通过在桥臂输出阶梯波电压中设置特定消谐角度,以消除特定次数的谐波。由于MMC输出电压具有1/4周期对称性,只需考虑1/4周期内的开关角求解。若每相半桥臂采用2N个子模块构成所需的多电平阶梯波输出电压时,输出状态发生改变的仅有N个子模块,也就是说只需求解1/4周期内的N个开关角即可。By setting a specific harmonic elimination angle in the output ladder wave voltage of the bridge arm, harmonics of a specific order can be eliminated. Since the MMC output voltage has 1/4 cycle symmetry, only the switching angle in 1/4 cycle needs to be considered for solution. If each half-bridge arm uses 2N sub-modules to form the required multi-level ladder wave output voltage, only N sub-modules change the output state, that is to say, only N switching angles within 1/4 cycle need to be solved That's it.

在三相MMC中,某相特定消谐角度确定以后,其它两相的通过互错120°得到,这样输出线电压中不含三倍频谐波,从而可以消除更多高次谐波。具体步骤如下:In the three-phase MMC, after the specific harmonic elimination angle of a certain phase is determined, the other two phases are obtained by staggering each other by 120°, so that the output line voltage does not contain triple frequency harmonics, so that more higher harmonics can be eliminated. Specific steps are as follows:

(1)由理论分析得出三相MMC输出电压的傅立叶级数展开表达式,表达式中包含N个子模块的开关角;(1) The Fourier series expansion expression of the three-phase MMC output voltage is obtained by theoretical analysis, and the expression includes the switching angle of N submodules;

(2)令傅立叶级数展开表达式中基波分量等于期望值,N-1个特定次谐波分量等于0,从而得到N个非线性超越方程;(2) Let the fundamental wave component in the Fourier series expansion expression be equal to the expected value, and the N-1 specific harmonic components be equal to 0, thereby obtaining N nonlinear transcendental equations;

(3)确定MMC输出电压的基波期望值,计算此时半桥臂对应的N个开关角;(3) Determine the fundamental expected value of the MMC output voltage, and calculate the N switching angles corresponding to the half-bridge arms at this time;

(4)以步骤(3)中的开关角作为初值,求解步骤(2)中的非线性超越方程,得到窄脉冲优化模型的初值;(4) With the switching angle in the step (3) as the initial value, solve the nonlinear transcendental equation in the step (2), obtain the initial value of the narrow pulse optimization model;

(5)对步骤(4)得到的特定消谐角度进行窄脉冲优化,最终得到可用于工程的N个开关角度。(5) Perform narrow pulse optimization on the specific harmonic elimination angle obtained in step (4), and finally obtain N switch angles that can be used in engineering.

附图说明 Description of drawings

下面结合附图对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings.

图1是依据本发明的三相MMC的电路示意图;Fig. 1 is the circuit diagram according to three-phase MMC of the present invention;

图2是依据本发明的三相MMC单桥臂输出电压波形示意图;Fig. 2 is according to three-phase MMC single bridge arm output voltage waveform schematic diagram of the present invention;

图3是依据本发明的特定消谐角度初值的计算方法示意图;Fig. 3 is according to the calculation method schematic diagram of specific harmonic elimination angle initial value of the present invention;

图4是依据本发明的在N=5时,MMC输出电压频谱图。FIG. 4 is a spectrum diagram of the MMC output voltage when N=5 according to the present invention.

具体实施方式 Detailed ways

下面是本发明的优选实例,以下结合本附图对本发明实现的技术方案做进一步说明。The following are preferred examples of the present invention, and the technical solutions realized by the present invention will be further described below in conjunction with the accompanying drawings.

如图1所示是依据本发明的三相MMC的电路示意图,模块化多电平换流器MMC由三相6个半桥臂构成,每相半桥臂由2N个子模块级联而成。每相输出电压为:As shown in FIG. 1 is a schematic circuit diagram of a three-phase MMC according to the present invention. The modular multilevel converter MMC is composed of six half-bridge arms of three phases, and each half-bridge arm of a phase is formed by cascading 2N sub-modules. The output voltage of each phase is:

van=N·Vdc-vau  or                      (1)v an =N·V dc -v au or (1)

van=-N·Vdc+val v an =-N·V dc +v al

特定消谐方法通过在桥臂输出阶梯波电压的特定位置设置缺口,消除特定次数的谐波。这些位置就是通常所说的特定消谐角度,然后这些角度一般都是由求解非线性超越方程组来确定的,一般用数值方法求解。由于MMC输出电压具有1/4周期对称性,只需考虑1/4周期内的开关角求解。若每相半桥臂采用2N个子模块构成所需的多电平阶梯波输出电压时,输出状态发生改变的仅有N个子模块,也就是说只需求解1/4周期内的N个开关角即可。The specific harmonic elimination method eliminates harmonics of a specific order by setting a gap at a specific position where the bridge arm outputs a ladder wave voltage. These positions are commonly referred to as specific harmonic elimination angles, and these angles are generally determined by solving nonlinear transcendental equations, usually by numerical methods. Since the MMC output voltage has 1/4 cycle symmetry, only the switching angle in 1/4 cycle needs to be considered for solution. If each half-bridge arm uses 2N sub-modules to form the required multi-level ladder wave output voltage, only N sub-modules change the output state, that is to say, only N switching angles within 1/4 cycle need to be solved That's it.

模块化多电平换流器MMC输出电压波形如图2所示。对图2的波形用傅立叶级数展开成式(2)的形式,并令基波分量等于基波期望值,所需消除的谐波等于0,从而构成N个独立的非线性方程。由于三相MMC各桥臂开关角互错120°,线电压中三倍频谐波相互抵消。The output voltage waveform of the modular multilevel converter MMC is shown in Figure 2. The waveform in Figure 2 is expanded into the form of formula (2) by Fourier series, and the fundamental component is equal to the expected value of the fundamental, and the harmonics to be eliminated are equal to 0, thus forming N independent nonlinear equations. Since the switching angles of the bridge arms of the three-phase MMC are staggered by 120°, the triple frequency harmonics in the line voltage cancel each other out.

vv (( ωtωt )) == ΣΣ nno == 1,3,51,3,5 ,, ·· ·&Center Dot; ·&Center Dot; ∞∞ [[ 44 VV dcdc ππ ΣΣ kk == 11 SS coscos (( nno θθ kk )) ]] ·· sinsin (( nωtnωt )) nno -- -- -- (( 22 ))

其中,Vdc为子模块电容电压;N为1/4周期内特定消谐角度的个数;θk为第k个特定消谐角度,且k=1、2、…、N;ω为基频角速度。Among them, V dc is the sub-module capacitor voltage; N is the number of specific harmonic elimination angles in 1/4 cycle; θ k is the kth specific harmonic elimination angle, and k=1, 2, ..., N; ω is the base frequency angular velocity.

以消除N-1个较低次谐波为例,最高消谐次数可以达到3N-2次谐波。由傅立叶级数可以写出求解开关角的非线性超越方程组如下:Taking the elimination of N-1 lower harmonics as an example, the highest harmonic elimination can reach 3N-2 harmonics. From the Fourier series, the nonlinear transcendental equations for solving the switching angle can be written as follows:

44 VV dcdc ππ [[ coscos (( θθ 11 )) ++ coscos (( θθ 22 )) ++ ·&Center Dot; ·&Center Dot; ·&Center Dot; ++ coscos (( θθ NN )) ]] == VV refref

cos(5θ1)+cos(5θ2)+…+cos(5θN)=0cos(5θ 1 )+cos(5θ 2 )+…+cos(5θ N )=0

cos(7θ1)+cos(7θ2)+…+cos(7θN)=0    (3)cos(7θ 1 )+cos(7θ 2 )+…+cos(7θ N )=0 (3)

..

..

..

cos(hθ1)+cos(hθ2)+…+cos(hθN)=0cos(hθ 1 )+cos(hθ 2 )+…+cos(hθ N )=0

其中,Vdc为子模块电容电压;Vref为MMC输出电压的基波期望值;θk为第k个特定消谐角度,且k=1、2、…、N;h为指定消除的谐波次数,且h=1、5、7、11、13、…、3N-2。Among them, V dc is the sub-module capacitor voltage; V ref is the expected value of the fundamental wave of the MMC output voltage; θ k is the kth specific harmonic elimination angle, and k=1, 2, ..., N; h is the specified harmonic to be eliminated times, and h=1, 5, 7, 11, 13, ..., 3N-2.

对于三相MMC,构成开关角的方程组共有N个未知数,在确定基波期望值以后,可以选择消除N-1个低次谐波分量。对于每相半桥臂有10个子模块的情况,开关角度数为5,最高的消除的谐波次数为3N-2=13次。For three-phase MMC, there are N unknowns in the equations that constitute the switching angle. After determining the expected value of the fundamental wave, you can choose to eliminate N-1 low-order harmonic components. For the case where there are 10 sub-modules in each half-bridge arm, the number of switching angles is 5, and the highest order of eliminated harmonics is 3N-2=13.

从而问题归结为5个非线性超越方程的求解。任意选取初值,进行迭代计算表明,算法不易收敛。必须选择合适的初值,根据MMC基波期望值,可以确定如图3所示的参考波电压uref(ωt)。当模块化多电平换流器的输出电平v(t)由k跳变为k+1时,令图3中阴影1与2的面积相等,即可得到第k+1个特定消谐角度的初值θk+1。对每一个电平跳变时刻进行类似计算,就能得到迭代的初值。实例证明:用此初值进行迭代计算,算法很快收敛。So the problem boils down to the solution of five nonlinear transcendental equations. The initial value is chosen arbitrarily, and the iterative calculation shows that the algorithm is not easy to converge. An appropriate initial value must be selected. According to the expected value of the MMC fundamental wave, the reference wave voltage u ref (ωt) as shown in Figure 3 can be determined. When the output level v(t) of the modular multilevel converter jumps from k to k+1, the areas of shadows 1 and 2 in Figure 3 are equal, and the k+1th specific harmonic elimination can be obtained The initial value of the angle θ k+1 . The initial value of the iteration can be obtained by performing similar calculations for each level transition moment. Examples prove that the algorithm converges quickly with this initial value for iterative calculation.

考虑到MMC中开关器件都有一定的开通和关断时间,在开通和关断时都需要一定的时间,并且导通和关断过程的损耗会使开关器件发热,热积累效应达到一定程度时将引起开关器件烧损。从而根据开关器件的开通和关断时间确定了MMC的最小脉冲宽度,即窄脉冲。并针对窄脉冲提出了如下优化方法:Considering that the switching devices in MMC have a certain turn-on and turn-off time, it takes a certain time to turn on and turn off, and the loss of the turn-on and turn-off process will cause the switching device to heat up. When the heat accumulation effect reaches a certain level It will cause the switching device to burn out. Therefore, the minimum pulse width of the MMC, that is, the narrow pulse, is determined according to the turn-on and turn-off times of the switching device. And the following optimization methods are proposed for narrow pulses:

(1)计算窄脉冲=(开通时间+关断时间)×360°/20ms;(1) Calculate the narrow pulse = (turn-on time + turn-off time) × 360°/20ms;

(2)如果窄脉冲的宽度不大于最小脉宽的1/2,则省略构成窄脉冲的开关角;(2) If the width of the narrow pulse is not greater than 1/2 of the minimum pulse width, omit the switching angle that constitutes the narrow pulse;

(3)如果窄脉冲的宽度大于最小脉宽的1/2,则展宽窄脉冲至最小脉宽。(3) If the width of the narrow pulse is greater than 1/2 of the minimum pulse width, then stretch the narrow pulse to the minimum pulse width.

通过窄脉冲优化得到的开关角可直接用于工程,并且可以消除3N-2次以内的谐波都限制在非常低的水平内。The switching angle obtained through narrow pulse optimization can be directly used in engineering, and can eliminate harmonics within 3N-2 times and limit them to a very low level.

由图4的在N=5时,MMC输出电压频谱图可以看出,2N=10的情况下,13次及以内的谐波含量都非常小。It can be seen from the spectrum diagram of MMC output voltage when N=5 in Fig. 4 that in the case of 2N=10, the harmonic content of the 13th order and below is very small.

本发明原理简单,易于实现。在开关频率为百赫兹时,很好地优化了MMC输出电压的谐波特性,降低了线电压的总谐波畸变率。The principle of the invention is simple and easy to implement. When the switching frequency is 100 Hz, the harmonic characteristics of the MMC output voltage are well optimized, and the total harmonic distortion rate of the line voltage is reduced.

本发明按照优选实例进行了说明,应当理解,但上述实施例不以任何形式限度本发明,凡采用等同替换或等效变换的形式所获得的技术方案,均落在本发明的保护范围内。The present invention has been described according to preferred examples, it should be understood that the above-mentioned embodiments do not limit the present invention in any form, and all technical solutions obtained in the form of equivalent replacement or equivalent transformation all fall within the protection scope of the present invention.

Claims (3)

1、一种三相模块化多电平换流器的特定消谐方法,其特征在于该方法通过在桥臂输出阶梯波电压中设置特定消谐角度,以消除特定次数的谐波,由于输出电压具有1/4周期对称性,只需考虑1/4周期内的开关角求解,当每相半桥臂有2N个子模块时,在1/4周期内只有N个子模块动作,也就是说1/4周期内只有N个开关角,消除除三倍频谐波以外的N-1个特定次谐波,其中N为自然数;1. A specific harmonic elimination method for a three-phase modular multilevel converter, which is characterized in that the method eliminates harmonics of a specific order by setting a specific harmonic elimination angle in the output ladder wave voltage of the bridge arm. The voltage has 1/4 cycle symmetry, only need to consider the switching angle in 1/4 cycle, when there are 2N sub-modules in each half-bridge arm of each phase, only N sub-modules act in 1/4 cycle, that is to say, 1 There are only N switching angles in the /4 cycle, eliminating N-1 specific harmonics except triple frequency harmonics, where N is a natural number; 在三相模块化多电平换流器中,某相特定的消谐角度确定以后,其它两相的特定消谐角度通过互错120°得到,这样输出线电压中不含三倍频谐波,从而可以消除更多高次谐波,具体步骤如下:In the three-phase modular multilevel converter, after the specific harmonic elimination angle of a certain phase is determined, the specific harmonic elimination angles of the other two phases are obtained by interchanging 120°, so that the output line voltage does not contain triple frequency harmonics , so that more higher harmonics can be eliminated, the specific steps are as follows: (1)由理论分析得出三相模块化多电平换流器MMC输出电压的傅立叶级数展开表达式,表达式中包含N个子模块的开关角:(1) The Fourier series expansion expression of the output voltage of the three-phase modular multilevel converter MMC is obtained by theoretical analysis, and the expression includes the switching angles of N sub-modules: vv (( ωtωt )) == ΣΣ nno == 1,3,51,3,5 ,, ·· ·&Center Dot; ·· ∞∞ [[ 44 VV dcdc ππ ΣΣ kk == 11 NN coscos (( nθnθ kk )) ]] ·&Center Dot; sinsin (( nωtnωt )) nno 其中,Vdc为子模块电容电压;N为1/4周期内特定消谐角度的个数;θk为第k个特定消谐角度,且k=1、2、…、N;ω为基频角速度;Among them, V dc is the sub-module capacitor voltage; N is the number of specific harmonic elimination angles in 1/4 cycle; θ k is the kth specific harmonic elimination angle, and k=1, 2, ..., N; ω is the base frequency angular velocity; (2)令傅立叶级数展开表达式中基波分量等于基波期望值,N-1个特定次谐波分量等于0,从而得到N个非线性超越方程:(2) Let the fundamental wave component in the Fourier series expansion expression be equal to the fundamental wave expected value, and the N-1 specific harmonic components be equal to 0, thus obtaining N nonlinear transcendental equations: 44 VV dcdc ππ [[ coscos (( θθ 11 )) ++ coscos (( θθ 22 )) ++ ·· ·· ·· ++ coscos (( θθ NN )) ]] == VV refref cos(5θ1)+cos(5θ2)+…+cos(5θN)=0cos(5θ 1 )+cos(5θ 2 )+…+cos(5θ N )=0 cos(7θ1)+cos(7θ2)+…+cos(7θN)=0cos(7θ 1 )+cos(7θ 2 )+…+cos(7θ N )=0                                  .                                                   .                                                   .                  cos(hθ1)+cos(hθ2)+…+cos(hθN)=0cos(hθ 1 )+cos(hθ 2 )+…+cos(hθ N )=0 其中,Vdc为子模块电容电压;Vref为模块化多电平换流器MMC输出电压的基波期望值;θk为第k个特定消谐角度,且k=1、2、…、N;h为指定消除的谐波次数;Among them, V dc is the sub-module capacitor voltage; V ref is the fundamental expected value of the output voltage of the modular multilevel converter MMC; θ k is the kth specific harmonic elimination angle, and k=1, 2, ..., N ; h is the specified harmonic order to be eliminated; 值得注意的是需要消除的N-1个特定次谐波可以是5、7、11、13、17、…、3N-2、…次谐波,即h的取值可以是上述谐波次数中的N-1个;It is worth noting that the N-1 specific harmonics that need to be eliminated can be 5, 7, 11, 13, 17, ..., 3N-2, ... sub-harmonics, that is, the value of h can be one of the above harmonics of N-1; (3)确定模块化多电平换流器MMC输出电压的基波期望值,计算此时半桥臂对应的N个开关角;(3) Determine the fundamental expected value of the output voltage of the modular multilevel converter MMC, and calculate the N switching angles corresponding to the half-bridge arm at this time; (4)以步骤(3)中的开关角作为初值,求解步骤(2)中的非线性超越方程,得到窄脉冲优化模型的初值;(4) With the switching angle in the step (3) as the initial value, solve the nonlinear transcendental equation in the step (2), obtain the initial value of the narrow pulse optimization model; (5)对步骤(4)得到的特定消谐角度进行窄脉冲优化,最终得到可用于工程的N个开关角度。(5) Perform narrow pulse optimization on the specific harmonic elimination angle obtained in step (4), and finally obtain N switch angles that can be used in engineering. 2、如权利要求1所述的方法,针对步骤(4)中的所述窄脉冲提出了如下进一步的优化方法:2. The method according to claim 1, the following further optimization method is proposed for the narrow pulse in the step (4): (1)计算窄脉冲=(开通时间+关断时间)×360°/20ms;(1) Calculate the narrow pulse = (turn-on time + turn-off time) × 360°/20ms; (2)如果窄脉冲的宽度不大于最小脉宽的1/2,则省略构成窄脉冲的开关角;(2) If the width of the narrow pulse is not greater than 1/2 of the minimum pulse width, omit the switching angle that constitutes the narrow pulse; (3)如果窄脉冲的宽度大于最小脉宽的1/2,则展宽窄脉冲至最小脉宽。(3) If the width of the narrow pulse is greater than 1/2 of the minimum pulse width, then stretch the narrow pulse to the minimum pulse width. 3、如权利要求1-2所述的方法,将所述桥臂输出阶梯波电压用傅立叶级数展开,并令基波分量等于基波期望值,所需消除的谐波分量等于0,从而构成N个独立的非线性方程。3. The method according to claim 1-2, expanding the ladder wave voltage output by the bridge arm with Fourier series, and making the fundamental wave component equal to the fundamental wave expected value, and the harmonic component to be eliminated is equal to 0, thus forming N independent nonlinear equations.
CNA2009100880000A 2009-07-06 2009-07-06 A Specific Harmonic Elimination Method for Modular Multilevel Converter Pending CN101594045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2009100880000A CN101594045A (en) 2009-07-06 2009-07-06 A Specific Harmonic Elimination Method for Modular Multilevel Converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2009100880000A CN101594045A (en) 2009-07-06 2009-07-06 A Specific Harmonic Elimination Method for Modular Multilevel Converter

Publications (1)

Publication Number Publication Date
CN101594045A true CN101594045A (en) 2009-12-02

Family

ID=41408551

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2009100880000A Pending CN101594045A (en) 2009-07-06 2009-07-06 A Specific Harmonic Elimination Method for Modular Multilevel Converter

Country Status (1)

Country Link
CN (1) CN101594045A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795057A (en) * 2010-04-07 2010-08-04 浙江大学 Method for starting three-phase modular multilevel inverter without auxiliary DC power supply
CN101814853A (en) * 2010-04-27 2010-08-25 浙江大学 Control method of modularization multi-level converter based on equivalent circuit model
CN101854061A (en) * 2010-04-30 2010-10-06 浙江大学 A three-phase modular multilevel converter circulation suppression method
CN102148579A (en) * 2010-12-20 2011-08-10 中国电力科学研究院 Equitime constant reduced submodule plate simulating plurality of submodules of MMC (Multi-level Modular Converte)
CN102163907A (en) * 2011-01-28 2011-08-24 中国电力科学研究院 Voltage source inverter basic function unit based on total control device
CN102170110A (en) * 2011-03-16 2011-08-31 中国电力科学研究院 Method for protecting modularized multi-level transverter valve
CN102215004A (en) * 2011-03-16 2011-10-12 中国电力科学研究院 Valve current control method based on modular multi-level converter
CN102231520A (en) * 2011-06-20 2011-11-02 浙江大学 Hybrid DC (direct current) electric power transmission system
CN102594192A (en) * 2010-11-30 2012-07-18 中国南方电网有限责任公司电网技术研究中心 Step wave pulse width modulation method based on nonlinear programming
CN102792544A (en) * 2010-03-15 2012-11-21 阿尔斯托姆科技有限公司 Static var compensator with multilevel converter
CN102934343A (en) * 2010-06-08 2013-02-13 西门子公司 Shaft generator system
CN103078479A (en) * 2011-10-25 2013-05-01 江苏东润光伏科技有限公司 Control method for canceling specified harmonics of three-level midpoint clamp photovoltaic inverter
CN103199729A (en) * 2013-04-10 2013-07-10 国家电网公司 Modularization multi-level converter submodule grouping stair wave modulation method
WO2013143037A1 (en) * 2012-03-31 2013-10-03 华北电力大学 Topological method of modular multilevel converter structure based on loop nesting mechanism
CN104115390A (en) * 2012-02-14 2014-10-22 西门子公司 Method for operating a multi-phase modular multi-level power converter
KR101818287B1 (en) 2011-06-29 2018-01-12 제네럴 일렉트릭 테크놀러지 게엠베하 Converter
CN109450282A (en) * 2018-12-10 2019-03-08 西北工业大学 A kind of follow-on modular multilevel STATCOM and its fundamental frequency modulation method
CN110581666A (en) * 2019-10-30 2019-12-17 渤海大学 Six-pulse wave low quality factor series resonance type medium frequency induction heating inverter control method
CN113472212A (en) * 2021-07-14 2021-10-01 东南大学 Modular multilevel DC transformer topological structure and control method thereof
CN115051539A (en) * 2022-06-27 2022-09-13 北京交通大学 Specific harmonic elimination modulation method and system for multi-level converter
CN115118139A (en) * 2022-06-06 2022-09-27 重庆大学 A multitasking method and system for modular multilevel converters
EP4468613A4 (en) * 2022-04-27 2025-05-21 Hoymiles Power Electronics Inc POWER CARRIER COMMUNICATION DEVICE, METHOD AND SYSTEM

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102792544A (en) * 2010-03-15 2012-11-21 阿尔斯托姆科技有限公司 Static var compensator with multilevel converter
CN102792544B (en) * 2010-03-15 2016-01-20 阿尔斯通技术有限公司 There is the Static Var Compensator of multiphase converter
CN101795057B (en) * 2010-04-07 2012-06-27 浙江大学 Method for starting three-phase modular multilevel inverter without auxiliary DC power supply
CN101795057A (en) * 2010-04-07 2010-08-04 浙江大学 Method for starting three-phase modular multilevel inverter without auxiliary DC power supply
CN101814853A (en) * 2010-04-27 2010-08-25 浙江大学 Control method of modularization multi-level converter based on equivalent circuit model
CN101854061A (en) * 2010-04-30 2010-10-06 浙江大学 A three-phase modular multilevel converter circulation suppression method
CN102934343A (en) * 2010-06-08 2013-02-13 西门子公司 Shaft generator system
US9088229B2 (en) 2010-06-08 2015-07-21 Siemens Aktiengesellschaft Shaft-driven generator system
CN102934343B (en) * 2010-06-08 2015-10-07 西门子公司 Shaft generator system
CN102594192A (en) * 2010-11-30 2012-07-18 中国南方电网有限责任公司电网技术研究中心 Step wave pulse width modulation method based on nonlinear programming
CN102594192B (en) * 2010-11-30 2014-12-10 中国南方电网有限责任公司电网技术研究中心 Step wave pulse width modulation method based on nonlinear programming
CN102148579B (en) * 2010-12-20 2014-08-27 中国电力科学研究院 Equitime constant reduced submodule plate simulating plurality of submodules of MMC (Multi-level Modular Converte)
CN102148579A (en) * 2010-12-20 2011-08-10 中国电力科学研究院 Equitime constant reduced submodule plate simulating plurality of submodules of MMC (Multi-level Modular Converte)
WO2012100398A1 (en) * 2011-01-28 2012-08-02 中国电力科学研究院 Basic function unit of voltage source converter based on fully-controlled device
CN102163907A (en) * 2011-01-28 2011-08-24 中国电力科学研究院 Voltage source inverter basic function unit based on total control device
CN102163907B (en) * 2011-01-28 2014-03-12 中国电力科学研究院 Voltage source inverter basic function unit based on total control device
CN102215004B (en) * 2011-03-16 2014-07-30 中国电力科学研究院 Valve current control method based on modular multi-level converter
CN102215004A (en) * 2011-03-16 2011-10-12 中国电力科学研究院 Valve current control method based on modular multi-level converter
CN102170110B (en) * 2011-03-16 2014-01-29 中国电力科学研究院 A Modular Multilevel Converter Valve Protection Method
CN102170110A (en) * 2011-03-16 2011-08-31 中国电力科学研究院 Method for protecting modularized multi-level transverter valve
CN102231520A (en) * 2011-06-20 2011-11-02 浙江大学 Hybrid DC (direct current) electric power transmission system
KR101818287B1 (en) 2011-06-29 2018-01-12 제네럴 일렉트릭 테크놀러지 게엠베하 Converter
CN103078479A (en) * 2011-10-25 2013-05-01 江苏东润光伏科技有限公司 Control method for canceling specified harmonics of three-level midpoint clamp photovoltaic inverter
CN103078479B (en) * 2011-10-25 2015-05-06 江苏东润光伏科技有限公司 Control method for canceling specified harmonics of three-level midpoint clamp photovoltaic inverter
CN104115390B (en) * 2012-02-14 2017-02-22 西门子公司 Method for operating a multi-phase modular multi-level power converter
CN104115390A (en) * 2012-02-14 2014-10-22 西门子公司 Method for operating a multi-phase modular multi-level power converter
US9621072B2 (en) 2012-02-14 2017-04-11 Siemens Aktiengesellschaft Method for operating a multi-phase modular multi-level power converter
WO2013143037A1 (en) * 2012-03-31 2013-10-03 华北电力大学 Topological method of modular multilevel converter structure based on loop nesting mechanism
CN103199729B (en) * 2013-04-10 2016-01-20 国家电网公司 A kind of modular multi-level converter submodule grouping Staircase wave method
CN103199729A (en) * 2013-04-10 2013-07-10 国家电网公司 Modularization multi-level converter submodule grouping stair wave modulation method
CN109450282A (en) * 2018-12-10 2019-03-08 西北工业大学 A kind of follow-on modular multilevel STATCOM and its fundamental frequency modulation method
CN110581666A (en) * 2019-10-30 2019-12-17 渤海大学 Six-pulse wave low quality factor series resonance type medium frequency induction heating inverter control method
CN110581666B (en) * 2019-10-30 2021-10-01 渤海大学 Inverter control method of six-pulse wave low quality factor series resonance type medium frequency induction heating
CN113472212A (en) * 2021-07-14 2021-10-01 东南大学 Modular multilevel DC transformer topological structure and control method thereof
EP4468613A4 (en) * 2022-04-27 2025-05-21 Hoymiles Power Electronics Inc POWER CARRIER COMMUNICATION DEVICE, METHOD AND SYSTEM
CN115118139A (en) * 2022-06-06 2022-09-27 重庆大学 A multitasking method and system for modular multilevel converters
CN115118139B (en) * 2022-06-06 2024-04-16 重庆大学 Multitasking method and system for modularized multi-level converter
CN115051539A (en) * 2022-06-27 2022-09-13 北京交通大学 Specific harmonic elimination modulation method and system for multi-level converter

Similar Documents

Publication Publication Date Title
CN101594045A (en) A Specific Harmonic Elimination Method for Modular Multilevel Converter
Shuvo et al. Design and hardware implementation considerations of modified multilevel cascaded H-bridge inverter for photovoltaic system
Sirisukprasert et al. Optimum harmonic reduction with a wide range of modulation indexes for multilevel converters
CN102074974B (en) Method for eliminating grid-connected current zero-crossing distortion of unipolar control single-phase grid-connected inverter
CN108683350A (en) A kind of three level NPC converter particular harmonics optimization modulation strategy
Guan et al. Selective harmonic elimination techniques for multilevel cascaded H-bridge inverters
CN104953876B (en) The method that H bridge cascaded multilevel inverters on-off times minimize modulation
CN109217646B (en) SVPWM control method without even harmonic based on carrier comparison
CN105680713A (en) A zero sequence circulating current suppression system and method for SHEPWM-based multiple T-type three-level inverters
CN101304172B (en) Method for real time pre-compensating harmonic wave field dead region
CN113395007A (en) Novel power equalization modulation method suitable for cascaded H-bridge multi-level inverter
CN106452142B (en) A kind of improvement modulation strategy suitable for Modular multilevel converter
CN115459621A (en) Space vector modulation method and system of asymmetric quasi-Z-source three-level inverter
CN104410311A (en) Discontinuous PWM modulation midpoint balance method of three-level inverter
Salim Shunt Active Power Filter Performances based on Seven-level NPC Inverter using Fuzzy and LS-PWM Control Scheme.
CN113114032B (en) Method of SVPWM Suppression of Common Mode Voltage Based on Synthesis Mode Change
CN106230241A (en) Complete period eliminates pulse duration modulation method without the selective harmonic of waveform symmetry feature
Jahmeerbacus et al. Evaluation of Selective Harmonic Elimination and sinusoidal PWM for single-phase DC to AC inverters under dead-time distortion
CN205336145U (en) Half -bridge cascades many inverter of type
CN104201922A (en) Clamping-type three-phase voltage-source type inverter and control method thereof
CN109450337A (en) A kind of high-power five-level converter particular harmonic elimination modulator approach
Yao et al. Research on grid-connected interleaved inverter with L filter
Panda et al. Design and control of an asymmetrical cascaded compact module multilevel inverter for PV system
Sreeja et al. A novel control algorithm for three phase multilevel inverter using SVM
CN109347353B (en) A Zero-Vector Start SVPWM Control Method Based on Carrier Realization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: STATE ELECTRIC NET CROP.

Effective date: 20130130

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20130130

Address after: 100192 Beijing city Haidian District Qinghe small Camp Road No. 15

Applicant after: China Electric Power Research Institute

Applicant after: State Grid Corporation of China

Address before: 100192 Beijing city Haidian District Qinghe small Camp Road No. 15

Applicant before: China Electric Power Research Institute

C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20091202