CN101589499A - 用于确定燃料电池系统中重组器状态的方法 - Google Patents

用于确定燃料电池系统中重组器状态的方法 Download PDF

Info

Publication number
CN101589499A
CN101589499A CNA2007800340124A CN200780034012A CN101589499A CN 101589499 A CN101589499 A CN 101589499A CN A2007800340124 A CNA2007800340124 A CN A2007800340124A CN 200780034012 A CN200780034012 A CN 200780034012A CN 101589499 A CN101589499 A CN 101589499A
Authority
CN
China
Prior art keywords
reformer
fuel cell
anode
cell system
afterburner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800340124A
Other languages
English (en)
Inventor
斯特凡·凯丁
周苏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Webasto SE
Enerday GmbH
Original Assignee
Enerday GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enerday GmbH filed Critical Enerday GmbH
Publication of CN101589499A publication Critical patent/CN101589499A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1685Control based on demand of downstream process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04447Concentration; Density of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04462Concentration; Density of anode exhausts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明涉及一种用于确定燃料电池系统(10)中重组器(16)的状态的方法。按照本发明设置,所述重组器(16)的状态基于一个或多个与阳极转化度相关的预设特征曲线来确定。

Description

用于确定燃料电池系统中重组器状态的方法
技术领域
本发明涉及一种用于确定燃料电池系统中重组器状态的方法。
本发明还涉及一种具有控制装置的燃料电池系统。
背景技术
燃料电池系统已经普遍被公知,比如SOFC燃料电池系统(SOFC代表固体氧化物燃料电池),其中重组器、燃料电池或燃料电池堆以及补燃器按照该顺序相互联结。重组器将输送到其中的空气和可燃物质转化为含有氢和一氧化碳的气体或重组物。然后,所述重组物到达燃料电池或燃料电池堆的阳极。所述重组物尤其是通过阳极输入端输送给燃料电池堆。在阳极中,所述重组物(H2、CO)中的一部分通过释放电子催化氧化且经过阳极输出端输出。所述电子从燃料电池或燃料电池堆中排出且流向比如电子载荷。电子从此处到达燃料电池或燃料电池堆的阴极,其中在向阴极输入端输送阴极空气的情况下发生还原反应。然后,阴极空气经过阴极输出端排出。然后,从阳极的阳极输出端和阴极的阴极输出端排出的燃料电池堆的废气(贫化的重组物)被输送到两个补燃器中。在此处实现将贫化的重组物与输送到补燃器中的补燃空气转化为燃烧废气。为了确定系统工作性能或系统的工作效率可以使用比如阳极转化度。不过当前还不能实现的是,在对燃料电池或燃料电池堆之前或之后的重组物在不使用耗费的气体分析计或气体分析方法的情况下测量阳极转化度。然而,在此类燃料电池系统中使用此类气体分析方法是非常昂贵的。此外非常重要的是,确定在燃料电池系统中耗费的部件的老化迹象和退化迹象,这是因为由此会影响燃料电池系统的工作表现。因此,使用或采用根据现有技术规定的UI特征曲线来将此与新的燃料电池系统作比较。借助于UI特征曲线与当前值的比较可以确定比如燃料电池系统的老化程度。不过仅能针对整个系统的老化程度,而不能针对燃料电池系统的各组件,比如重组器或燃料电池堆的老化程度。因为尤其不可能确定重组器的状态,所以可能出现重组器出错时燃料电池系统的损坏,这可能总体上导致燃料电池系统的寿命缩短。
发明内容
因此,本发明的目的在于,提出一种可以成本低廉地确定重组器状态的方法和一种燃料电池系统。
本发明通过独立权利要求的特征实现。
本发明进一步的设计和改进通过从属权利要求实现。
按照本发明的方法如此改进现有技术,即基于一个或多个与阳极转化度相关的预设的特征曲线确定重组器的状态。因此,能够实现成本低廉地判断或确定在燃料电池系统运行中重组器的故障。此外,所述借助于与阳极转化度的依赖关系的确定方式不取决于燃料电池堆的老化或退化。
按照本发明的方法可以以有利的方式如此改进,即预设的特征曲线还与从燃料电池或燃料电池堆吸出的电流相关。
此外,按照本发明的方法还可以如此实现,即预设的特征曲线分别针对预定义的重组器工作点被储存。
在这种关系下,按照本发明的方法如此实现,即分别至少通过重组器的重组器气体的空气系数和重组器中的温度中的一个元素确定预定义的重组器的工作点。
此外,按照本发明的方法还可以如此设计,即通过将预设的特征曲线的阳极转化度与当前的阳极转化度进行比较来确定重组器的状态,其中预设的特征曲线是对于某一吸出的电流针对重组器的预定义工作点的特征曲线。因此,可以在运行中不断请求进行重组器的功能检测,这在重组器发生错误运行之前提高了可靠性。
按照本发明的燃料电池系统还设置了一种控制装置,所述控制装置适合用于实施按照本发明的方法。因此,与按照本发明的方法相关阐述的特征和优点以相同或类似的方式得出,从而避免了与按照本发明的方法相关适宜的实施形式的重复。
附图说明
下面,借助于附图详细阐述本发明的一个优选实施例。其中,
图1按照本发明的燃料电池系统的示意图。
具体实施方式
图1示出了按照本发明的燃料电池系统10的示意图。在所示情况下,燃料电池系统10包括重组器16,所述重组器为了输送燃料与在其之前设置的燃料供给装置12联结且为了输送空气与在其之前设置的空气供给装置14联结。重组器16与在其之后设置的燃料电池堆20联结。所述燃料电池堆20在此情况下由多个燃料电池组成。可替换的实施形式是,还可以仅仅设置一个单个的燃料电池来替代燃料电池堆20。特别是重组器16与燃料电池堆20的阳极联结。此外,燃料电池堆20与阴极空气供给装置18联结,所述阴极空气供给装置向燃料电池堆20的阴极输送阴极空气。另外,燃料电池堆20与补燃器24联结,在此实施例中不仅能够向所述补燃器输送从燃料电池堆20的阳极产生的废气,而且能够向所述补燃器输送从燃料电池堆20的阴极产生的废气。另外,补燃器空气供给装置22与补燃器24联结,通过所述补燃器空气供给装置为补燃器24供给补燃器空气。为所述燃料电池系统10配设了控制装置26。为了确定重组器16的重组器气体的空气系数在重组器上设置了λ探针,控制装置26与所述λ探针联结。同样,为了测量补燃器24的补燃器废气的氧气含量或氧气体积含量,在补燃器24上设置了另一个λ探针32。为了测量输送到补燃器24的空气体积流量,在补燃器空气供给装置22与补燃器24之间设置了流量测量仪30。
在运行中,控制装置26如下实施按照本发明的方法,以确定阳极转化度。所述阳极转化度被定义为由阳极转化的燃烧气体与输送到阳极的燃烧气体的比例且如下表示:
X A = N I 2 F Σ j = H 2 , CO , BS n · j A , in = N I 2 F N I 2 F + n · H 2 A , out + n · CO A , out + n · BS A , out .
其中N为燃料电池堆的燃料电池的数量,F为法拉第常数,单位为As/mol,
Figure A20078003401200061
为进入阳极的H2、CO以及燃料的摩尔流总和,单位为mol/s,而项
Figure A20078003401200062
为流出阳极的H2、CO以及燃料的摩尔流的总和,单位为mol/s。为了使控制装置26能够确定阳极转化度,必须测量燃料电池堆20的电流I。优选的是,在没有额外的燃料(特别是柴油)输送给补燃器24的情况下测量电流I。控制装置26使用电流测量仪28来测量电流I,所述电流测量仪与燃料电池堆20针对电流测量适当地连接。如果燃料电池堆20的电流能够被测量,项
Figure A20078003401200063
继续有效用于确定阳极转化度XA。该项根据空气系数的定义如下描述:
n · H 2 A , out + n · CO A , out + n · BS A , out = 2 1 λ NB 0.21 · V · air NB 60 · V m , air .
此处
Figure A20078003401200065
为从补燃器空气供给装置22至补燃器24的空气体积流量,单位为Nl/s,λNB为补燃器24的补燃器废气的空气系数或空气比例系数(λ),以及Vm,air为摩尔体积或空气摩尔体积,单位为Nl/mol。空气摩尔体积是公知的且比如由摩尔质量结合空气的特有体积来确定。控制装置26通过流量测量仪30确定输送到补燃器24的空气体积流量。此外,还可以通过控制装置26来计算补燃器24的补燃器废气的空气系数。对于补燃器废气的空气系数来说下列公式是适用的,所述关系可以针对过化学计量的燃烧导出:
Figure A20078003401200066
在此公式中
Figure A20078003401200067
代表阳极输出端的H2和CO的体积含量,即气体在离开阳极时的体积含量,其中
Figure A20078003401200068
为补燃器废气中的O2的体积含量。为了确定补燃器废气中O2的体积含量,控制装置26与设置在补燃器24上的λ探针联结。为了确定补燃器输出端H2和CO的体积含量,控制装置26运用下列针对由阳极送出的阳极废气中的可燃气体含量的公式:
Figure A20078003401200071
其中
Figure A20078003401200072
代表从重组器16输送到阳极的由H2和CO组成的气体的体积含量,即重组物中H2和CO的含量,其中代表在燃料电池堆20中转化的H2和CO的体积含量。特别是
Figure A20078003401200074
涉及输送到阳极的至阳极输入端的整个摩尔流。为了确定
Figure A20078003401200075
控制装置26运用根据重组器λ即重组器16的重组器气体的空气系数凭经验确定的特征曲线且确定
Figure A20078003401200076
其中,bi是预设的凭经验确定的系数。为了确定重组器气体的空气系数,控制装置26与设置在重组器16上的λ探针34联结。同样,控制装置26为了确定至阳极输入端的总摩尔流
Figure A20078003401200077
运用下列公式:
n · Σ A , in = n · Σ Ref , in · Σ i = 0 2 a i · λ Ref i .
与系数bi类似,在这种情况下也凭经验确定了一个系数ai。特别是通过所述凭经验确定的系数制成了能够应用于各计算公式的特征曲线。此外,
Figure A20078003401200079
代表向重组器16输送的气体的总摩尔流。所述表达通过下列用于计算流向重组器的必要的总摩尔流
Figure A200780034012000710
的公式导出。
n · Σ Ref , in = ( 1 + λ Ref · n + m 4 0,21 ) · P Ref h u , fuel · M fuel .
其中n代表使用的或输入重组器的燃料的碳含量以及m代表使用的或输入重组器的燃料的氢含量。另外,PRef代表单位为瓦特的重组器功率,hu,fuel代表单位为J/kg的燃料的特定发热量,而Mfuel代表燃料的摩尔量,其中所有上述都是公知的。因此,在前述前提条件下借助于控制装置26估价阳极转化度,这是因为控制装置26或者测量所有上述对此必要的值,或者借助于其它的公式导出所述值。
在另一步骤中,阳极转化度被用于确定重组器16的老化迹象或退化迹象。为了能够确定退化迹象,首先必要的是,为重组器16的特定的预定义的工作点制成必要的、预设的阳极转化度的组合特征曲线。在此情况下运用比如一种新的重组器16来记录组合特征曲线。为了确定新的重组器16的工作点,优选使重组器气体的空气系数和在新的重组器16中的温度在预设值的情况下保持恒定。另外,吸出且测量燃料电池堆20的预设电流。与此相应的是,新的重组器16提供相应的燃烧气体-摩尔流,其由
Σ j = H 2 , CO , BS n · j A , in
表示。可以以前述针对新的重组器16的工作点的方式测量或计算阳极转化度。针对新的重组器16的工作点的阳极转化度的组合特征曲线如此产生,即所吸出的电流能够变化。因此,可以针对重组器16的不同预设工作点采用不同的组合特征曲线且比如在控制装置26的储存器中储存。如果所储存的阳极转化度取决于吸出的电流的组合特征曲线对于新的重组器16的预设的工作点是已知的,可以借助于与组合特征曲线的偏差确定相同的、但已经老化或退化了的重组器16的退化或老化,前提是老化了的重组器16在相同的工作点运行。
在前述说明书、附图以及权利要求中公开的本发明的特征既可以单独地也可以以任意组合实现本发明。
附图标记列表
10 燃料电池系统
12 燃料供给装置
14 空气供给装置
16 重组器
18 阴极空气供给装置
20 燃料电池堆
22 补燃器空气供给装置
24 补燃器
26 控制装置
28 电流测量仪
30 流量测量仪
32 λ探针
34 λ探针

Claims (6)

1.用于确定燃料电池系统(10)中重组器(16)的状态的方法,其特征在于,所述重组器(16)的状态基于一个或多个与阳极转化度相关的预设特征曲线来确定。
2.如权利要求1所述的方法,其特征在于,所述预设特征曲线还与从燃料电池或燃料电池堆(20)中吸出的电流相关。
3.如权利要求1或2所述的方法,其特征在于,所述预设特征曲线分别针对预定义的重组器(16)工作点被储存。
4.如权利要求3所述的方法,其特征在于,分别至少通过所述重组器(16)的重组器气体的空气系数和所述重组器(16)中的温度中的一个元素来确定所述预定义的重组器(16)工作点。
5.如权利要求3至4中任一项所述的方法,其特征在于,通过将预设特征曲线的阳极转化度与当前的阳极转化度进行比较来确定所述重组器(16)的状态,其中所述预设的特征曲线是对于某一吸出的电流针对所述重组器(16)的预定义工作点的特征曲线。
6.一种燃料电池系统(10),具有控制装置(26),所述控制装置适用于实施如权利要求1至5所述的方法。
CNA2007800340124A 2006-09-13 2007-07-20 用于确定燃料电池系统中重组器状态的方法 Pending CN101589499A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006043037A DE102006043037A1 (de) 2006-09-13 2006-09-13 Verfahren zur Ermittlung eines Zustands eines Reformers in einem Brennstoffzellensystem
DE102006043037.9 2006-09-13

Publications (1)

Publication Number Publication Date
CN101589499A true CN101589499A (zh) 2009-11-25

Family

ID=38650136

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800340124A Pending CN101589499A (zh) 2006-09-13 2007-07-20 用于确定燃料电池系统中重组器状态的方法

Country Status (9)

Country Link
US (1) US20100040920A1 (zh)
EP (1) EP2062319A1 (zh)
JP (1) JP2010503951A (zh)
CN (1) CN101589499A (zh)
AU (1) AU2007295799A1 (zh)
CA (1) CA2662376A1 (zh)
DE (1) DE102006043037A1 (zh)
EA (1) EA200970264A1 (zh)
WO (1) WO2008031379A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT510354B1 (de) * 2010-08-25 2014-06-15 Vaillant Group Austria Gmbh Brennstoffzellenanlage
DE102010042034A1 (de) 2010-10-06 2012-04-12 J. Eberspächer GmbH & Co. KG Betriebsverfahren für ein Brennstoffzellensystem
DE102020202873A1 (de) * 2020-03-06 2021-09-09 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Überwachung eines Brennstoffzellensystems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290641A (en) * 1989-10-06 1994-03-01 Fuji Electric Co., Ltd. Method of controlling operation of fuel cell power supply
JP3840677B2 (ja) * 1994-11-02 2006-11-01 トヨタ自動車株式会社 燃料電池発電装置
US6884533B2 (en) * 2002-05-31 2005-04-26 Ballard Generation Systems Utilization based power plant control system
US7842428B2 (en) * 2004-05-28 2010-11-30 Idatech, Llc Consumption-based fuel cell monitoring and control

Also Published As

Publication number Publication date
AU2007295799A1 (en) 2008-03-20
EA200970264A1 (ru) 2009-08-28
DE102006043037A1 (de) 2008-03-27
US20100040920A1 (en) 2010-02-18
JP2010503951A (ja) 2010-02-04
WO2008031379A1 (de) 2008-03-20
EP2062319A1 (de) 2009-05-27
CA2662376A1 (en) 2008-03-20

Similar Documents

Publication Publication Date Title
EP2215678B1 (en) Flow control assembly for use with fuel cell systems operating on fuels with varying fuel composition
US20110177408A1 (en) Environmentally Friendly, Energy-Economic System for Testing Fuel Cell Stacks
KR20110077775A (ko) 연료 전지 시스템
US10629931B2 (en) Method and regulation apparatus for regulating a fuel cell or a fuel cell stack
EP2922130B1 (en) Fuel cell system
CN101589499A (zh) 用于确定燃料电池系统中重组器状态的方法
EP2544287A1 (en) Fuel cell system, fuel cell control method, and fuel cell determination method
CN102598381B (zh) 燃料电池系统和用于燃料电池系统的控制方法
JPWO2005018035A1 (ja) 燃料電池発電システムおよびその改質器の劣化度検出方法、燃料電池発電方法
CN101512809B (zh) 燃料电池系统
JP4296741B2 (ja) コージェネレーションシステム
US8697303B2 (en) Optimized cathode fill strategy for fuel cell
JP5572967B2 (ja) 燃料電池システムと、この燃料電池システムの運転方法
JP5242869B2 (ja) 燃料電池の作動方法
CN108432019B (zh) 用于确定再循环率的测量方法和测量装置
CN102349185A (zh) 燃料电池系统、用于燃料电池系统的控制方法以及用于燃料电池的状态检测方法
EP2842191B1 (en) Method and arrangement for determining enthalpy change of a fuel cell system
JP5705577B2 (ja) 燃料電池システム
US20090201007A1 (en) Method for determining an anode conversion degree in a fuel cell system
Leah et al. Kinetics of internal methane reforming on the anodes of low temperature ceres power steel cell SOFCs
JP5020538B2 (ja) 燃料電池スタックの劣化加速試験方法及び装置
JP6782146B2 (ja) 燃料電池システム、制御装置、及びプログラム
KR101159608B1 (ko) 연료전지용 개질기 버너 제어방법
US11309562B2 (en) Method for operating a fuel cell device
CN115207415A (zh) 燃料电池系统和运行所述燃料电池系统的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20091125