CN101587346B - 五杆五环并联运动机床加工的控制方法 - Google Patents

五杆五环并联运动机床加工的控制方法 Download PDF

Info

Publication number
CN101587346B
CN101587346B CN2009100534648A CN200910053464A CN101587346B CN 101587346 B CN101587346 B CN 101587346B CN 2009100534648 A CN2009100534648 A CN 2009100534648A CN 200910053464 A CN200910053464 A CN 200910053464A CN 101587346 B CN101587346 B CN 101587346B
Authority
CN
China
Prior art keywords
time
rod
bar
cos
sin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009100534648A
Other languages
English (en)
Other versions
CN101587346A (zh
Inventor
谢红
高志林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN2009100534648A priority Critical patent/CN101587346B/zh
Publication of CN101587346A publication Critical patent/CN101587346A/zh
Application granted granted Critical
Publication of CN101587346B publication Critical patent/CN101587346B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)

Abstract

一种五杆五环并联运动机床加工的控制方法,该五杆五环并联运动机床的数控系统是由运动控制卡分别与上位PC机、伺服控制系统双向连接,该控制方法包括: (1)建立控制模型,该控制模型将五杆五环并联机床结构几何参数、刀具尺寸和被加工工件表面的数学模型形成一一对应的函数关系,获得杆长函数;(2)上位机将五根杆长函数写入运动控制卡;(3)在运动控制卡中根据走刀速度设置电子凸轮的旋转速度;(4)运动控制卡输出控制信号至伺服控制系统,控制机床进行加工。本发明的优点是控制模型将空间交错矢量的求解转化为平面矢量的求解,简化了运算过程,提高了加工时的插补速度;用电子凸轮代替凸轮功能,解决了五根驱动杆的每个对应的插补点同步。

Description

五杆五环并联运动机床加工的控制方法
技术领域
本发明涉及一种机床加工的控制方法,特别涉及一种五杆五环并联运动机床加工的控制方法。
背景技术
并联运动机床,又称虚拟轴机床,在国内外的发展历程将近十年,并联运动机构大多为六杆和三杆。用五杆完全并联机构作为并联机床很少出现,本发明研究的对象正是五杆五环并联运动机床。
五杆五环并联机构是德国Michael Schwaar博士在2001年提出的,相对其他类型的并联运动机床具有其特殊性,如图1所示。以往的并联机床,无论是传统的Stewart六杆机构,还是后来发展的混联机床中的三杆机构,杆件和动平台的铰接点总是分布在二层平面上,而本发明五杆五环并联运动机床的构型是五杆控制五个层面,五个控制面中心共一线,而且动平台(主轴)上用五个转环替代固定安装的约束铰链,约束铰链的位置由传统中的已知(固定)变为未知(瞬时转动),因此它的运动学解法用常规算法难以奏效。
发明内容
本发明所要解决的技术问题是要提供一种五杆五环并联运动机床加工的控制方法,该控制方法是该种并联机床数控系统的内核部分,其控制模型将五杆五环并联机床结构几何参数、刀具尺寸和被加工工件表面的数学模型形成一一对应的函数关系,从理论上适应任何复杂曲面,不同于其它机床对复杂曲面采用的拟合算法,极大程度减少了误差。
为了解决以上的技术问题,本发明提供了一种五杆五环并联运动机床加工的控制方法,该五杆五环并联运动机床的数控系统是由运动控制卡分别与上位PC机、伺服控制系统双向连接,该控制方法包括如下的步骤:
(1)建立控制模型,该控制模型将五杆五环并联机床结构几何参数、刀具尺寸和被加工工件表面的数学模型形成一一对应的函数关系,获得杆长函数;
(2)上位PC机将五根杆长函数写入运动控制卡;
(3)在运动控制卡中根据走刀速度设置电子凸轮的旋转速度;
(4)运动控制卡输出控制信号至伺服控制系统,控制机床进行加工。
所述的建立控制模型,该控制模型将五杆五环并联机床结构几何参数、刀具尺寸和被加工工件表面的数学模型形成一一对应的函数关系,获得杆长函数的步骤是:
①获取五杆五环并联机床的结构几何参数;被加工工件表面的数学模型;
②由被加工工件表面的数学模型获取刀具轴线的姿态矢量,由刀具尺寸获取刀头点的位置矢量;
③杆长公式获得:
如图2所示,pqrl是取五个支链中任一单支链,杆长即求解rlm矢量。
已知条件如下:
(1)刀头点p的位置矢量Op=(X,Y,Z);
(2)刀具轴线的姿态矢量pq=Hm.(A,B,C);
(3)杆件连于机架的铰接点矢量Olm=(Xlm,Ylm,Zlm);
L m =
( X lm - X - H m A - R · I m I m 2 + J m 2 + K m 2 ) 2 + ( Y lm - Y - H m B - R · J m I m 2 + J m 2 + K m 2 ) 2 + ( Z lm - Z - H m 1 - A 2 - B 2 - R · K m I m 2 + J m 2 + K m 2 ) 2
其中,m=1,2,3,4,5------杆的序号
X,Y,Z------刀头点的位置;
A,B,C------刀具轴线的姿态;
Xlm,Ylm,Zlm-----五杆件连于机架的铰接点位置
C = 1 - A 2 - B 2 .
Im=(1-A2)(Xlm-X)-AB(Ylm-Y)-AC(Zlm-Z)
Jm=-AB(Xlm-X)+(1-B2)(Ylm-Y)-BC(Zlm-Z)
Km=-AC(Xlm-X)-BC(Ylm-Y)+(A2+B2)(Zlm-Z)
④将杆长公式归结为杆件伸缩基于时间函数
将基于时间的数控加工插补公式代入杆长公式:
Lm=lm(X,Y,Z,A,B)=lm[x(time),y(t ime),z(t ime),a(time),b(time)]
⑤建立每一时间瞬时同步与协调
在运动控制卡中设置第六根虚拟轴,五根驱动杆的每个对应的插补点由一根虚拟轴同步与协调,相当于机械式的凸轮组主轴的匀速旋转。旋转速度决定五根驱动杆的同步速度,因此机床的走刀速度也可由虚拟轴的旋转速度决定。如图4所示,第六根虚拟轴以角速度ω旋转,五根驱动杆各自伸缩曲线不同,但五根驱动杆每一瞬时对应的插补点和虚拟轴运行斜线上的瞬时点是一一对应的。
本发明的优越功效在于:
1.本发明根据数学和力学原理,提供了控制五杆五环并联机床杆长变化的控制模型,该控制模型将空间交错矢量的求解问题转化为平面矢量的求解问题,简化了运算过程,有利于提高加工时的插补速度;
2.控制模型杆长变化直接和被加工工件表面的数学模型形成一一对应的函数关系,从理论上适应任何复杂曲面,不同于其它机床对复杂曲面采用的拟合算法,极大程度减少误差;
3.在运动控制卡中设置第六根虚拟轴,用电子凸轮代替凸轮功能,不但解决了五根驱动杆的每个对应的插补点同步,同时解决了五根驱动杆的速度对应。
附图说明
图1为本发明五杆五环并联机床的结构示意图;
图2为杆长公式的矢量法求解示意图;
图3为本发明控制模型的电路原理框图;
图4为五凸轮联动凸轮组及其推杆的位置-时间函数示意图;
图5A为本发明五杆五环并联机床实体模型坐标系示意图;
图5B为动平台(机床主轴)在动坐标系中的投影图;
图5C为静平台在静坐标系中的投影图。
具体实施方式
请参阅附图所示,对本发明作进一步的描述。
如图3所示,本发明提供了一种五杆五环并联运动机床加工的控制方法,该五杆五环并联运动机床的数控系统是由运动控制卡分别与上位PC机、伺服控制系统双向连接。该控制方法包括如下的步骤:(1)建立控制模型,该控制模型将五杆五环并联机床结构几何参数、刀具尺寸和被加工工件表面的数学模型形成一一对应的函数关系,如图2所示,获得杆长函数;
结合图5A、图5B和图5C介绍本发明具体实施,结构尺寸包括动平台半径A,杆件固联机架的Qi点,Qi=(Bcosβi,Bsinβi,Zlm)T;每个环到动坐标系x′-y′‘面的距离Hm。
根据实体模型中的结构尺寸,确定出了常量,结构尺寸简图如图5A所示。表示如下:
R=123.87
Q1坐标,(472.98,-273.07,1444.92);H1=330;
Q2坐标,(630.03,363.75,900);H2=25;
Q3坐标,(0,510.09,1444.92);H3=170;
Q4坐标,(-630.03,363.75,900);H4=75;
Q5坐标,(-472.98,-273.07,1444.92);H5=250;
由Qi点坐标可得Bi=(Bcosβi,Bsinβi,0)T的坐标,以相对应字母代入:
B1=(Xl1,Yl1,0)=(472.98,-273.07,0)
B2=(Xl2,Yl2,0)=(630.03,363.75,0)
B3=(Xl3,Yl3,0)=(0,510.09,0)
B4=(Xl4,Yl4,0)=(-630.03,363.75,0)
B5=(Xl5,Yl5,0)=(-472.98,-273.07,0)
Zl1=1444.92
Zl2=900
Zl3=1444.92
Zl4=900
Zl5=1444.92
将Xlm,Ylm,Zlm,Hm,R的常量代入Lm,则杆长方程Lm=f(A,B,x0,y0,z0)
显然,杆长数学模型中未知参数只有A,B,x0,y0,z0,这五个参数是从被加工表面直接获得的,数学模型表达为杆长和加工表面数学方程之间的函数关系。这时杆长数学模型也由通项变为针对具体结构可直接应用的杆长数学模型,如以下的杆长数学模型。
举例:为了使主轴刀尖在XOY平面上加工一个圆心在(-100,0,0)的圆,圆方程组如下:(主轴在XOY平面上加工,和X和Y轴分别垂直,A等于B为二分之一Л)。
x 0 = 100 × COS ( time ) - 100 y 0 = 100 × SIN ( time ) z 0 = 0
(2)上位PC机用MATLAB软件算出五根杆长函数:
L1=SQRT((472.98-(100×COS(time)-100)-123.87×(472.98-(100×COS(time)-100))/SQRT((-273.07-100×SIN(time))×(-273.07-100×SIN(time))+(472.98-(100×COS(time)-100))×(472.98-(100×COS(time)-100))))×(472.98-(100×COS(time)-100)-123.87×(472.98-(100×COS(time)-100))/SQRT((-273.07-100×SIN(time))×(-273.07-100×SIN(time))+(472.98-(100×COS(time)-100))×(472.98-(100×COS(time)-100))))+(-273.07-100×SIN(time)-123.87×(-273.07-100×SIN(time))/SQRT((-273.07-100×SIN(time))×(-273.07-100×SIN(time))+(472.98-(100×COS(time)-100))×(472.98-(100×COS(time)-100))))×(-273.07-100×SIN(time)-123.87×(-273.07-100×SIN(time))/SQRT((-273.07-100×SIN(time))×(-273.07-100×SIN(time))+(472.98-(100×COS(time)-100))×(472.98-(100×COS(time)-100))))+664094.6064)-917.83
L2=SQRT((630.03-(100×COS(time)-100)-123.87×(630.03-(100×COS(time)-100))/SQRT((363.75-100×SIN(time))×(363.75-100×SIN(time))+(630.03-(100×COS(time)-100))×(630.03-(100×COS(time)-100))))×(630.03-(100×COS(time)-100)-123.87×(630.03-(100×COS(time)-100))/SQRT((363.75-100×SIN(time))×(363.75-100×SIN(time))+(630.03-(100×COS(time)-100))×(630.03-(100×COS(time)-100))))+(363.75-100×SIN(time)-123.87×(363.75-100×SIN(time))/SQRT((363.75-100×SIN(time))×(363.75-100×SIN(time))+(630.03-(100×COS(time)-100))×(630.03-(100×COS(time)-100))))×(363.75-100×SIN(time)-123.87×(363.75-100×SIN(time))/SQRT((363.75-100×SIN(time))×(363.75-100×SIN(time))+(630.03-(100×COS(time)-100))×(630.03-(100×COS(time)-100))))+330625)-833.66
L3=SQRT((-(100×COS(time)-100)-123.87×(-(100×COS(time)-100))/SQRT((510.09-100×SIN(time))×(510.09-100×SIN(time))+(-(100×COS(time)-100))×(-(100×COS(time)-100))))×(-(100×COS(time)-100)-123.87×(-(100×COS(time)-100))/SQRT((510.09-100×SIN(time))×(510.09-100×SIN(time))+(-(100×COS(time)-100))×(-(100×COS(time)-100))))+(510.09-100×SIN(time)-123.87×(510.09-100×SIN(time))/SQRT((510.09-100×SIN(time))×(510.09-100×SIN(time))+(-(100×COS(time)-100))×(-(100×COS(time)-100))))×(510.09-100×SIN(time)-123.87×(510.09-100×SIN(time))/SQRT((510.09-100×SIN(time))×(510.09-100×SIN(time))+(-(100×COS(time)-100))×(-(100×COS(time)-100))))+950469.0064)-1048.63
L4=SQRT((-630.03-(100×COS(time)-100)-123.87×(-630.03-(100×COS(time)-100))/SQRT((363.75-100×SIN(time))×(363.75-100×SIN(time))+(-630.03-(100×COS(time)-100))×(-630.03-(100×COS(time)-100))))×(-630.03-(100×COS(time)-100)-123.87×(-630.03-(100×COS(time)-100))/SQRT((363.75-100×SIN(time))×(363.75-100×SIN(time))+(-630.03-(100×COS(time)-100))×(-630.03-(100×COS(time)-100))))+(363.75-100×SIN(time)-123.87×(363.75-100×SIN(time))/SQRT((363.75-100×SIN(time))×(363.75-100×SIN(time))+(-630.03-(100×COS(time)-100))×(-630.03-(100×COS(time)-100))))×(363.75-100×SIN(time)-123.87×(363.75-100×SIN(time))/SQRT((363.75-100×SIN(time))×(363.75-100×SIN(time))+(-630.03-(100×COS(time)-100))×(-630.03-(100×COS(time)-100))))+275625)-799.99
L5=SQRT((-472.98-(100×COS(time)-100)-123.87×(-472.98-(100×COS(time)-100))/SQRT((-273.07-100×SIN(time))×(-273.07-100×SIN(time))+(-472.98-(100×COS(time)-100))×(-472.98-(100×COS(time)-100))))×(-472.98-(100×COS(time)-100)-123.87×(-472.98-(100×COS(time)-100))/SQRT((-273.07-100×SIN(time))×(-273.07-100×SIN(time))+(-472.98-(100×COS(time)-100))×(-472.98-(100×COS(time)-100))))+(-273.07-100×SIN(time)-123.87×(-273.07-100×SIN(time))/SQRT((-273.07-100×SIN(time))×(-273.07-100×SIN(time))+(-472.98-(100×COS(time)-100))×(-472.98-(100×COS(time)-100))))×(-273.07-100×SIN(time)-123.87×(-273.07-100×SIN(time))/SQRT((-273.07-100×SIN(time))×(-273.07-100×SIN(time))+(-472.98-(100×COS(time)-100))×(-472.98-(100×COS(time)-100))))+800881.8064)-989.545上位PC机通过PCI总线将五根杆长函数写入运动控制卡;
(3)在运动控制卡中根据走刀速度设置电子凸轮的旋转速度;
(4)运动控制卡输出控制信号至伺服控制系统,从而控制机床开始加工。

Claims (1)

1.一种五杆五环并联运动机床加工的控制方法,该五杆五环并联运动机床的数控系统是由运动控制卡分别与上位PC机、伺服控制系统双向连接,该控制方法包括如下的步骤:
(1)建立控制模型,该控制模型将五杆五环并联机床结构几何参数、刀具尺寸和被加工工件表面的数学模型形成一一对应的函数关系,获得杆长函数;
(2)上位PC机将五个杆长函数写入运动控制卡;
(3)在运动控制卡中根据走刀速度设置电子凸轮的旋转速度;
(4)运动控制卡输出控制信号至伺服控制系统,控制机床进行加工;
所述的建立控制模型,该控制模型将五杆五环并联机床结构几何参数、刀具尺寸和被加工工件表面的数学模型形成一一对应的函数关系,获得杆长函数的步骤是:
①获取五杆五环并联机床的结构几何参数;被加工工件表面的数学模型;
②由被加工工件表面的数学模型获取刀具轴线的姿态矢量,由刀具尺寸获取刀头点的位置矢量;
③杆长公式获得:
L m =
( X 1 m - X - H m A - R · I m I m 2 + J m 2 + K m 2 ) 2 + ( Y 1 m - Y - H m B - R · J m I m 2 + J m 2 + K m 2 ) 2 + ( Z 1 m - Z - H m 1 - A 2 - B 2 - R · K m I m 2 + J m 2 + K m 2 ) 2
其中,m=1,2,3,4,5------杆的序号
Lm------杆件的长度;
Hm------每个环的中点到刀具基准面的距离;
R--------运动平台的转环半径;
X,Y,Z------刀头点的位置;
A,B,C------刀具轴线的姿态;其中
C = 1 - A 2 - B 2 ;
Xlm,Ylm,Zlm-----五杆件连于机架的铰接点位置
Im=(1-A2)(Xlm-X)-AB(Ylm-Y)-AC(Zlm-Z)
Jm=-AB(Xlm-X)+(1-B2)(Ylm-Y)-BC(Zlm-Z)
Km=-AC(Xlm-X)-BC(Ylm-Y)+(A2+B2)(Zlm-Z)
④将杆长公式归结为杆件伸缩基于时间函数
将基于时间的数控加工插补公式代入杆长公式:
Lm=lm(X,Y,Z,A,B)=lm[x(time),y(time),z(time),a(time),b(time)]
其中,x(time)------随加工时间变化的X值;
y(time)------随加工时间变化的Y值;
z(time)------随加工时间变化的Z值;
a(time)------随加工时间变化的A值;
b(time)------随加工时间变化的B值;
⑤建立每一时间瞬时同步与协调
在运动控制卡中设置一根虚拟轴,五根驱动杆的每个对应的插补点由一根虚拟轴同步与协调。
CN2009100534648A 2009-06-19 2009-06-19 五杆五环并联运动机床加工的控制方法 Expired - Fee Related CN101587346B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100534648A CN101587346B (zh) 2009-06-19 2009-06-19 五杆五环并联运动机床加工的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100534648A CN101587346B (zh) 2009-06-19 2009-06-19 五杆五环并联运动机床加工的控制方法

Publications (2)

Publication Number Publication Date
CN101587346A CN101587346A (zh) 2009-11-25
CN101587346B true CN101587346B (zh) 2011-06-22

Family

ID=41371619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100534648A Expired - Fee Related CN101587346B (zh) 2009-06-19 2009-06-19 五杆五环并联运动机床加工的控制方法

Country Status (1)

Country Link
CN (1) CN101587346B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012690B (zh) * 2010-11-22 2012-06-06 同济大学 基于正解的五自由度纯并联机床断电后寻址及回零的控制方法
CN102222143A (zh) * 2011-06-21 2011-10-19 江苏科技大学 加工船用螺旋桨并联机床空间螺旋线数控插补系统及方法
CN102394559A (zh) * 2011-06-23 2012-03-28 清华大学 多级串联微型离心萃取器转速测控系统
CN103809522A (zh) * 2012-11-06 2014-05-21 大连意美机械有限公司 一种数控机床的数控系统
CN107632025B (zh) * 2017-09-21 2024-06-25 征图新视(江苏)科技股份有限公司 曲面高精度成像系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044526A1 (de) * 1999-01-29 2000-08-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Tripod-lagerungseinrichtung und verfahren zur torsionskompensation
US6430476B1 (en) * 1996-09-05 2002-08-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for controlling the movement of a support
CN1900864A (zh) * 2006-07-20 2007-01-24 同济大学 一种用于五轴五环并联运动机构运动控制的逆解数学算法
CN201224023Y (zh) * 2008-07-10 2009-04-22 同济大学 基于五自由度的五杆纯并联数控机床

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6430476B1 (en) * 1996-09-05 2002-08-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for controlling the movement of a support
WO2000044526A1 (de) * 1999-01-29 2000-08-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Tripod-lagerungseinrichtung und verfahren zur torsionskompensation
CN1900864A (zh) * 2006-07-20 2007-01-24 同济大学 一种用于五轴五环并联运动机构运动控制的逆解数学算法
CN201224023Y (zh) * 2008-07-10 2009-04-22 同济大学 基于五自由度的五杆纯并联数控机床

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谢红等.五杆五环并联机床运动学和动力学研究.《机电一体化》.2007,(第02期), *

Also Published As

Publication number Publication date
CN101587346A (zh) 2009-11-25

Similar Documents

Publication Publication Date Title
CN101587346B (zh) 五杆五环并联运动机床加工的控制方法
CN103934528B (zh) 一种用于电火花加工的六轴联动插补方法
Lartigue et al. Tool path deformation in 5-axis flank milling using envelope surface
CN102591257B (zh) 面向参数曲线刀具轨迹的数控系统轮廓误差控制方法
Zhu et al. Formulating the swept envelope of rotary cutter undergoing general spatial motion for multi-axis NC machining
CN110597183B (zh) 一种磨齿关键误差高效补偿方法
CN102566511B (zh) 五轴数控系统刀心点插补路径插值方法
CN102073301B (zh) 具有刀具长度补偿功能的五轴样条插补器
CN103118842A (zh) 机器人、机器人的控制装置、控制方法以及控制程序
CN109359348B (zh) 一种基于参数化建模的弧面凸轮分度机构传动精度分析方法
KR20090033090A (ko) 스크라이브 장치 및 스크라이브 방법
CN102091967A (zh) 一种多轴数控加工的进给速度平滑方法
CN108345266A (zh) 一种五轴数控机床数控程序生成方法
CN103176428A (zh) 基于球坐标的cnc系统插补算法及实现该算法的装置
CN107066698A (zh) 基于新型数值求解器的冗余度机械臂重复运动规划方法
CN109343466A (zh) 螺旋锥齿轮形性协同加工参数混合反调修正方法
CN107253191A (zh) 一种双机械臂系统及其协调控制方法
CN106950916A (zh) 基于ab型五轴数控机床环形刀加工刀轴矢量光顺方法
CN106959664A (zh) 基于五轴双转台在线非线性误差补偿方法
CN105929795A (zh) 一种基于时间分割法裁刀切向跟随控制的纸箱切割方法
CN110161966A (zh) 一种多轴联动轮廓误差的实时检测方法
Lee et al. Tool path generation and error control method for multi-axis NC machining of spatial cam
CN113608496B (zh) 空间路径g2转接光顺方法、设备及计算机可读存储介质
CN205876948U (zh) 双轴枢纽器
CN107045328A (zh) 基于ba型五轴数控机床球头刀加工刀轴矢量光顺方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110622

Termination date: 20140619

EXPY Termination of patent right or utility model