CN101566761B - 液晶显示器件 - Google Patents

液晶显示器件 Download PDF

Info

Publication number
CN101566761B
CN101566761B CN2009101368823A CN200910136882A CN101566761B CN 101566761 B CN101566761 B CN 101566761B CN 2009101368823 A CN2009101368823 A CN 2009101368823A CN 200910136882 A CN200910136882 A CN 200910136882A CN 101566761 B CN101566761 B CN 101566761B
Authority
CN
China
Prior art keywords
liquid crystal
display device
crystal display
substrate
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009101368823A
Other languages
English (en)
Other versions
CN101566761A (zh
Inventor
片冈真吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN101566761A publication Critical patent/CN101566761A/zh
Application granted granted Critical
Publication of CN101566761B publication Critical patent/CN101566761B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133703Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by introducing organic surfactant additives into the liquid crystal material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/035Ester polymer, e.g. polycarbonate, polyacrylate or polyester
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133738Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homogeneous alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers

Abstract

本发明提供一种液晶显示器件,该液晶显示器件在不损失响应度的情况下对显示不均匀具有抗性且能够确保构造稳定性。该液晶显示器件包括:包含液晶分子和高分子化合物的液晶层,该高分子化合物包括由化学式1表示的结构,其中m和n各自为1至4的整数,包括两端点值;和一对将该液晶层夹于其间的彼此相对的基板。化学式1:

Description

液晶显示器件
技术领域
本发明涉及包括夹在一对基板之间的液晶层的液晶显示器件。
背景技术
通过驱动液晶显示器件显示图像的液晶显示装置是薄型、质轻、低能耗的装置,因而液晶显示装置不仅广泛用于图像显示装置电视机或监视器,还用于信息终端如数码相机或手机。
这些液晶显示装置根据液晶显示器件的液晶显示方式(显示模式)分类,扭曲向列(TN)模式是公知的。然而,对垂直取向(VA)模式的关注日益增加,因为VA模式实现了比TN模式更宽的视角。
在VA模式中,例如,液晶材料中的液晶分子具有负介电常数各向异性,即分子长轴方向的介电常数比分子短轴方向的介电常数小的性质,取向垂直于基板的液晶分子,因为响应外加电压而使取向相对于基板呈水平方向,从而使光得到调制并从中透出。在VA模式中,液晶分子的取向沿任意方向,因而液晶分子的取向方向是变化的,从而对电压的响应度下降。因而,为了改善响应度,进行摩擦处理以控制液晶分子的取向。然而,在进行了摩擦处理的液晶显示器件中,摩擦造成的划痕容易造成显示不均匀,除非进行取向分割(alignment division),来布置液晶分子取向方向不同的多个区域,这难以确保大的视角。因而,研究了除摩擦处理以外的控制液晶分子取向的方法。
作为控制液晶分子取向的方法,例如,如图12所示,已知在基板表面上布置线状突起的技术。在采用该技术的液晶显示器件中,包括液晶分子500A的液晶层500密封于驱动基板200和对向基板300之间。电极202和302、不彼此相对的线状突起410以及置于电极202、302和线状突起410之上的取向膜400布置在驱动基板200和对向基板300的相对表面上。在液晶层500中,在未施加电压的状态下,液晶分子500A的取向基本上垂直于取向膜400的表面。因而,尽管在线状突起410附近区域内的液晶分子500A相对于驱动基板200和对向基板300的表面略微倾斜(即具有倾斜角),但其它区域内的液晶分子500A的取向基本上垂直于驱动基板200和对向基板300的表面。在该状态下对液晶层500施加电压时,线状突起410附近的液晶分子500A的倾斜顺次传播至其它液晶分子500A,这些液晶分子500A响应外加电压而使取向相对于驱动基板200和对向基板300的表面基本上呈水平方向。
然而,在图12所示的液晶显示器件中,取向垂直于驱动基板200和对向基板300的表面的液晶分子500A响应外加电压倒下的时刻和线状突起410附近的液晶分子500A响应外加电压倒下的时刻之间存在延迟。因此,存在液晶分子500A整体的响应速度变得较慢的问题。特别是,在从黑色到中间色的灰度变化中,外加电压的变化量小,因而响应速度变得更慢。
因而,如特开2002-357830和2003-307720所述,已知在VA模式中借助于聚合物材料使液晶分子从基板法线方向略微倾斜并使液晶分子保持略微倾斜的技术。更具体地,将添加具有光聚合性的单体形成的液晶层夹于基板之间后,在施加电压使液晶分子倾斜的状态下,将该液晶层暴露于光以使单体聚合形成聚合物,从而使液晶分子具有预倾斜角,并预设未施加电压时液晶分子的倾斜方向。
发明内容
然而,在使用特开2002-357830和2003-307720所述的单体时,尽管响应度得到改善,但难以稳定地控制液晶分子的取向。更具体地,在使用丙烯酸酯类单体时,驱动液晶显示器件使所形成的聚合物劣化,从而难以长时间保持液晶分子的受控取向。另外,需要将大量丙烯酸酯类单体添加到液晶层中,因而容易出现聚合物的不均匀形成引起的显示不均匀(亮度和色饱和度的不均匀分布)。此外,在使用联苯骨架中引入甲基丙烯酸酯基团的单体时,尽管所形成的聚合物耐劣化,但单体和液晶分子之间的相容性低,因而聚合物不均匀地形成,从而容易出现显示不均匀。不仅VA模式存在这种问题,IPS(共面转换)模式或FFS(边缘场切换)模式也存在这种问题。因而,需要这样的液晶显示器件:在不损失响应度的情况下对显示不均匀具有抗性,且具有高的构造稳定性(configurational stability)以使液晶分子的受控取向得以长时间稳定保持。
需要提供这样的液晶显示器件:在不损失响应度的情况下对显示不均匀具有抗性且能够确保构造稳定性。
根据本发明的实施方案,提供液晶显示器件,该液晶显示器件包括:包含液晶分子和高分子化合物的液晶层,该高分子化合物包括由化学式1表示的结构;和一对将所述液晶层夹于其间的彼此相对的基板。
化学式1
Figure G2009101368823D00031
其中m和n各自为1至4的整数,包括两端点值。
在本发明实施方案的液晶显示器件中,液晶层中的高分子化合物控制其附近的液晶分子的取向。当高分子化合物包括由化学式1表示的结构时,该高分子化合物易于在沿基板的平面内方向上更均匀地分布。换言之,高分子化合物的分布在沿基板的平面内方向上不易于偏置。另外,即使物理压力施加于基板,或者即使液晶显示器件暴露于高温环境,仍良好地保持液晶分子的受控取向,且不易于发生劣化(例如烧蚀)。因而,当施加驱动电压时,液晶层中液晶分子的取向根据电场而迅速变化。
在本发明实施方案的液晶显示器件中,包括具有化学式1所示结构的高分子化合物,高分子化合物的不均匀性得以避免,高分子化合物附近的液晶分子的取向得到稳定地控制。因而,在不损失响应度的情况下,不易出现显示不均匀,并可确保构造稳定性。
通过以下说明本发明的其它和进一步的目的、特征和优势将更全面地显现。
附图说明
图1是根据本发明第一实施方案的液晶显示器件的截面示意图。
图2是说明液晶分子的预倾斜角的示意图。
图3是说明高分子化合物形成时外加电压和对比度之间关系的示意图。
图4是说明显示不均匀性的示意图。
图5是说明另一显示不均匀性的示意图。
图6是说明图1所示像素电极的变型的平面示意图。
图7是说明图1所示共用电极的变型的平面示意图。
图8是图1的变型的液晶显示器件的截面示意图。
图9A和9B是图8所示像素电极、共用电极和突起的平面示意图。
图10A和10B是根据本发明第二实施方案的液晶显示器件的截面示意图。
图11A和11B是根据本发明第三实施方案的液晶显示器件的截面示意图。
图12是说明现有技术中的液晶显示器件的截面图。
具体实施方式
以下将参考附图对优选实施方案进行详述。
第一实施方案
图1是根据本发明第一实施方案的液晶显示器件的截面示意图。该液晶显示器件包括多个像素1,并且该液晶显示器件包括:彼此相对的像素电极基板10和对向电极基板20;经布置置于像素电极基板10和对向电极基板20的彼此相对的表面之上的取向膜31和32;和液晶层40,其密封于其间具有取向膜31和32的像素电极基板10和对向电极基板20之间。该液晶显示器件的显示模式即所谓的垂直取向(VA)模式,图1示出了未施加驱动电压的状态(黑屏显示(black display))。该液晶显示器件为所谓的透射型液晶显示器件,布置一对偏光板(未示出),从而从外侧将像素电极基板10和对向电极基板20夹在这一对偏光板之间。
像素电极基板10具有如下构造:像素电极12布置在透明基板11的表面上,该透明基板11上形成有包括驱动元件的驱动电路(未示出)。透明基板11例如由透明(透光)材料如玻璃或塑料制成。像素电极12是在一侧上用于向液晶层40施加电压的电极。另外,例如,设置多个像素电极12,这些像素电极12形成矩阵状排列图案。换言之,电势独立地供给各个像素电极12。像素电极12例如为具有透光性的透明电极,例如由透明电极材料如氧化铟锡(ITO)制成。
对向电极基板20具有如下构造:包括滤色片(未示出)(包括布置成带状的红光(R)滤色片、绿光(G)滤色片和蓝光(B)滤色片)和几乎完全布置在透明基板21上的有效显示区域上的共用电极22。透明基板21例如由与透明基板11相同的材料制成。共用电极22是在另一侧上用于向液晶层40施加电压的电极,与像素电极12的情况相同,例如由透明电极材料制成。
取向膜31和32是使液晶层40中包含的液晶分子41的相对于基板表面沿垂直方向取向的垂直取向膜,例如由有机材料如聚酰亚胺制成。取向膜31和32可经受控制液晶分子41取向的处理,例如摩擦。
液晶层40包含液晶分子41和高分子化合物42。液晶分子41具有负介电常数各向异性并且围绕作为中心轴相互垂直的长轴和短轴具有旋转对称的形状。
高分子化合物42优选存在于取向膜31和32中至少一个的附近,且高分子化合物42更优选经布置从而使得固定或附着于取向膜31和32中至少一个的表面。在这种情况下,高分子化合物42布置在取向膜31和32两者的表面上。高分子化合物42控制其附近的液晶分子41(液晶分子41A)的取向以保持液晶分子41,高分子化合物42包括一种或两种或更多种由化学式2表示的结构。由此,高分子化合物42基本均匀地形成在液晶层40和取向膜31、32之间的界面上,保持液晶分子40A的取向的性能(取向控制力(alignment control force))得到改善,因而在不损失响应度的情况下,不易出现显示不均匀并确保构造稳定性。
化学式2
其中m和n各自为1至4的整数,包括两端点值。
由化学式2表示的结构是可聚合物化合物聚合形成的结构的一部分,所述可聚合物化合物包括甲基丙烯酸酯基团和引入烷基的联苯骨架。只要化学式2中的m和m各自为1至4的整数(包括两端点值),m和n就可以相同或不同,烷基可以是直链烷基或具有支链的烷基。烷基中的碳原子数在1至4(包括两端点值)的范围内(m和n各自在1至4的范围内(包括两端点值)),这是因为当碳原子数在该范围之外时,高分子化合物42的取向控制力和均匀性易于降低。优选地,m和n彼此相同,在这种情况下,m和n各自优选在1至3的范围内(包括两端点值)。具体地,m和n各自优选为1或2,更优选为1,因为这样可得到更好的效果。
由化学式2表示的结构的实例包括由化学式3表示的结构。高分子化合物42可通过重复连接选自其中的一种结构或连接选自其中的多种结构而形成。其中,高分子化合物42优选包括化学式3(1)至3(3)所示的结构,具体地,高分子化合物42优选包括化学式3(1)所示的结构,因为不易出现显示不均匀,并确保构造稳定性,并且取向控制力高,因而得到高的响应度。
化学式3
Figure G2009101368823D00061
另外,除化学式2所示的结构以外,高分子化合物42还可包括任意其它结构,具体地,高分子化合物42优选包括化学式4所示的结构,因为这样可得到更好的效果。更具体地,在包括化学式4所示结构而不包括化学式2所示结构的高分子化合物中,取向控制力高,但高分子化合物易于不均匀地形成且高分子化合物的分布易于偏置。然而,当高分子化合物42包括化学式2所示的结构和化学式4所示的结构时,在保持高的取向控制力的同时,高分子化合物42在像素电极基板10和对向电极基板20的平面内方向上更均匀地形成,并且易于使高分子化合物42均匀分布。因而,获得更好的效果。
化学式4
Figure G2009101368823D00071
优选地,使高分子化合物42与取向膜31和32的表面化学结合,因为这样可改善构造稳定性。
在液晶层40中,液晶分子41可分为:液晶分子41A,其取向受到液晶层与取向膜31和32的界面附近的高分子化合物42的控制而得以保持;和除液晶分子41A以外的液晶分子41B。液晶分子41B位于液晶层40厚度方向上的中间区域,在未施加驱动电压的状态下,液晶分子41B长轴方向的取向基本垂直于透明基板11和21的表面。另一方面,高分子化合物42使液晶分子41A具有预倾斜角θ,使液晶分子41A的长轴方向相对于透明基板11和21的表面倾斜。如图2所示,在透明基板11和21的表面为XY平面且垂直于XY平面的方向为Z的情况下,该实施方案中的预倾斜角θ是指液晶分子41(41A或41B)的长轴方向D相对于XY平面的倾斜角。
在液晶层40中,液晶分子41A的预倾斜角θ优选在大于88°至小于90°的范围内(88°<θ<90°),这是因为在未施加驱动电压的状态下(黑屏显示)可降低透光量、保持良好的对比度以及缩短响应时间。
液晶显示器件例如可通过以下步骤制造。
首先,例如制造像素电极12以预定图案布置在透明基板11上的像素电极基板10和共用电极22布置在透明基板21上的对向电极基板20。接着,通过用垂直取向剂(vertical alignment agent)涂覆像素电极12和共用电极22的表面或者在基板上印刷并烧结垂直取向膜,在像素电极12和共用电极22的表面上形成取向膜31和32。
另一方面,作为构成液晶层40的材料,通过混合液晶分子41和由化学式5所示作为可聚合化合物(单体)的化合物,制备液晶材料,所述可聚合化合物通过聚合形成化学式2所示的结构。由化学式5表示的化合物的实例包括由化学式6表示的化合物。可使用选自其中的仅仅一种或者多种的混合物。另外,如有必要,优选将由化学式7所示作为单体的化合物(该单体通过聚合形成化学式4所示的结构)与液晶材料混合,因为这样可获得更好的效果。此时,如有必要,可将紫外吸收剂、光聚合引发剂等添加到液晶材料中。
化学式5
Figure G2009101368823D00081
其中m和n各自为1至4的整数,包括两端点值。
化学式6
Figure G2009101368823D00082
化学式7
接着,在像素电极基板10和对向电极基板20的于其上形成取向膜31和32的一个表面上,由抗蚀剂形成用于保持单元间隙的间隔突起物(spacerprojection),例如柱状突起物,或喷涂塑料珠等。另外,通过使用密封剂(如环氧粘结剂)印刷(如丝网印刷)密封区域,或通过用分配器(dispenser)施涂密封剂,来形成密封区域。随后,将像素电极基板10和对向电极基板20粘结在一起,使间隔突起物和密封部分位于其中间,以使其彼此相对。接着,通过加热等,使除了用于注入液晶材料的注入开口(密封口)以外的密封部分固化。接着,经由注入开口将上述液晶材料注入像素电极基板10和对向电极基板20之间的空隙,然后使用密封剂等将密封口密封。
接着,在像素电极12和共用电极22之间施加预定电压。从而,使液晶分子41的取向沿着偏离透明基板11和21法线方向的预定方向相对于透明基板11和21的表面倾斜。此时液晶分子41的倾斜角和在下述步骤中赋予液晶分子41A的预倾斜角θ基本相等。因而,可通过适当调节电压的大小来控制预倾斜角θ。图3示出了在这种情况下电压和对比度之间的关系。如图3所示,优选施加电压而使液晶分子41A的预倾斜角θ落在大于88°至小于90°的范围内,因为在施加电压而使预倾斜角θ为88°或更小的情况下对比度可能明显降低。另外,在预倾斜角θ为90°的情况下,响应速度变慢,从而可能损害响应度。
接着,在保持上述施加预定电压的状态的同时,利用紫外光从像素电极基板10和对向电极基板20中至少一个的外侧照射液晶层40,以使液晶材料中的单体聚合,从而在取向膜31和32的表面上形成包括化学式2所示结构的高分子化合物42。从而,完成图1所示的液晶显示器件。
在上述制造方法中,由于使用了由化学式5表示的化合物(单体)形成高分子化合物42,因而在该液晶显示器件中不易出现由制造方法引起的显示不均匀。
以下将参考图4和图5说明液晶显示器件的显示不均匀性。图4示例了显示灰度时的显示不均匀性。在下述情况下易于出现图4所示的显示不均匀:大量单体与液晶材料混合的情况;使用与液晶分子相容性低的单体的情况;使用低分子量的光聚合引发剂的情况;等等。在这种情况下,从注入液晶材料所经过的密封口A1的位置和出现显示不均匀的区域之间的关系可看出,这是由于高分子化合物不均匀地形成引起的。更具体地,由于在注入液晶材料的过程中吸收色谱(adsorption chromatography)的影响,在密封的液晶材料中出现组成不均匀。即密封口A1附近位置的液晶材料的组成比与远离密封口A1的液晶材料的组成比不同。因而,认为在液晶层中高分子化合物不均匀地形成,在该器件中出现取向控制力不均匀,由此出现显示不均匀。出现这种显示不均匀的情况的实例包括:大量下述化学式9所示的单体与液晶材料混合的情况;单独使用由化学式7表示的化合物的情况;使用光聚合引发剂1-羟基-环己基-苯基-酮的情况;等等。
另外,图5示例了进行黑屏显示时的显示不均匀性。在使用与液晶分子相容性低的单体时出现图5所示的显示不均匀,从注入液晶材料所经过的密封口A2的位置和出现显示不均匀的区域之间的关系可看出,局部形成高分子化合物,从而使高分子化合物不均匀地形成。换言之,认为液晶材料中包含的单体与液晶分子不相容,没有分散在液晶材料中,从而使单体缔合,结果局部形成高分子化合物,高分子化合物的局部形成造成黑屏显示期间的亮点。这种单体的实例包括由化学式7表示的化合物等。
另外,除上述情况以外,控制液晶分子取向的高分子化合物的劣化也可能导致出现显示不均匀。更具体地,驱动液晶显示器件使高分子化合物分解并电离,电离分解物吸附或附着在取向膜上,即出现所谓的烧蚀,因而可能出现显示不均匀。
在该实施方案的液晶显示器件中,当基于图像数据在像素电极12和共用电极22之间施加驱动电压时,液晶层40中的液晶分子41产生响应而倒下,使光得到调制并透出,从而实现显示。此时,液晶层40中高分子化合物42附近的液晶分子41A的取向受到控制,使得液晶分子41A具有预定的预倾斜角θ,因而与通过突起或凹槽(slit)控制液晶分子取向的现有VA模式液晶显示器件相比,响应度得到改善。
另外,在该液晶显示器件中,高分子化合物42包括由化学式2表示的结构,因而与使用不包括化学式2所示结构而包括化学式4所示结构或化学式8(1)至8(5)所示结构的高分子化合物控制液晶分子取向的情况相比,在不损失响应度的情况下,不易出现上述显示不均匀。此外,即使从透明基板11和12的外侧施加物理压力,受高分子化合物42控制的液晶分子41A的取向仍易于恢复,即使液晶显示器件经受高温环境,液晶分子41A的取向仍良好地保持,且不易出现劣化,例如所谓的烧蚀。因而,确保了构造稳定性。另外,用于形成包括化学式8(1)至8(5)所示结构的高分子化合物的单体是由化学式9(1)至9(5)表示的化合物。
化学式8
Figure G2009101368823D00111
化学式9
Figure G2009101368823D00121
另外,在该液晶显示器件中,当高分子化合物42还包括化学式4所示的结构时,不易出现显示不均匀,确保较高的构造稳定性,得到高的响应度。此外,当液晶分子41A的预倾斜角θ在88°<θ<90°的范围内时,除了达到上述效果以外,在保持高对比度的同时还缩短了响应时间。
在该实施方案的液晶显示器件中,描述了高分子化合物42固定于取向膜31和32的表面的构造,然而,仅仅需要高分子化合物42包含在液晶层40中。
另外,在该实施方案的液晶显示器件中,像素电极12布置在透明基板11的一个表面上,然而,还可使用如图6所示具有多条彼此间隔的凹槽的像素电极13。该像素电极13包括多条具有行(L)和间隔(S)的凹槽并且为所谓的鱼骨形。因而,在使用该像素电极13的液晶显示器件中,在使用线性偏光板的情况下透光率提高,且通过使用线性偏光板获得了高的对比度。在该像素电极13中,任意设定L和S的宽度。在使用该像素电极13的液晶显示器件中,例如与需要使用圆偏光板的液晶显示器件(例如图8所示的下述液晶显示器件)相比,在L=2.5μm且S=2.5μm的情况下,透光率为约80%,对比度为约4000,这比图8所示液晶显示器件的对比度高,差不多等于图8所示液晶显示器件的对比度的4倍。另外,以相同的方式与图8所示的液晶显示器件相比,在L=4.0μm且S=4.0μm的情况下,透光率为约70%,在L和S宽于4.0μm时,液晶分子41取向混乱,液晶分子41的取向变得不均匀,从而透光率往往迅速降低。因而,L和S优选为4.0μm或以下。
在该实施方案中,共用电极22布置在透明基板21的一个表面上,共用电极22优选包括开孔(aperture)或切口。由此,使液晶分子41的取向进一步稳定。另外,甚至在高分子化合物42形成之前的状态下使液晶分子41的取向稳定,从而在高分子化合物42形成时,易于控制液晶分子41A的预倾斜角θ。使用图7所示具有开孔的共用电极23作为这种共用电极。例如,共用电极23在与像素电极12相对的区域的中部具有圆形开孔部分23A。在图7中,示出了圆形的开孔部分23A,然而,开孔部分23A还可为方形(例如狭缝)或多边形,只要使液晶分子41的取向稳定,开孔部分23A可具有任意形状。
下面将在下文中对第一实施方案的液晶显示器件的变型进行描述。相同的要素由与第一实施方案相同的标记表示,将不再进一步描述。
第一实施方案的变型
图8是根据第一实施方案的变型的液晶显示器件的截面示意图,图9A和9B是用于图8所示液晶显示器件的共用电极22和布置在共用电极22上的突起24的平面示意图(图9A)以及像素电极14的平面示意图(图9B)。该液晶显示器件与第一实施方案的液晶显示器件具有相同的构造,不同的是像素电极基板10包括具有凹槽14A的像素电极14,对向电极基板20包括位于共用电极22的液晶层40一侧的表面上的突起24。
像素电极14包括凹槽14A,使得像素1分为区域1A和区域1B。突起24布置在取向膜32和共用电极22之间,以与像素电极14的区域1A和1B的中心相对。
在这种情况下,在液晶层40中,位于突起24附近的液晶分子41A受到高分子化合物42良好地控制,使取向从作为中心的突起24呈放射状倾斜。从而,当施加驱动电压时,在区域1A和区域1B中,液晶分子41产生响应从而从作为中心的突起24的顶部呈放射状倒下。
在该液晶显示器件中,当根据图像数据在像素电极14和共用电极22之间施加驱动电压时,液晶层40中的液晶分子41产生相应而呈放射状倒下,使光得到调制并透出,从而实现显示。
另外,在该液晶显示器件中,突起24布置在取向膜32和共用电极22之间,包括具有凹槽14A的像素电极14,包含在液晶层40中的高分子化合物42具有化学式2所示的结构,因而液晶分子41A的取向受到良好地控制,使得液晶分子41A具有预定的预倾斜角θ,并使液晶分子41的取向稳定。从而,与不包括化学式2所示结构的情况相比,不易出现显示不均匀,确保了构造稳定性,且响应度得到改善。在这种情况下,液晶分子41产生相应而呈放射状倒下,因而在使用圆偏光板时,透光损失降至最低,获得了具有高透光率(亮度)的液晶显示器件。
其它功能和效果与本发明第一实施方案的液晶显示器件相同。
第二实施方案
图10A和10B为第二实施方案的液晶显示器件的截面示意图。图10A示出了未施加驱动电压的状态,图10B示出了施加驱动电压的状态。图10A和10B所示的液晶显示器件的显示模式为所谓的IPS模式。例如,如图10A和10B所示,该液晶显示器件包括:彼此相对的电极基板50和对向基板60、经布置置于电极基板50和对向基板60的比相对表面之上的取向膜71和72、密封于其间具有取向膜71和72的电极基板50和对向基板60之间的液晶层80,电极基板50具有布置有像素电极52和共用电极53的构造。该液晶显示器件为透射型液晶显示器件,布置一对偏光板(未示出),使得电极基板50和对向基板60夹在这一对偏光板之间。
电极基板50具有如下构造:像素电极52和共用电极53以预定的间隔平行布置在透明基板51的表面上,透明基板51上形成有包括驱动元件的驱动电路(未示出)。透明基板51例如由透明(透光)材料如玻璃或塑料制成。像素电极52和共用电极53是用于向液晶层80施加电压的电极。像素电极52和共用电极53为具有透光性的透明电极并由透明电极材料如氧化铟锡制成。
对向电极60的构造包括滤色片(未示出)(包括布置成带状的红光(R)滤色片、绿光(G)滤色片和蓝光(G)滤色片)并由透明(透光)材料如玻璃或塑料制成。
取向膜71和72是使液晶层80中包含的液晶分子81的取向相对于基板表面沿水平方向的水平取向膜,并由例如有机材料(如聚酰亚胺)制成。可在取向膜71和72上进行控制液晶分子81取向的处理,例如摩擦。
液晶层80包含液晶分子81和高分子化合物82。液晶分子81具有正介电常数各向异性,且具有围绕作为中心轴相互垂直的长轴和短轴旋转对称的形状。
高分子化合物82优选存在于取向膜71和72中至少一个的附近,且优选经布置固定或附着于取向膜71和72中至少一个的表面。在这种情况下,高分子化合物82布置在取向膜71和72两者的表面上。高分子化合物82控制其附近的液晶分子81(液晶分子81A)以保持液晶分子81,且具有与第一实施方案的液晶显示器件中的高分子化合物42相同的构造。
在液晶层80中,液晶分子81可划分为液晶分子81A,其取向受到与取向膜71和72的界面附近的高分子化合物82的控制而得以保持;和除液晶分子81A以外的液晶分子81B。液晶分子81B位于液晶层80厚度方向上的中间区域。在未施加驱动电压的状态下(参考图10A),液晶分子81A和81B进行取向,使得液晶分子81A和81B的长轴方向相对于像素电极52和共用电极53倾斜(约20°),且取向相对于电极基板50和对向基板60的表面基本上呈水平方向。
该液晶显示器件例如可通过以下步骤制造。
首先,例如制造其中像素电极52和共用电极53以预定的间隔平行布置在透明基板51上的电极基板50以及对向基板60。接着,通过用水平取向剂(horizontal alignment agent)涂覆电极基板50的其上布置有像素电极52和共用电极53的表面以及对向基板60的一个表面,或者在基板上印刷并烧结水平取向膜,形成取向膜71和72。
另一方面,通过混合液晶分子81和化学式5所示的化合物以及(如有必要)化学式7所示的化合物,来制备液晶材料作为构成液晶层80的材料。此时,如有必要,可将紫外吸收剂、光聚合引发剂等添加到液晶材料中。
接着,在电极基板50和对向基板60的于其上形成取向膜71和72的一个表面上,由抗蚀剂形成用于保持单元间隙的柱状突起物,通过用分配器涂覆密封剂如环氧粘结剂形成密封区域。随后,将电极基板50和对向基板60结合在一起以使取向膜71和72彼此相对。接着,通过加热等,使除了用于注入液晶材料的注入开口(密封口)以外的密封部分固化。接着,经由注入开口将上述液晶材料注入电极基板50和对向基板60之间的空隙,然后使用密封剂等将密封口密封。
接着,利用紫外光从电极基板50和对向基板60中至少一个的外侧照射液晶层80,以使液晶材料中的单体聚合,从而在取向膜71和72的表面上形成包括化学式2所示结构的高分子化合物82。从而,完成图10A和10B所示的液晶显示器件。
在该液晶显示器件中,如图10A所示在未施加驱动电压的状态下,液晶层80中的液晶分子81相对于像素电极52和共用电极53倾斜(约20°),且取向相对于电极基板50和对向基板60的表面基本上呈水平方向。如图10B所示,当根据图像数据在像素电极52和共用电极53之间施加驱动电压时,液晶层80中的液晶分子81的取向相对于电极基板50和对向基板60的表面基本上呈水平方向,并通过旋转来产生相应而从而垂直于像素电极52和共用电极53。从而,使光得到调制并透出而实现显示。
另外,在该液晶显示器件中,液晶层80中包含的高分子化合物82包括化学式2所示的结构,因而与不包括化学式2所示结构的情况相比,在不损失响应度的情况下,不易出现显示不均匀,且确保了构造稳定性。另外,不包括化学式2所示结构的上述情况的实例包括:液晶层不包含高分子化合物的情况;以及包含不包括化学式2所示结构的高分子化合物的情况。
具体地,当高分子化合物82还包括化学式4所示的结构时,不易出现显示不均匀,确保较高的构造稳定性,并得到高的响应度。
另外,在现有的IPS模式液晶显示器件中,在物理压力施加于基板而改变单元间隙的情况下,容易出现液晶分子取向混乱且取向混乱的液晶分子不能恢复原始状态的现象。因而,当现有的IPS模式液晶显示器件安装在触摸板I/O显示装置中时,该触摸板I/O显示装置需具有物理压力未施加于液晶显示器件基板表面的构造,因而难以使该显示装置薄型化。另一方面,在该实施方案的液晶显示器件中,高分子化合物82包括化学式2所示的结构,因而可强烈控制液晶分子81A的取向。从而,即使物理压力(外压)施加于基板表面(电极基板50和对向基板60的外侧表面)而导致液晶分子81取向混乱,取向混乱的液晶分子81也能够迅速恢复原始状态。换言之,当该实施方案的液晶显示器件安装在触摸板I/O显示装置中时,该液晶显示器件的构造稳定性高于现有的液晶显示器件,因而该实施方案的液晶显示器件有助于使显示装置薄型化。
第三实施方案
图11A和11B是根据第三实施方案的液晶显示器件的截面示意图。图11A示出了未施加驱动电压的状态,图11B示出了施加驱动电压的状态。图11A和11B所示的液晶显示器件的显示模式为所谓的FFS模式。例如,如图11A和11B所示,该液晶显示器件包括:彼此相对的电极基板100和对向基板110、经布置置于电极基板100和对向基板110的相对表面之上的取向膜121和122、和密封于其间具有取向膜121和122的电极基板100和对向基板110之间的液晶层130,并且电极基板100具有布置有共用电极102和像素电极104的构造。该液晶显示器件为透射型液晶显示器件,布置一对偏光板(未示出),使得电极基板100和对向基板110夹在这一对偏光板之间。
电极基板100具有如下构造:共用电极102布置在透明基板101的表面上,透明基板101上形成有包括驱动元件的驱动电路,像素电极104以带状布置在共用电极102上且像素电极104和共用电极102之间具有绝缘膜103。透明基板101例如由透明(透光)材料如玻璃或塑料制成。共用电极102和像素电极104是用于向液晶层130施加电压的电极。共用电极102和像素电极104例如是具有透光性的透明电极并由透明电极材料如氧化铟锡制成。绝缘膜103布置在共用电极102和像素电极104之间并由绝缘材料制成。
对向电极110的结构包括滤色片(未示出)(包括布置成带状的红光(R)滤色片、绿光(G)滤色片和蓝光(G)滤色片)并由透明(透光)材料如玻璃或塑料制成。
取向膜121和122是使液晶层130中包含的液晶分子131的取向相对于基板表面沿水平方向的水平取向膜,并由例如有机材料(如聚酰亚胺)制成。可在取向膜121和122上进一步进行控制液晶分子131取向的处理,例如摩擦。
液晶层130包含液晶分子131和高分子化合物132。液晶分子131具有正介电常数各向异性,且具有围绕作为中心轴相互垂直的长轴和短轴旋转对称的形状。
高分子化合物132优选存在于取向膜121和122中至少一个的附近,且优选经布置从而固定或附着于取向膜121和122中至少一个的表面。在这种情况下,高分子化合物132布置在取向膜121和122两者的表面上。高分子化合物132控制其附近的液晶分子131(液晶分子131A)的取向以保持液晶分子131,且具有与第一实施方案的液晶显示器件中的高分子化合物42以及第二实施方案的液晶显示器件中的高分子化合物82相同的构造。
在液晶层130中,液晶分子131可划分为液晶分子131A,其取向受到与取向膜121和122的界面附近的高分子化合物132的控制而得以保持;和除液晶分子131A以外的液晶分子131B。液晶分子131B位于液晶层130厚度方向上的中间区域。在未施加驱动电压的状态下(参考图11A),使液晶分子131A和131B的取向为使得液晶分子131A和131B的长轴方向相对于各像素电极104倾斜(约10°),且取向相对于电极基板100和对向基板110的表面基本上呈水平方向。
该液晶显示器件例如可通过以下步骤制造。
首先,例如制造其中共用电极102、绝缘膜103和像素电极104布置在透明基板101表面上的电极基板100以及对向基板110。接着,通过在基板上印刷并烧结水平取向膜,在电极基板100的于其上布置像素电极104的表面上以及对向基板110的一个表面上形成取向膜121和122。
另一方面,通过混合液晶分子131和化学式5所示的化合物以及(如有必要)化学式7所示的化合物,来制备液晶材料作为液晶层130的材料。此时,如有必要,可将紫外吸收剂、光聚合引发剂等添加到液晶材料中。
接着,在电极基板100和对向基板110的于其上形成取向膜121和122的一个表面上,由抗蚀剂形成用于保持单元间隙的柱状突起物,并通过用分配器涂覆密封剂如环氧粘结剂形成密封区域。随后,将电极基板100和对向基板110结合在一起以使取向膜121和122彼此相对。接着,通过加热等,使除了用于注入液晶材料的注入开口(密封口)以外的密封部分固化。接着,经由注入开口将上述液晶材料注入电极基板100和对向基板110之间的空隙,然后使用密封剂等将密封口密封。
接着,利用紫外光从电极基板100和对向基板110中至少一个的外侧照射液晶层130,以使液晶材料中的单体聚合,从而在取向膜121和122的表面上形成包括化学式2所示结构的高分子化合物132。从而,完成图11A和11B所示的液晶显示器件。
在该液晶显示器件中,如图11A所示在未施加驱动电压的状态下,液晶层130中的液晶分子131相对于各像素电极104倾斜(约10°),且取向相对于电极基板100和对向基板110的表面基本上呈水平方向。如图11B所示,当根据图像数据在像素电极104和共用电极102之间施加驱动电压时,液晶层130中的液晶分子131的取向相对于电极基板100和对向基板110的表面基本上呈水平方向,并通过旋转产生响应而垂直于各像素电极104。从而,使光得到调制并透出而实现显示。
另外,在液晶显示器件中,液晶层130中包含的高分子化合物132包括化学式2所示的结构,因而与不包括化学式2所示结构的情况相比,在不损失响应度的情况下,不易出现显示不均匀且确保了构型稳定性。另外,上述不包括化学式2所示结构的情况包括:液晶层不包含高分子化合物的情况;包含不包括化学式2所示结构的高分子化合物的情况。
具体地,当高分子化合物132还包括化学式4所示的结构时,不易出现显示不均匀,确保较高的构造稳定性,并得到高的响应度。
另外,在现有的FFS模式液晶显示器件中,与IPS模式液晶显示器件的情况相同,在物理压力施加于基板而改变单元间隙的情况下,容易出现液晶分子取向混乱且取向混乱的液晶分子不恢复原始状态的现象。另一方面,在该实施方案的液晶显示器件中,高分子化合物132包括化学式2所示的结构,因而可强烈控制液晶分子131A的取向。从而,即使物理压力(外压)施加于基板表面而导致液晶分子131取向混乱,取向混乱的液晶分子131也能够迅速恢复原始状态。换言之,当该实施方案的液晶显示器件安装在触摸板I/O显示装置中时,该液晶显示器件的构造稳定性高于现有的液晶显示器件,因而该实施方案的液晶显示器件有助于显示装置薄型化。
实施例
以下将对本发明的实施例进行详述。
实施例1-1
通过以下步骤形成图8所示的VA模式液晶显示器件。
首先,制造其中像素电极14布置在透明基板11上的像素电极基板10以及其中共用电极22和突起24布置在透明基板21上的对向电极基板20。此时,作为像素电极基板10,使用其上布置有尺寸为45μm×106μm的像素电极14的像素电极基板10,该像素电极14具有宽6μm的凹槽14A。另外,作为对向电极基板20,使用具有直径为12μm的突起的对向电极基板20。接着,用垂直取向剂(可获自JSR Corporation)涂覆像素电极14、共用电极22和突起24的表面,随后烧结该垂直取向剂以形成取向膜31和32。
接着,混合具有负介电常数各向异性的负型液晶(negative liquidcrystal)(可获自Merck Japan Ltd.)和作为单体的由化学式6(1)表示的化合物(作为由化学式5表示的化合物),形成液晶材料。此时,将单体溶于液晶材料,使得液晶材料中的单体含量为0.4wt%。
接着,在像素电极基板10的于其上形成取向膜31的表面上形成由抗蚀剂制成的用于确保单元间隙的柱状间隔体,借助分配器用密封剂涂覆像素电极基板10的表面,形成密封部分。随后,将像素电极基板10和对向电极基板20结合在一起,以使取向膜31和32彼此相对。接着,通过加热使除了用于注入液晶材料的注入开口以外的密封部分固化。接着,经由注入开口将液晶材料注入像素电极基板10和对向电极基板20之间的空隙,然后使用密封剂密封注入开口。
接着,在像素电极14和共用电极22之间施加电压,在保持该状态的同时,利用紫外光从像素电极基板10和对向电极基板20的外侧照射液晶层40,以使液晶材料中的单体聚合,从而在取向膜31和32的表面上形成包括化学式3(1)所示结构的高分子化合物42。此时,形成高分子化合物42,以使液晶分子41A相对于透明基板11和21的预倾斜角θ在大于88°至小于90°的范围内。从而,完成了图8所示的液晶显示器件。
实施例1-2至1-4
按照与实施例1-1相同的步骤形成液晶显示器件,不同的是使用化学式6(2)至6(4)所示化合物中的一种代替化学式6(1)所示的化合物作为单体,形成包括化学式3(2)至3(4)所示结构之一的高分子化合物42。
实施例1-5
按照与实施例1-1相同的步骤形成液晶显示器件,不同的是添加化学式7所示的化合物作为单体,形成包括化学式3(1)所示结构以及化学式4所示结构的高分子化合物42。此时,在液晶材料中化学式6(1)所示化合物的含量和化学式7所示化合物的含量各自为0.2wt%。
对比例1-1
按照与实施例1-1相同的步骤形成液晶显示器件,不同的是未向液晶材料中添加单体。
对比例1-2至1-7
按照与实施例1-1相同的步骤形成液晶显示器件,不同的是使用化学式7所示的化合物(对比例1-2)或化学式9(1)至9(5)所示化合物中的一种(对比例1-3至1-7)代替化学式6(1)所示的化合物作为单体,形成包括化学式4所示结构(对比例1-2)或化学式8(1)至8(5)所示结构之一的高分子化合物。
当测定实施例1-1至1-5和对比例1-1至1-7的液晶显示器件各自的显示不均匀性、构造稳定性和响应度时,得到了表1所示的结果。
为测定显示不均匀性,对灰度显示期间的显示不均匀性进行了目测观察。作为显示不均匀性的评价,将未观察到显示不均匀的液晶显示器件标记为″A″,将观察到轻微显示不均匀但属于可接受程度的液晶显示器件标记为″B″,将明显观察到显示不均匀(不可接受的程度)的液晶显示器件标记为″×″。另外,未评价对比例1-1的液晶显示器件的显示不均匀性。
通过显示表面受压时的取向混乱消除灰度试验(misalignmentelimination gray level test)评价构造稳定性,通过烧蚀试验和保存试验评价取向稳定性。为进行显示表面受压时的取向混乱消除灰度试验,用铁笔刮擦液晶显示器件的透明基板21的表面,在8/8灰度级(白屏显示)至1/8灰度级(黑屏显示)的灰度级内,检验液晶分子的取向混乱消除时的灰度级。另外,取向混乱易于保留在更接近白色的灰度级中,4/8灰度级被认为是取向混乱消除灰度的“合格”级。换言之,从1/8灰度级至3/8灰度级的灰度级被认为是“不合格”级。另外,为进行烧蚀试验,在大气中于65℃以黑/白检测图案显示2小时,然后显示灰度来检验烧蚀状态。为进行保存试验,测量初始响应时间,并测量在大气中于85℃保存500小时之后的响应时间,对初始响应时间和经过保存后的响应时间进行比较。作为取向稳定性的评价,将在保存试验中初始响应时间和经过保存后(于85℃经过500小时后)的响应时间差异很小且在烧蚀试验中几乎未观察到烧蚀的液晶显示器件标记为″A″,将在保存试验中初始响应时间和经过保存后的响应时间差异很小且在烧蚀试验中观察到轻微烧蚀的液晶显示器件标记为″B″,将在保持试验中经过保存之后响应时间稍稍变长且在烧蚀试验中观察到烧蚀但属于可接受程度的液晶显示器件标记为″C″,将在保存试验中经过保存之后响应时间明显变长且在烧蚀试验中明显发生烧蚀(不可接受的程度)的液晶显示器件标记为″×″。未评价对比例1的液晶显示器件的取向稳定性。
为确定响应度,施加2.8V的驱动电压,并测量响应时间以检验响应度的改进。作为响应度改进的评价,响应时间比对比例1-1的响应时间缩短了50%或以上的液晶显示器件标记为″S″,响应时间比对比例1-1的响应时间缩短了40%至低于50%的液晶显示器件标记为″A″,响应时间比对比例1-1的响应时间缩短了20%至低于40%的液晶显示器件标记为″B″,响应时间比对比例1-1的响应时间缩短了10%至低于20%的液晶显示器件标记为″C″,响应时间的缩短低于10%或根本未缩短(不可接受的程度)的液晶显示器件标记为″×″。
表1
如表1所示,在液晶层40包含化学式3(1)至3(4)所示结构之一的实施例1-1至1-5中,显示不均匀性、取向混乱消除灰度和取向稳定性的评价为可接受的程度或更高,响应时间的缩短为对比例1-1的响应时间的10%或以上。另一方面,在对比例1-2至1-7中,取向混乱消除灰度、取向稳定性和响应改进中的一部分达到了可接受的程度,但出现了显示不均匀。该结果表明,在包括类似于但不同于化学式2所示结构的化学式4所示结构(甲基丙烯酸酯类结构,但包括不含烷基的联苯骨架)、化学式8(1)和8(2)所示结构(丙烯酸酯类高分子化合物)、或化学式8(3)所示结构(甲基丙烯酸酯类高分子化合物,其中联苯骨架的烷基位置不同)的高分子化合物中,液晶层易于不均匀地形成,或者取向控制力低。另外,实施例1-1和对比例1-3之间的比较以及对比例1-2和对比例1-4之间的比较表明,甲基丙烯酸酯类高分子化合物对液晶分子取向的控制强于丙烯酸酯类高分子化合物。换言之,该结果表明,当高分子化合物42包括化学式2所示的结构时,该高分子化合物42在平面内方向上更均匀地分布,并施加高的取向控制力。
因而,证实了在VA模式液晶显示器件中当液晶层40中包括化学式2所示结构的高分子化合物42形成在取向膜31和32的表面上时,在不损失响应度的情况下,不易出现显示不均匀,并确保了构造稳定性。另外,证实了当液晶分子41A的取向受高分子化合物42控制而使液晶分子41A的预倾斜角落在大于88°至小于90°的范围内时,响应度得到了改善。
另外,根据实施例1-1至1-4之间的比较,当化学式2中的m和n各自为3或以下时,显示不均匀性、取向混乱消除灰度和取向稳定性的评价进一步提高,当m和n各自为1时,评价明显提高。
因而,证实了当高分子化合物42包括化学式2中m和n各自为3或以下的结构时,获得了较好的效果,当高分子化合物42包括m和n各自为1的结构时,获得了特别好的效果。
另外,根据实施例1-1和实施例1-5之间的比较,当高分子化合物42还包括化学式4所示的结构(实施例1-5)时,显示不均匀性、取向混乱消除灰度和取向稳定性的评价较高。因而,证实了当高分子化合物42包括化学式2所示的结构和化学式4所示的结构时,获得了较好的效果。
实施例2
接着,形成了图11A和11B所示的FFS模式液晶显示器件。
首先,制造了其中共用电极102、绝缘膜103和像素电极104布置在透明基板101的一个表面上的电极基板100以及对向基板110。接着,用水平取向剂(可获自JSR Corporation)涂覆电极基板100的其上形成像素电极104的表面和对向电极110的一个表面,然后烧结该水平取向剂以形成取向膜121和122。
接着,混合正型液晶(可获自Chisso Corporation)和作为单体的由化学式6(1)表示的化合物,以制备液晶材料。此时,将单体溶于液晶材料,使得液晶材料中的单体含量为0.4wt%。
接着,在电极基板100的其上形成取向膜121的表面上形成由抗蚀剂制成的用于确保单元间隙的柱状间隔体,借助分配器用密封剂涂覆电极基板100的表面以形成密封部分。随后,将电极基板100和对向基板110结合在一起,以使取向膜121和122彼此相对。接着,通过加热使除了用于注入液晶材料的注入开口以外的密封部分固化。接着,经由注入开口将液晶材料注入电极基板100和对向基板110之间的空隙,然后使用密封剂密封注入开口。
接着,在共用电极102和像素电极104之间未施加电压的状态下,利用紫外光从电极基板100和对向基板110的外侧照射液晶层130,以使液晶材料中的单体聚合,从而在取向膜121和122的表面上形成包括化学式3(1)所示结构的高分子化合物132。从而完成了图11A和11B所示的液晶显示器件。
对比例2
按照与实施例2相同的步骤形成液晶显示器件,不同的是未向液晶材料中添加单体。
与实施例1-1等的情况相同,测定了实施例2和对比例2的液晶显示器件各自的显示不均匀性、构造稳定性和响应度。
结果,在FFS模式液晶显示器件中获得了与表1所示相同的结果。换言之,在实施例2中,没有出现显示不均匀,取向稳定性标记为″A″,取向混乱消除灰度为8/8灰度级,液晶分子131的取向混乱在各灰度级时均消失。另外,在实施例2中,响应时间与对比例2相比明显缩短。另一方面,在对比例2中,未观察到显示不均匀,取向混乱消除灰度为5/8灰度级,因而,作为FFS模式液晶显示器件,对比例2的液晶显示器件没有达到可接受的程度。
从而,证实了在FFS模式液晶显示器件中当在液晶层130中包括化学式2所示结构的高分子化合物132形成在取向膜121和122的表面上时,在不损失响应度的情况下,不易出现显示不均匀,并确保了构造稳定性。
尽管参考实施方案和实施例对本发明进行了描述,但本发明不限于此,可对本发明进行各种改进。例如,在上述实施方案和上述实施例中,描述了本发明的液晶显示器件应用于VA模式液晶显示器件、IPS模式液晶显示器件和FFS模式液晶显示器件的情况。然而,本发明不具体限定于上述情况,本发明还可应用于TN模式液晶显示器件、MVA(多畴垂直取向,Multi-domain Vertical Alignment)模式液晶显示器件等。
另外,在上述实施方案和上述实施例中,本发明的液晶显示器件应用于透射型液晶显示器件。然而,本发明不具体限定于透射型液晶显示器件,还可应用于例如反射型液晶显示器件。在反射型液晶显示器件中,像素电极由具有反光性的电极材料例如铝制成。
本申请包括与2008年4月24日提交于日本专利局的日本优先权专利申请JP 2008-113697相关的主题,在此引入其全部内容作为参考。
本领域技术人员应当理解的是,可根据设计要求和其它因素作出各种改进、组合、次组合和替换,只要落在所附权利要求或其等同物的范围内即可。

Claims (8)

1.一种液晶显示器件,包括:
包含液晶分子和高分子化合物的液晶层,所述高分子化合物包括由化学式1表示的结构;和
一对将所述液晶层密封于其间的彼此相对的基板,
化学式1
Figure FSB00000437973000011
其中m和n各自为1至4的整数,包括两端点值,其中
取向膜设置在所述一对基板中的每个基板和所述液晶层之间,并且
所述高分子化合物经布置从而使得固定或附着于所述取向膜的至少一个表面。
2.权利要求1的液晶显示器件,其中
所述高分子化合物固定在所述取向膜上。
3.权利要求1的液晶显示器件,其中
化学式1中的m和n各自为3或以下。
4.权利要求1的液晶显示器件,其中
所述高分子化合物还包括由化学式2表示的结构,
化学式2
Figure FSB00000437973000012
5.权利要求1的液晶显示器件,其中
所述一对基板中的一个基板包括像素电极,另一个基板包括共用电极,并且
所述液晶层具有负介电常数各向异性且包括相对于所述一对基板的表面的预倾斜角大于88°且小于90°的液晶分子。
6.权利要求5的液晶显示器件,其中
所述共用电极包括开孔或切口。
7.权利要求5的液晶显示器件,其中
所述像素电极包括多条彼此间隔的凹槽。
8.权利要求1的液晶显示器件,其中
所述一对基板中的一个基板包括像素电极和共用电极,
所述液晶分子具有正介电常数各向异性,并且
所述像素电极和共用电极产生横向电场,该横向电场包括平行于所述一对基板的表面的分量。
CN2009101368823A 2008-04-24 2009-04-24 液晶显示器件 Active CN101566761B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP113697/08 2008-04-24
JP2008113697A JP4618321B2 (ja) 2008-04-24 2008-04-24 液晶表示素子

Publications (2)

Publication Number Publication Date
CN101566761A CN101566761A (zh) 2009-10-28
CN101566761B true CN101566761B (zh) 2011-09-07

Family

ID=41215291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101368823A Active CN101566761B (zh) 2008-04-24 2009-04-24 液晶显示器件

Country Status (5)

Country Link
US (1) US7922935B2 (zh)
JP (1) JP4618321B2 (zh)
KR (1) KR101547582B1 (zh)
CN (1) CN101566761B (zh)
TW (1) TWI405003B (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5028452B2 (ja) * 2009-07-06 2012-09-19 株式会社ジャパンディスプレイイースト 液晶表示装置
JP5105113B2 (ja) * 2010-03-05 2012-12-19 Jsr株式会社 液晶表示素子の製造方法
JP5301485B2 (ja) * 2010-03-15 2013-09-25 スタンレー電気株式会社 液晶表示装置
KR101198185B1 (ko) * 2010-07-27 2012-11-12 전북대학교산학협력단 액정표시장치 및 그 제조방법
WO2012046608A1 (ja) * 2010-10-07 2012-04-12 シャープ株式会社 液晶表示装置
TWI545372B (zh) 2010-10-14 2016-08-11 Merck Patent Gmbh Liquid crystal display device
US9798179B2 (en) 2010-10-14 2017-10-24 Merck Patent Gmbh Liquid crystal display device
US20130271713A1 (en) * 2010-10-14 2013-10-17 Sharp Kabushiki Kaisha Liquid crystal display device and method for manufacturing liquid crystal display device
US9207495B2 (en) 2011-03-09 2015-12-08 Sharp Kabushiki Kaisha Liquid crystal display device
WO2012121174A1 (ja) * 2011-03-09 2012-09-13 シャープ株式会社 液晶表示パネル、液晶表示装置及び液晶表示セル
WO2012144464A1 (ja) * 2011-04-19 2012-10-26 シャープ株式会社 液晶表示装置および液晶表示装置の製造方法
CN103748507B (zh) * 2011-08-25 2016-08-24 夏普株式会社 液晶显示装置的制造方法
US9417482B2 (en) 2011-08-26 2016-08-16 Sharp Kabushiki Kaisha Liquid crystal display panel and liquid crystal display device
CN103797407B (zh) * 2011-08-29 2016-07-06 夏普株式会社 液晶显示装置的制造方法
WO2013031461A1 (ja) * 2011-08-29 2013-03-07 シャープ株式会社 液晶表示装置の製造方法
JP5759565B2 (ja) * 2011-11-30 2015-08-05 シャープ株式会社 液晶表示装置
JP5785867B2 (ja) * 2011-12-19 2015-09-30 株式会社ジャパンディスプレイ 液晶表示装置及びその製造方法
JP6274407B2 (ja) * 2011-12-22 2018-02-07 日産化学工業株式会社 横電界駆動用液晶表示素子の製造方法
US9733524B2 (en) 2012-01-30 2017-08-15 Sharp Kabushiki Kaisha Liquid crystal display device and manufacturing method therefor
CN103626660A (zh) * 2012-08-23 2014-03-12 奇美电子股份有限公司 用于液晶层或配向层的感旋光性单体、使用其的液晶显示面板及其制作方法
WO2014061755A1 (ja) * 2012-10-19 2014-04-24 シャープ株式会社 液晶表示装置及び液晶表示装置の製造方法
TWI494672B (zh) * 2012-11-30 2015-08-01 Au Optronics Corp 液晶顯示面板之畫素結構
CN103412438B (zh) * 2013-07-31 2016-03-02 京东方科技集团股份有限公司 显示基板及其制备方法、双稳态液晶显示面板
WO2015146369A1 (ja) * 2014-03-27 2015-10-01 シャープ株式会社 液晶表示装置、及び、液晶表示装置の製造方法
CN105116621A (zh) * 2015-09-01 2015-12-02 深圳市华星光电技术有限公司 液晶面板的制造方法
KR20200016215A (ko) * 2017-06-01 2020-02-14 디아이씨 가부시끼가이샤 중합성 모노머, 그것을 사용한 액정 조성물 및 액정 표시 소자
JP7180247B2 (ja) * 2018-09-28 2022-11-30 Dic株式会社 液晶表示素子の製造方法
CN110764316B (zh) * 2019-11-14 2021-08-03 Tcl华星光电技术有限公司 自配向材料、自配向液晶材料及液晶面板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3131954B2 (ja) * 1992-02-13 2001-02-05 大日本インキ化学工業株式会社 液晶デバイス
JP3192780B2 (ja) * 1992-09-22 2001-07-30 旭硝子株式会社 ツイステッドネマチック液晶表示素子
JP2000347175A (ja) * 1999-03-26 2000-12-15 Seiko Epson Corp 液晶装置及びその製造方法並びにそれを用いた電子機器
US6977704B2 (en) * 2001-03-30 2005-12-20 Fujitsu Display Technologies Corporation Liquid crystal display
JP4175826B2 (ja) 2002-04-16 2008-11-05 シャープ株式会社 液晶表示装置
JP2005024927A (ja) * 2003-07-02 2005-01-27 Seiko Epson Corp 液晶装置、その製造方法、電子機器、及びプロジェクタ
JP4477421B2 (ja) * 2004-05-28 2010-06-09 富士通株式会社 液晶表示装置及びその製造方法
TWI349029B (en) * 2007-03-30 2011-09-21 Au Optronics Corp Liquid crystalline medium, liquid crystal display panel using the same, and method for manufacturing liquid crystal display panel

Also Published As

Publication number Publication date
CN101566761A (zh) 2009-10-28
US7922935B2 (en) 2011-04-12
US20090269515A1 (en) 2009-10-29
JP2009265308A (ja) 2009-11-12
TW200951556A (en) 2009-12-16
JP4618321B2 (ja) 2011-01-26
KR20090112589A (ko) 2009-10-28
KR101547582B1 (ko) 2015-08-26
TWI405003B (zh) 2013-08-11

Similar Documents

Publication Publication Date Title
CN101566761B (zh) 液晶显示器件
KR100816570B1 (ko) 액정 상용성 입자, 그의 제조 방법 및 액정 소자
CN102356351B (zh) 液晶显示装置和其制造方法
CN101878446B (zh) 液晶显示装置
US20070026164A1 (en) Liquid crystal display
US20070035691A1 (en) Liquid crystal display and method of manufacturing the same
CN102317849A (zh) 液晶显示装置
WO2022068265A1 (zh) 液晶显示面板及驱动方法、显示装置
US8471998B2 (en) Liquid crystal display element, display device, and method for driving the same
CN103097947B (zh) 液晶显示面板、液晶显示装置和取向膜材料用聚合物
CN109143690A (zh) 液晶显示面板及其制作方法
CN102722052A (zh) 一种液晶显示面板及其制备工艺和显示器
CN109343266A (zh) 显示面板和显示装置
JP3650499B2 (ja) 液晶表示装置
CN101578552A (zh) 液晶面板和液晶显示装置以及液晶面板的显示方法
CN103097948B (zh) 液晶显示面板、液晶显示装置和取向膜材料用聚合物
CN105388657A (zh) 纳米囊液晶显示装置
US20010052956A1 (en) Liquid crystal display having a surface grating film with axially symmetric multi-aligned arrays of 2-dimensional surface relief gratings
CN101802690A (zh) 液晶显示装置
KR20120133927A (ko) 표시 장치 및 표시 장치 제조 방법
JP2001027759A (ja) 液晶表示装置
CN101526698B (zh) 液晶显示装置
CN100412620C (zh) 液晶显示装置
CN103226262B (zh) 影像显示系统及液晶显示装置的制造方法
US8537326B2 (en) Liquid crystal composition, device and method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: NIPPON DISPLAY CO., LTD.

Free format text: FORMER OWNER: SONY CORPORATION

Effective date: 20121115

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20121115

Address after: Aichi

Patentee after: Japan display West Co.,Ltd.

Address before: Tokyo, Japan

Patentee before: Sony Corporation

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211021

Address after: Tokyo, Japan

Patentee after: JAPAN DISPLAY Inc.

Address before: Aichi

Patentee before: Japan display West Co.,Ltd.