CN101594044B - 降低开关电源电磁噪声的方法 - Google Patents

降低开关电源电磁噪声的方法 Download PDF

Info

Publication number
CN101594044B
CN101594044B CN2008100620475A CN200810062047A CN101594044B CN 101594044 B CN101594044 B CN 101594044B CN 2008100620475 A CN2008100620475 A CN 2008100620475A CN 200810062047 A CN200810062047 A CN 200810062047A CN 101594044 B CN101594044 B CN 101594044B
Authority
CN
China
Prior art keywords
power supply
noise
electromagnetic noise
circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008100620475A
Other languages
English (en)
Other versions
CN101594044A (zh
Inventor
陈庭勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2008100620475A priority Critical patent/CN101594044B/zh
Publication of CN101594044A publication Critical patent/CN101594044A/zh
Application granted granted Critical
Publication of CN101594044B publication Critical patent/CN101594044B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

本发明针对于开关电源的电磁噪声问题,从衰减、隔离电磁噪声和阻断电磁噪声形成源头两方面入手,重点放在破坏电磁噪声产生的基础条件上进行消除。基本思想是利用开关电源中存在的电感电流不能突变的物理规律,用多个电感的续流电流相互配合,平滑电路的电压、电流变化量,从而消除或削弱电源的电磁噪声。在传统的电磁噪声抑制技术基础之上,结合本发明所指的组合消噪技术,可以使开关电源输出传导噪声和辐射噪声降至较小的程度,接近线性电源的输出噪声水平,为开关电源替代线性电源提供技术途径。

Description

降低开关电源电磁噪声的方法
一.技术领域
本发明专利涉及一种降低开关电路电磁噪声的技术,属于电磁兼容技术(EMC)领域,是电磁干扰(EMI)抑制技术在开关电源中的体现,为生产低电磁噪声开关电源提供技术基础,为开关电源替代某些线性电源创造条件。
二.背景技术
科技的进步带来了生活上的便利的同时,大功率电子设备大量进入家庭,空间人为电磁能量每年急增,带来了越来越多的电磁污染。开关电源是处于电磁干扰(EMI)突出的位置,体现在辐射与传导两方面。除了造成电磁辐射污染之外,目前的开关电源普遍存在输出电压中噪声大的弊病,输出直流电压中寄存的噪声电压高的有几百毫伏,较低的也有近百毫伏。其输出电压的稳定性也无法与串联型稳压电源相比,因而在许多场合的应用还是受到了较多限制。对电源质量要求较高之处,仍采用线性电源。这样对提高电能利用率,缩小仪器设备的体积等方面有不利的一面。但由于开关电源的工作效率高,能量体积比大,仍受到电子、电气、通信等各个行业的青睐,应用面有越来越广的趋势。
对于开关电源的电磁噪声问题,工程技术人员正在通过各种措施努力加以改善。抑制噪声的措施主要有滤波法、屏蔽法、短路环抑制、加平滑电路消振、在器件特性上进行改善、采用合适的线路布局等。对于任何设备而言,滤波都是解决电磁干扰的重要技术之一。因为设备中的导线是效率很高的接收和辐射天线,因此,设备产生的大部分辐射发射都是通过各种导线实现的。滤波可以有效地削弱导线上的这些干扰信号,防止电路中的干扰信号传到导线上借助导线辐射。机箱的屏蔽是最主要的一种屏蔽技术,也有对局部电路加装屏蔽罩的。对变压器的漏磁辐射,通常采用外包短路环或者外加屏蔽罩的方法加以解决。对于整流管上电压跃变引起的振荡,通常采用加RC平滑电路以消振,或者采用软恢复特性的二极管等。事实证明这些方法都是行之有效的。通过这些方法处理,可以有效抑制电源对外界的干扰,但仍然达不到与线性电源相比拟的高品质要求。
种种措施可以归纳为二个方向:一是从电磁噪声形成的源头上进行消除;二是对产生后噪声进行衰减、隔离。电磁噪声一旦形成之后,很难彻底消除。所以前者是最根本的方法,重点是破坏电磁噪声产生的基础条件。本发明所涉及的方法就是基于以上思想,其一是利用开关电源电路中几个部件的物理效应,相互协调工作,消除振荡的基础条件,从而抑制了最突出的噪声电压。其二是利用合适的平滑电路,减缓电路中不可避免的电压跃变的速度,从 而减弱因电压跃变而产生的振荡及其辐射。多种手段共同作用,提高开关电源输出电压的纯净度,接近线性电源的输出质量。
本专利所涉及的电磁噪声抑制技术是众多抑制技术中的一类,适用于变压器耦合电磁能量的开关电源。在实际制造低电磁噪声的开关电源时,应该采用多种技术相结合,排除所有产生干扰的因素后,才能达到理想的目的。
电源是应用面最广的一个电子装置,是多数电子设备中必不可少的一个部件。配备一个高品质的电源,有利于提高电子设备的整体质量。因此,本专利所涉及的技术必定会有一个很好的应用前景。
三.发明内容
本发明针对于开关电源的激励、变压、整流、滤波四个部分电路。从技术层面上看,具有以下内容特点:
以PWM控制为基础,巧妙地结合了若干个电感线圈的续流关系,降低电压、电流的跃变量值。对于采用变压器耦合电磁能量的开关电源,其变压器中有原边绕组和副边绕组。在正激励时间内,变压器原边的励磁电流上升,变压器磁芯的磁场能增加。在正激励结束时,变压器储能通过电流形式释放。普通电路中,变压器放能(激励管关闭)时其漏极(或集电极)电位迅速上升,是形成干扰脉冲的潜在因素;输出端整流器件的电流、电压突变是形成干扰噪声的主要因素。本发明要求变压器必须有二个副边绕组成对使用,再加上输出滤波电感配合使用。变压器的原边可以是一个绕组,如单向激励式、全桥激励式,也可以是两个对称绕组,如半桥激励式、推挽激励式。其中一个副边绕组输出正激励电压,送至滤波电感,不会引起电流跃变。另一个副边绕组用以释放原边绕组励磁电流所产生的变压器磁场能,在输出滤波电感的配合下,限制绕组感生电压的上升速率,整流二极管上不出现突变的反向电压;同时,又给输出滤波电感起到续流作用,使得滤波电感不产生过高的自感电压。具有以上特征性的电原理图如附图1所示。图中用场效应管作为激励管仅是一个例子,也可以采用其它的功率器件,如晶体三极管、IGBT元件等。
对于第一滤波电感L3磁场能释放电流与变压器磁场能释放电流的配合关系,要求在变压器正向激励结束,开始进入磁能释放阶段时,磁场能释放电流转移至副边绕组中的一组(如L2b),并且让滤波电感L3的续流值超过L2b中的变压器磁能释放电流。以此为原则,对于双向激励式的电源,两个副边绕组也是对称的,滤波电感L3的电感量计算式如下:
L 3 < ( 1 n - U o U 1 ) L 1 n
其中n:是变压器匝比。
Uo:是开关电源的输出电压;
U1:是变压器原边的激励电压;
L1:是变压器原边单个绕组的电感量;
对于输出电压可调型的开关电源,其Uo不是固定值,应取其最大值代入式中计算滤波电感L3
对于单向激励式的电源,激励电路与第一滤波电路如附图2所示。原边为一个绕组,两个副边绕组可以为不对称结构。若L1与L2a的匝比为na,L1与L2b的匝比为nb,则滤波电感L3的电感量计算式中的匝比n取用nb
本发明所涉及的开关电源工作方式必定是正、反激励相结合的形式,即既有正激励能量输出,又有反激励能量输出。而传统的开关电源很少用到正、反共同激励方式。就算是采用了正、反共同激励,对于以反激励为主的电源,一般其输出电压为定值,如附图5所示的电路中不会设置整流二极管D6;对于双极性激励的电源整流电路,从理论上考虑滤波电感的续流要求,传统的会在附图7所示的整流管D4、D5共阴极与输出电压负极之间增加一个续流二极管D(图中用虚线表示)。在附图7所示的电路与其工作方式中,续流二极管D不但没有存在的必要,反而会形成一个电磁噪声源,本方案将其去除。因此,改变整流电路的结构与整流、续流的方式是本发明的一个核心技术,是与其它开关电源电路的区别之所在。在传统的电磁噪声抑制技术基础之上,结合本发明所指的组合消噪技术,可以使开关电源输出传导噪声达到20mVPP以下,辐射噪声也较小,接近线性电源的输出噪声。
四.附图说明
1.推挽式开关电源变压器输出与滤波电路图说明
附图1所示电原理图是对应双向激励开关电源电路中的激励与输出滤波部分,属于典型的推挽式结构。变压器有两个对称的原边绕组L1a和L1b,两个对称的副边绕组L2a和L2b为一对,其中之一用于正激励输出电流,另一个用于反激励期间续流与释放变压器储能。共阴肖特基二极管对D3、D4形式上组成全波整流结构,除了实现全波整流作用外,还用来配合滤波电感L3减少输出电流的变化率,实现相关电压平滑变换。T1、T2是同型号的激励管,D1、D2是激励管的保护二极管,R1、C1、R2、C2是变压器漏感能量吸收电路。图中未画出其它辅助电路,目的是为了突出电路平滑续流的结构特点。
2.单向激励式开关电源激励与滤波电路图说明
附图2所示电原理图是对应单向激励开关电源电路中的激励与输出滤波部分。变压器只有一个原边绕组L1,一对副边绕组L2a和L2b。共阴肖特基二极管对D3、D4形式上组成全波整流结构,实际是用来配合滤波电感L3减少输出电流的变化率,实现激励管漏极电位等平滑变换。T1是激励管,R1是压敏电阻,与D1一起限制激励管漏极最高电位值,使其被限制在激励管漏源耐压值以下,以保护激励管。工作特征是:正激励期间,由L2a向后输出电能; 反激励期间,输出电流由L2a逐步向L2b转移。
3.激励管漏极线路中串联平滑电感后的电路说明
附图3所示电原理图是针对较大功率的开关电源电路,可以是推挽结构,也可以是其它结构。在实际线路中靠近激励管处设置平滑电感L0a和L0b,用以限制激励管开通瞬间,由变压器绕组匝间电容、线路分布电容等引起的瞬间电流变化率,从而减弱干扰脉冲的形成。
4.图4是说明变压器激励侧地线(热地)与输出侧地线(冷地)间用电容器连接的样例,是一种抑制共模噪声的常规手段,用于非共地结构的开关电源。
5.附图5是单路固定输出电压的应用实例,附图6是其相应的线路图。电路配合TOP器件,正激励、反激励共用方式。整流二极管D7用于正向激励期间的电能输出;在反激励期间,整流二极管D6先导通,接着整流二极管D5导通,释放变压器的储能。D5导通后,直接向滤波电容充电,激励管漏极电位受到限制,电位值由变压器变比与输出电压值共同决定,一般控制在600V以下。只有在固定输出电压下,才可以用D5的直接充电方式。
6.附图7是单路输出电压可调整型大功率开关电源的应用实例,图中用虚线表示的续流二极管D实际不存在。电路采用推挽式结构,正、反激励共用方式。其中体现出的抑制噪声技术要点是:设置电感L0a、L0b;变压器原边绕组电感与输出第一滤波电感的电感量配合关系。利用散热器阻止高频电场辐射的技术在安装中实现。
五.具体实施方式
本发明技术中开关电源的能量交换采用变压器耦合方式,正、反激励方式共同使用。对于不同的输出功率,无论是单向激励式还是双向激励式开关电源,都可以采用这项技术,使电源输出电压的噪声降和电磁辐射干扰低到最小的程度。当然,为了使开关电源的电磁噪声尽量低,需要同时采用多项降噪技术,包括本发明之外的一些常用手段,主要有:变压器上加短路环进行屏蔽;共模、差模滤波;适当设置RC消振电路;合理布线,脉冲电流经过的引线长度尽量短;在变压器附近的输入高电压地线(热地)与输出低电压地线(冷地)间,用一个电容器相连接,消除由于变压器绕组分布电容所造成的振荡辐射源,如附图4所示。图示中仅仅是应用样例,连接的点可以是其它位置。
对于变压器绕组电感量与滤波器电感量的组合方式,列举一个应用实例。如附图1所示的推挽式激励电路,变压器原边一个绕组的电感量定为4.0mH,变压器匝比为6∶1,变压器原边的激励电压为300V,变压器副边输出电压为50V,开关电源的输出最高电压为30V,则根据发明内容1的计算式可知:输出部分第一滤波电感器L3的电感量应小于44μH,实际可以取为近40μH。滤波电感用铁粉芯磁环绕制。
根据本发明所指的组合消噪技术构造的电路适合制作单路电压输出,对于多路可调压型 直流电压输出的开关电源,每一路输出电压都应采用独立的PWM调整系统,通过独立的变压器输出为妥。
在开关电源变压器绕制时,对应线路布置结构,必须保证绕组间的同名端关系与附图中一致。副边绕组匝数根据电压比决定,原边绕组匝数以磁芯不出现磁饱和为准,计算方法可以参考其它相关资料。
为了更好的体现电磁噪声降低的效果,应该采用多种降噪手段相结合。如输出功率较大的半桥激励式、推挽激励式开关电源中,激励管漏极线路中串联平滑电感L0a和L0b,如附图3所示,以软化开关电源激励管的开通硬特性,降低因激励管漏极电位跃变后由漏感、分布电容等引起的电流跃变量值,从而降低电源输出中的尖脉冲噪声。但该电感量不能过大,电感量一般取控制在1μH~5μH之间。电感L0a和L0b可以独立设置,但一般组成互感的形式。该平滑电感在小型磁环中绕制而成,磁环材料可以是铁粉芯也可以是铁氧体软磁材料。
从抑制器件的电场辐射着手降低电磁噪声,即阻止散热器的电场辐射。通常散热器的面积较大,处理不当会成为主要的辐射源。在本发明中的处理方法是激励管和输出整流半桥的散热器各自接地,以防止激励管和整流半桥的散热片电位跃变引起的高频电场辐射。整流半桥的散热器直接连接至直流输出电路地线(冷地);激励管的散热器应该保证与一次侧电源地线(热地)构成交流通路,同时考虑整个电源装置的用电安全,散热器可以通过一个560PF~3300PF的高压电容与地线相连接。也可以将激励管和输出整流半桥共用一个散热器接电源直流输出电路地线,同时通过一个560PF~3300PF的高压电容与一次侧电源地线连通。
从防止滤波器造成磁场辐射着手降低电磁噪声。采用的方法是第一滤波器采用磁环制作,并且滤波线圈在磁环中均匀绕制,以防止磁场的空间辐射。
当线路电流较大时,线路板敷铜膜的导电能力往往不够大,需要另加导线、焊锡等导电体以增加导电能力。

Claims (1)

1.一种电磁噪声降低方法,从电路结构上看具有以下特征:开关变压器的副边总是有两个绕组配对与输出滤波电感器配套使用;这一结构的电路要求正、反激励方式共同使用,工作过程是实现续流电流的连续转移,平滑电路的电压、电流变化量;工作特点是在电路刚进入反激励期间,滤波电感器的电流值略大于变压器储能在其中一个副边绕组中释放的电流值,以后两者的电流达到相等。
CN2008100620475A 2008-05-27 2008-05-27 降低开关电源电磁噪声的方法 Expired - Fee Related CN101594044B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100620475A CN101594044B (zh) 2008-05-27 2008-05-27 降低开关电源电磁噪声的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100620475A CN101594044B (zh) 2008-05-27 2008-05-27 降低开关电源电磁噪声的方法

Publications (2)

Publication Number Publication Date
CN101594044A CN101594044A (zh) 2009-12-02
CN101594044B true CN101594044B (zh) 2011-07-20

Family

ID=41408550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100620475A Expired - Fee Related CN101594044B (zh) 2008-05-27 2008-05-27 降低开关电源电磁噪声的方法

Country Status (1)

Country Link
CN (1) CN101594044B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9253001B2 (en) * 2011-11-28 2016-02-02 Hitachi Automotive Systems, Ltd. Pulse signal outputting apparatus
CN104052256B (zh) * 2013-03-12 2017-04-12 浙江海洋学院 单极性开关电源续流降噪及其参数计算方法
CN104518692B (zh) * 2013-10-08 2017-05-17 冠捷投资有限公司 采集辐射性电磁干扰并利用其能量的切换式电源供应器
CN103595108A (zh) * 2013-12-03 2014-02-19 哈尔滨智木科技有限公司 一种高频脉冲式动力电池组均衡充电器
CN104953803B (zh) * 2015-07-06 2018-04-17 中国海洋石油总公司 超声相控阵井壁成像系统用电源
CN108983835B (zh) * 2018-07-18 2021-10-12 潍坊歌尔微电子有限公司 压力控制电路以及方法
CN112398320B (zh) * 2020-12-27 2022-05-03 东莞市石龙富华电子有限公司 一种开关电源多模式pwm控制抑制噪声的方法

Also Published As

Publication number Publication date
CN101594044A (zh) 2009-12-02

Similar Documents

Publication Publication Date Title
CN101594044B (zh) 降低开关电源电磁噪声的方法
US7199569B1 (en) Switching power supply unit
US7218534B2 (en) Switching power supply circuit
US7557546B2 (en) Unidirectional DC-DC converter
DE112016001489T5 (de) Drahtlos-energieempfangsvorrichtung und drahtlosenergieübertragungsvorrichtung
US6496389B1 (en) Power factor improving switching circuit
CN104158400A (zh) 一种模块化高压供电电路
JP2003500987A (ja) 一体型直流コンバータ
WO2016160350A1 (en) Ac inductive power transfer system
CN204334330U (zh) 一种模块化高压供电电路
CN101422846B (zh) 一种高频逆变直流点焊机
CN101345510A (zh) 电动机驱动中控制输入线谐波的系统和方法
US20050099826A1 (en) Switching power supply circuit
JP6207751B2 (ja) 電力変換装置
US20060139970A1 (en) Method of operating a resonant push-pull converter in an above resonant frequency mode
JP2014171310A (ja) 共振型dc/dcコンバータ及び共振型dc/dcコンバータ装置
US11581818B2 (en) DC voltage conversion circuit and power supply device
CN109980903A (zh) 一种驱动电路和电源
JP3404936B2 (ja) 電流共振型スイッチング電源回路
Park et al. Isolated resonant dc-dc converters with a loosely coupled transformer
CN109787371B (zh) 用于无线电能传输系统的磁集成差分e类整流器
CN109861538A (zh) 一种在并联变压器原边串联共模电感的自动均流电路
CN109412499A (zh) 一种伺服驱动器共模噪声抑制电路
CN203180768U (zh) 单极性开关电源续流降噪电路结构
Chen et al. A high-efficiency interleaved single-phase AC-DC converter with common-mode voltage regulation for 380 V DC microgrids

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110720

Termination date: 20170527