CN101556178A - 一种水位动态检测方法及设备 - Google Patents

一种水位动态检测方法及设备 Download PDF

Info

Publication number
CN101556178A
CN101556178A CNA2009100434423A CN200910043442A CN101556178A CN 101556178 A CN101556178 A CN 101556178A CN A2009100434423 A CNA2009100434423 A CN A2009100434423A CN 200910043442 A CN200910043442 A CN 200910043442A CN 101556178 A CN101556178 A CN 101556178A
Authority
CN
China
Prior art keywords
water level
microprocessor
water
low
level detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2009100434423A
Other languages
English (en)
Inventor
何竞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CNA2009100434423A priority Critical patent/CN101556178A/zh
Publication of CN101556178A publication Critical patent/CN101556178A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

一种水位动态检测方法及设备。本发明之水位动态检测方法是周期性地向水位检测探头发送检测电流信号。实现所述动态水位检测方法的设备由微处理器、记忆芯片、CMOS比较器、低水位检测探头、高水位检测探头、信号发射电极、继电器、报警器构成,继电器输入端与微处理器输出端连接,报警器输入端与微处理器输出端连接,记忆芯片与微处理器双向连接,信号发射电极与微处理器输出端连接,低水位检测探头和高水位检测探头分别与CMOS比较器输入端连接,CMOS比较器输出端与微处理器输入端连接;继电器输出端与水泵电机相连。本发明由于通过水位检测探头的电流持续时间短,电流小,水位检测探头不易腐蚀,也不污染水源。

Description

一种水位动态检测方法及设备
技术领域
本发明涉及一种水位动态检测方法及设备。
背景技术
现有水位检测,通常采用静态方式,即对水位检测探头持续提供直流电,由于电解作用,导致水位检测探头易被腐蚀,使用寿命短,且污染水源。也有采用交流电极作为水位检测的方式,但该方式所用设备电路复杂,可靠性低。
发明内容
本发明的目的在于克服现有技术的不足,提供一种动态水位检测方法及设备,使用本发明进行水位检测,不必一直对水位检测探头供电,水位检测探头不易被腐蚀,使用寿命长,对水源污染少,所用设备结构简单,可靠性高。
本发明之动态水位检测方法是:周期性地向水位检测探头发送检测电流信号。
所述检测电流信号发送周期可为0.5~20秒(优选1~10秒);每次发送持续时间可为0.5~5毫秒(优选1~3毫秒);电流强度可为0.5~5微安(优选1~3微安)。
本发明之动态水位检测设备的技术方案是:其由微处理器、记忆芯片、CMOS比较器、低水位检测探头、高水位检测探头、信号发射电极、继电器、报警器构成,继电器输入端与微处理器输出端连接,报警器输入端与微处理器输出端连接,记忆芯片与微处理器双向连接,信号发射电极与微处理器输出端连接,低水位检测探头和高水位检测探头分别与CMOS比较器输入端连接,CMOS比较器输出端与微处理器输入端连接;继电器输出端与水泵电机相连。
本发明周期性地向水位检测探头发送检测电流信号时间极短,发信周期又相对稍长,再加上检测电流很小,使得水位检测探头的腐蚀可以忽略不计;也不污染水源。设备结构简单,可靠性高。
附图说明
图1是本发明设备一实施例的结构框图。
图2是图1所示实施例的比较器电路结构图。
图3是图1所示实施例的工作流程框图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
实施例1:向水位检测探头发送检测电流信号的周期为10秒;每次发送持续时间为1毫秒;电流强度为2.5微安。
本实施例所用设备结构参见图1,由微处理器1、记忆芯片6、CMOS比较器2、低水位检测探头4、高水位检测探头3、信号发射电极5、继电器8、报警器7构成,继电器8的输入端与微处理器1的输出端连接,报警器7的输入端与微处理器1的输出端连接,记忆芯片6与微处理器1双向连接,信号发射电极5与微处理器1的输出端连接,低水位检测探头4和高水位检测探头3分别与CMOS比较器2的输入端连接,CMOS比较器2的输出端与微处理器1的输入端连接;继电器8的输出端与水泵电机9相连。
参照图2,CMOS比较器2内部由比较器I 21和比较器II 22组成,比较器I21的输出端与微处理器1的输入端13连接,比较器II 22的输出端与微处理器1的输入端14连接,比较器I 21、比较器II 22的“+”端均接入+2.5V直流电,比较器I 21的“-”端与高水位检测探头3连接,比较器II 22的“-”端与低水位检测探头4连接,微处理器1的输出端15与信号发射电极5连接,下拉电阻R3的一端通过交点23与高水位检测探头3连接、另一端接地,下拉电阻R4的一端通过交点24与低水位检测探头4连接、另一端接地,电阻R3、R4阻值均大于2兆欧。
使用时,低水位检测探头4和高水位检测探头3分别置于蓄水池10的较低位置和较高位置,信号发射电极5则置于较低水位检测探头4更低的位置。
微处理器1预设以10秒为周期,通过信号发射电极5发出一个检测信号(接通+5V直流电),由于水的导电性,检测信号可以通过水传至低水位检测探头4或/和高水位检测探头3,再通过低水位检测探头4或/和高水位检测探头3传送到COMS比较器2,如果低水位检测探头4未接触到水,则比较器II 22的“-”端输入电压为0,由于比较器II 22的“+”端电压为+2.5V,则微处理器输入端14接收到比较器II 22输出端的高电平,系统判断为低水位;如果高水位检测探头3接触到水,由于下拉电阻R3的内阻较大(2兆欧以上)、蓄水池水的内阻较小(1兆欧以下),则比较器I 21的“-”端输入电压大于+2.5V,由于比较器I 21的“+”端电压为+2.5V,则微处理器输入端13接收到比较器I 21输出端的低电平,系统判断为高水位;如果低水位检测探头接触到水、高水位检测探头未接触到水,则微处理器输入端14接收到比较器II 22输出端的低电平、微处理器输入端13接收到比较器I 21输出端的高电平,系统判断为正常水位。
蓄水池10水位处于低水位时,微处理器1会指令继电器8接通水泵电机9的电源电路,启动水泵供水,蓄水池10水位上升,微处理器1仍继续以10秒为周期发出检测信号,同时作时间记录,直至检测到高水位时,微处理器1指令继电器8断开水泵电机9的电源电路,关闭水泵。
初次使用时,微处理器1会将该次从低水位到高水位所花费的时间存储在记忆芯片6中(停电也不消失);日常使用时,微处理器1自动将水泵开启时间与初始记忆时间作比较,如开启时间超过记忆时间还到不了高水位,判断为少水,指令继电器8自动断开水泵电机9的电源电路,以免水泵电机9干烧损坏;如果低水位状态下开启水泵,3分钟后还是检测到低水位,则判断为井水缺水或是发生其他故障,微处理器1指令继电器8断开水泵电机9的电源电路,关闭水泵;同时还会指令报警器7发出报警信号,将缺水或是其他故障信息(如水泵损坏或水管破损等)告知用户,提醒用户进行处理。
由于下拉电阻R3、R4有着很高的内阻(2兆欧以上),其间通过低水位检测探头4或/和高水位检测探头3的电流不到2.5微安,探头腐蚀的程度可以忽略不计,因此,这种动态检测方式,水位检测探头寿命约为静态检测方式(水位检测探头不断电)的10×103倍。
图3是本实施例的工作流程框图。如图3所示,步骤100水位控制器开始运行后,执行步骤101,检测水位,如果检测不到低水位102,表明蓄水池无需补水,所以继续检测水位;如果检测到低水位,则执行步骤103,开启水泵的同时开始计时,并执行步骤104,继续检测水位;如果检测到低水位105,则执行步骤106,判断计时是否已超过3分钟,如未超过3分钟,则返回执行步骤104,继续检测水位,计时超过3分钟如果还是低水位,则判断为缺水或是发生其他故障,执行步骤107,关闭水泵同时报警;如果检测不到低水位,表明运转正常,执行步骤108,从检测不到低水位的时刻开始重新计时,并执行步骤109,继续检测水位;如果检测不到高水位111,则执行步骤110,将计时时间与初次使用的记忆时间进行对比,如计时时间比记忆时间短,返回执行步骤109,继续检测水位,如计时时间超过记忆时间,还检测不到高水位,判断为少水,关闭水泵;如果执行步骤109,检测到高水位111,表明蓄水池水已满,也关闭水泵。
动态水位检测方式在不增加硬件成本的情况下,解决了电极腐蚀问题,与交流电极方式相比,电路简单可靠。
实施例2:检测电流信号发送周期20秒;每次发送持续时间5毫秒;电流强度5微安。余同实施例1。通过低水位检测探头4或/和高水位检测探头3的电流小于5微安,水位检测探头寿命约为同等电流下静态检测方式的4×103倍。
实施例3:检测电流信号发送周期0.5秒;每次发送持续时间为0.5毫秒;电流强度为0.5微安。余同实施例1。通过低水位检测探头4或/和高水位检测探头3的电流小于0.5微安,水位检测探头寿命约为同等电流下静态检测方式的1×103倍。
实施例4:检测电流信号发送周期1秒;每次发送持续时间1毫秒;电流强度1微安。余同实施例1。通过低水位检测探头4或/和高水位检测探头3的电流小于1微安,水位检测探头寿命约为同等电流下静态检测方式的1×103倍。
实施例5:检测电流信号发送周期5秒;每次发送持续时间2毫秒;电流强度2微安。余同实施例1。通过低水位检测探头4或/和高水位检测探头3的电流小于2微安,水位检测探头寿命约为同等电流下静态检测方式的2.5×103倍。
实施例6:检测电流信号发送周期20秒;每次发送持续时间为0.5毫秒;电流强度为2.5微安。余同实施例1。通过低水位检测探头4或/和高水位检测探头3的电流小于2.5微安,水位检测探头寿命约为同等电流下静态检测方式的40×103倍。

Claims (4)

1、一种动态水位检测方法,其特征在于,周期性地向水位检测探头发送检测电流信号。
2、根据权利要求1所述的动态水位检测方法,其特征在于,检测电流信号发送周期为0.5~20秒;每次发送持续时间为0.5~5毫秒;电流强度为0.5~5微安。
3、根据权利要求2所述的动态水位检测方法,其特征在于,检测电流信号发送周期为1~10秒;每次发送持续时间为1~3毫秒;电流强度为1~3微安。
4、一种实现权利要求1~3之所述动态水位检测方法的设备,其特征在于,由微处理器、记忆芯片、CMOS比较器、低水位检测探头、高水位检测探头、信号发射电极、继电器、报警器构成,继电器输入端与微处理器输出端连接,报警器输入端与微处理器输出端连接,记忆芯片与微处理器双向连接,信号发射电极与微处理器输出端连接,低水位检测探头和高水位检测探头分别与CMOS比较器输入端连接,CMOS比较器输出端与微处理器输入端连接;继电器输出端与水泵电机相连。
CNA2009100434423A 2009-05-18 2009-05-18 一种水位动态检测方法及设备 Pending CN101556178A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2009100434423A CN101556178A (zh) 2009-05-18 2009-05-18 一种水位动态检测方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2009100434423A CN101556178A (zh) 2009-05-18 2009-05-18 一种水位动态检测方法及设备

Publications (1)

Publication Number Publication Date
CN101556178A true CN101556178A (zh) 2009-10-14

Family

ID=41174379

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2009100434423A Pending CN101556178A (zh) 2009-05-18 2009-05-18 一种水位动态检测方法及设备

Country Status (1)

Country Link
CN (1) CN101556178A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723234A (zh) * 2012-06-21 2012-10-10 昆山诺科传感器集成有限公司 隔离式水浸开关
CN102980629A (zh) * 2012-11-23 2013-03-20 福建兢辉环保科技有限公司 蒸发式冷气机及其水位检测装置
CN103676988A (zh) * 2013-12-27 2014-03-26 深圳市得汛科技有限公司 一种适用于排水泵的水位检测控制电路及其工作方法
CN103968914A (zh) * 2013-01-26 2014-08-06 陈宗仁 一种无绳电热水壶的水位检测安装方法
CN106482804A (zh) * 2015-08-31 2017-03-08 艾默生环境优化技术(苏州)有限公司 水位测量装置及方法
CN108254040A (zh) * 2018-01-08 2018-07-06 广州葳尔思克自动化科技有限公司 一种现代养鸡场脉冲式水位检测装置
CN110806246A (zh) * 2019-11-15 2020-02-18 深圳朗特智能控制股份有限公司 一种水位监测装置及其水位监测方法、系统、存储介质
CN111664080A (zh) * 2020-05-12 2020-09-15 淮北矿业(集团)有限责任公司 一种选煤滤液液位控制装置及其方法
CN112263134A (zh) * 2020-10-17 2021-01-26 珠海格力电器股份有限公司 液位加热装置及控制方法
CN113123954A (zh) * 2020-01-15 2021-07-16 上海城投污水处理有限公司 一种提升泵提升液位的报警保护系统
CN113324618A (zh) * 2021-05-27 2021-08-31 深圳市纵维立方科技有限公司 液位检测电路、装置和方法
CN114098275A (zh) * 2021-11-12 2022-03-01 广东众能光伏设备有限公司 一种半自动光伏板清洗刷及控制方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723234A (zh) * 2012-06-21 2012-10-10 昆山诺科传感器集成有限公司 隔离式水浸开关
CN102980629A (zh) * 2012-11-23 2013-03-20 福建兢辉环保科技有限公司 蒸发式冷气机及其水位检测装置
CN103968914B (zh) * 2013-01-26 2018-02-23 陈宗仁 一种无绳电热水壶的水位检测安装方法
CN103968914A (zh) * 2013-01-26 2014-08-06 陈宗仁 一种无绳电热水壶的水位检测安装方法
CN103676988B (zh) * 2013-12-27 2016-09-28 深圳市得汛科技有限公司 一种适用于排水泵的水位检测控制电路及其工作方法
CN103676988A (zh) * 2013-12-27 2014-03-26 深圳市得汛科技有限公司 一种适用于排水泵的水位检测控制电路及其工作方法
CN106482804A (zh) * 2015-08-31 2017-03-08 艾默生环境优化技术(苏州)有限公司 水位测量装置及方法
CN108254040A (zh) * 2018-01-08 2018-07-06 广州葳尔思克自动化科技有限公司 一种现代养鸡场脉冲式水位检测装置
CN110806246A (zh) * 2019-11-15 2020-02-18 深圳朗特智能控制股份有限公司 一种水位监测装置及其水位监测方法、系统、存储介质
CN113123954A (zh) * 2020-01-15 2021-07-16 上海城投污水处理有限公司 一种提升泵提升液位的报警保护系统
CN111664080A (zh) * 2020-05-12 2020-09-15 淮北矿业(集团)有限责任公司 一种选煤滤液液位控制装置及其方法
CN112263134A (zh) * 2020-10-17 2021-01-26 珠海格力电器股份有限公司 液位加热装置及控制方法
CN112263134B (zh) * 2020-10-17 2021-11-12 珠海格力电器股份有限公司 液位加热装置及控制方法
CN113324618A (zh) * 2021-05-27 2021-08-31 深圳市纵维立方科技有限公司 液位检测电路、装置和方法
CN114098275A (zh) * 2021-11-12 2022-03-01 广东众能光伏设备有限公司 一种半自动光伏板清洗刷及控制方法

Similar Documents

Publication Publication Date Title
CN101556178A (zh) 一种水位动态检测方法及设备
CN103199310A (zh) 便携式电子产品的电池电量保障方法、设备及移动终端
CN102938477B (zh) 一种蓄电池的充电方法和装置
EP2498372A2 (en) Standby power reduction device
CN109995103A (zh) 应急启动电源及应急启动方法
JP2013168386A (ja) 待機電力遮断装置及びその制御方法
EP3096430A1 (en) Electric automobile and alternating-current charging power supply circuit of automobile control apparatus thereof
CN104914382B (zh) 一种蓄电池容量的检测方法
CN104362969B (zh) 一种太阳能户外电源系统
CN104260677A (zh) 一种车载电源控制电路和汽车
CN110954814A (zh) 一种继电器触片粘连检测系统
CN102346214A (zh) 监测终端设备异常功耗的方法及装置
CN110333403A (zh) 一种电磁抱闸的异常检测装置及方法
CN204103446U (zh) 一种过欠压保护电路
CN105135691A (zh) 一种电热水器智能控制系统
CN201804275U (zh) 全自动水位控制器
CN201435012Y (zh) 一种智能型水位控制器
CN107295125B (zh) 一种手持终端开关电路及控制方法
CN211349056U (zh) 一种压缩机异常断电时间检测电路
CN103631154A (zh) 一种洗碗机、供电控制电路及断电控制方法
CN102282736B (zh) 一种电源的开关控制电路及一种供电电路
CN101557160B (zh) 逆变电源超低功耗待机电路
CN201804277U (zh) 自动水位控制器
CN201383603Y (zh) 电源插座节电控制装置
CN211318699U (zh) 自检测电源故障的控制电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20091014