CN101538005B - Method for manufacturing optical modulation thermal imaging focal plane array - Google Patents
Method for manufacturing optical modulation thermal imaging focal plane array Download PDFInfo
- Publication number
- CN101538005B CN101538005B CN2009100802779A CN200910080277A CN101538005B CN 101538005 B CN101538005 B CN 101538005B CN 2009100802779 A CN2009100802779 A CN 2009100802779A CN 200910080277 A CN200910080277 A CN 200910080277A CN 101538005 B CN101538005 B CN 101538005B
- Authority
- CN
- China
- Prior art keywords
- etching
- focal plane
- thermal imaging
- plane array
- imaging focal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000001931 thermography Methods 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 230000003287 optical effect Effects 0.000 title abstract description 4
- 238000005530 etching Methods 0.000 claims abstract description 50
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 39
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 25
- 239000010703 silicon Substances 0.000 claims abstract description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000010409 thin film Substances 0.000 claims abstract description 17
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 14
- 229920005591 polysilicon Polymers 0.000 claims abstract description 14
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- 238000001020 plasma etching Methods 0.000 claims description 26
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 19
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims description 14
- 239000010408 film Substances 0.000 claims description 12
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 10
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 7
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 5
- 238000001312 dry etching Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 5
- 238000009616 inductively coupled plasma Methods 0.000 claims description 5
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 235000012239 silicon dioxide Nutrition 0.000 claims description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 4
- BLIQUJLAJXRXSG-UHFFFAOYSA-N 1-benzyl-3-(trifluoromethyl)pyrrolidin-1-ium-3-carboxylate Chemical compound C1C(C(=O)O)(C(F)(F)F)CCN1CC1=CC=CC=C1 BLIQUJLAJXRXSG-UHFFFAOYSA-N 0.000 claims description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052794 bromium Inorganic materials 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 238000009279 wet oxidation reaction Methods 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- 238000000137 annealing Methods 0.000 claims description 2
- 229910052785 arsenic Inorganic materials 0.000 claims description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 2
- 238000005260 corrosion Methods 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 claims description 2
- 238000002513 implantation Methods 0.000 claims description 2
- 230000000873 masking effect Effects 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- 239000000758 substrate Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005459 micromachining Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Landscapes
- Micromachines (AREA)
- Weting (AREA)
Abstract
Description
技术领域technical field
本发明属于微电子技术中的硅微机械加工领域,特别涉及一种硅微机械加工技术制作带硅支撑框架的全镂空结构光调制热成像焦平面阵列(FPA)的方法。 The invention belongs to the field of silicon micromachining in microelectronic technology, and in particular relates to a method for manufacturing a fully hollowed-out structural light modulation thermal imaging focal plane array (FPA) with a silicon support frame by silicon micromachining technology. the
背景技术Background technique
采用光学调制方法的、基于微机电系统(MEMS)的非制冷型红外探测焦平面阵列(FPA)大多采用微悬臂梁热隔离结构,他们的探测灵敏度和器件的结构有着直接的关系。此种类型的焦平面阵列(FPA)通常采用带有牺牲层的多层双材料悬臂梁热隔离结构,这种结构的特点是保留有红外敏感区的硅衬底,而利用多层结构实现热隔离,其缺点是红外辐射在到达敏感单元之前先会被硅衬底所反射,从而造成这类器件的红外辐射利用率低,影响器件性能。为了解决这一问题,我们曾提出了一种衬底全镂空结构的光调制非制冷红外焦平面阵列,这种器件的特点是在红外敏感单元区域的硅衬底全部被去掉,敏感单元完全依靠一层薄膜结构支撑。此种全镂空结构的光调制非制冷红外焦平面阵列解决了红外辐射被硅衬底反射的问题,从而极大地提高了器件的响应灵敏度性能。但是这种器件由于器件结构只由一层薄膜所支撑,所以异常脆弱,很容易破损。 Micro-electromechanical systems (MEMS)-based uncooled infrared detection focal plane arrays (FPA) that use optical modulation methods mostly use micro-cantilever thermal isolation structures, and their detection sensitivity is directly related to the structure of the device. This type of focal plane array (FPA) usually adopts a multilayer dual-material cantilever beam thermal isolation structure with a sacrificial layer. The disadvantage of isolation is that infrared radiation will be reflected by the silicon substrate before reaching the sensitive unit, resulting in low utilization of infrared radiation for such devices and affecting device performance. In order to solve this problem, we have proposed a light-modulating uncooled infrared focal plane array with a fully hollowed-out substrate structure. The feature of this device is that the silicon substrate in the infrared sensitive unit area is completely removed, and the sensitive unit relies entirely on Supported by a layer of membrane structure. This light-modulating uncooled infrared focal plane array with a fully hollow structure solves the problem that infrared radiation is reflected by a silicon substrate, thereby greatly improving the response sensitivity performance of the device. However, this device is extremely fragile and easily damaged because the device structure is only supported by a thin film. the
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种制作带硅支撑框架的全镂空结构光调制热成像焦平面阵列(FPA)的制作方法。 The technical problem to be solved by the present invention is to provide a method for manufacturing a fully hollow structured light modulation thermal imaging focal plane array (FPA) with a silicon support frame. the
本发明是通过如下技术方案解决上述技术问题的,本发明提出一种带硅支撑框架的全镂空结构光调制热成像焦平面阵列的制作方法,包括如下步骤: The present invention solves the above-mentioned technical problems through the following technical solutions. The present invention proposes a method for manufacturing a fully hollow structured light modulation thermal imaging focal plane array with a silicon support frame, including the following steps:
步骤1、在单晶硅片上表面覆盖掺杂层; Step 1, covering the surface of the monocrystalline silicon wafer with a doped layer;
步骤2、按照预设图案,在单晶硅片上表面刻蚀沟槽; Step 2. Etching grooves on the surface of the single crystal silicon wafer according to the preset pattern;
步骤3、在沟槽内壁覆盖氧化硅层; Step 3, covering the inner wall of the trench with a silicon oxide layer;
步骤4、生长多晶硅填满沟槽; Step 4, growing polysilicon to fill the trench;
步骤5、在单晶硅片上表面覆盖薄膜层A; Step 5, covering the surface of the monocrystalline silicon wafer with a film layer A;
步骤6、在薄膜层A上覆盖金属层; Step 6, covering the metal layer on the film layer A;
步骤7、按照预设图案,刻蚀金属层; Step 7. Etching the metal layer according to the preset pattern;
步骤8、按照预设图案,刻蚀薄膜层A; Step 8. Etching the thin film layer A according to the preset pattern;
步骤9、按照预设图案,从背面腐蚀单晶硅; Step 9. Etch the monocrystalline silicon from the back according to the preset pattern;
步骤10、按预设图案,腐蚀掺杂层。 Step 10, etching the doped layer according to a preset pattern. the
从而得到带硅支撑框架的全镂空结构光调制热成像焦平面阵列。 Thus, a fully hollow structured light modulation thermal imaging focal plane array with a silicon support frame is obtained. the
优选的,上述单晶硅片单晶硅晶向为<100>。 Preferably, the monocrystalline silicon crystal orientation of the above-mentioned single crystal silicon wafer is <100>. the
优选的,上述步骤1中,所述的掺杂层是采用高能粒子注入后再高温退火的方法或者标准的杂质扩散掺杂工艺在所述的单晶硅片上掺加浓B(硼)、P(磷)、或As(砷)杂质实现的。 Preferably, in the above step 1, the doped layer is doped with concentrated B (boron), boron, P (phosphorus), or As (arsenic) impurities. the
优选的,上述步骤2中,所述的在单晶硅片上刻蚀沟槽是采用SiO2(二氧化硅)作为掩蔽层,使用RIE(反应粒子刻蚀)设备或者ICP(感应耦合等离子刻蚀)设备通过各向异性干法深硅刻蚀实现的。 Preferably, in the above-mentioned step 2, the described etching groove on the monocrystalline silicon wafer adopts SiO2 (silicon dioxide) as a masking layer, and uses RIE (Reactive Particle Etching) equipment or ICP (Inductively Coupled Plasma Etching) ) devices are realized by anisotropic dry deep silicon etching. the
优选的,上述步骤3中,在沟槽内壁生长氧化硅是采用干氧化工艺或者湿氧化工艺实现的。 Preferably, in the above step 3, growing silicon oxide on the inner wall of the trench is realized by using a dry oxidation process or a wet oxidation process. the
优选的,上述步骤4中,生长多晶硅是采用LPCVD(低压化学气相淀积)工艺在单晶硅片上表面生成一层多晶硅,并填满所述的沟槽,然后使用Br(溴)基刻蚀气体和RIE(反应离子刻蚀)设备,通过多晶硅干法刻蚀多余的多晶硅实现的。 Preferably, in the above step 4, growing polysilicon is to adopt LPCVD (low pressure chemical vapor deposition) process to generate a layer of polysilicon on the upper surface of the single crystal silicon wafer, and fill up the groove, and then use Br (bromine) substrate to etch Etching gas and RIE (Reactive Ion Etching) equipment, through polysilicon dry etching excess polysilicon. the
优选的,上述步骤5还包括,在所述的单晶硅片下表面覆盖薄膜层B,所述的薄膜层A和薄膜层B均为氮化硅材料或者氧化硅材料,该过程是采用LPCVD(低压化学气相淀积)或者PECVD(等离子增强化学气相淀积)实现的。 Preferably, the above step 5 also includes covering the lower surface of the single crystal silicon wafer with a thin film layer B, and the thin film layer A and the thin film layer B are both silicon nitride materials or silicon oxide materials, and the process adopts LPCVD (low pressure chemical vapor deposition) or PECVD (plasma enhanced chemical vapor deposition). the
优选的,上述步骤6中,所述的覆盖金属层是采用MSS(磁控溅射)工艺实现的。 Preferably, in the above step 6, the covering metal layer is realized by MSS (magnetron sputtering) process. the
优选的,上述步骤7中,所述的刻蚀金属层A是采用RIE(反应离子刻蚀)设备,通过干法刻蚀工艺实现的。 Preferably, in the above step 7, the etching of the metal layer A is achieved by using RIE (Reactive Ion Etching) equipment through a dry etching process. the
优选的,上述步骤8中,所述的刻蚀薄膜层A是采用RIE(反应离子刻蚀)设备刻蚀形成的。 Preferably, in the above step 8, the etching thin film layer A is formed by etching with RIE (Reactive Ion Etching) equipment. the
优选的,上述步骤9还包括,按照预设图案刻蚀薄膜层B,该刻蚀过程是通过使用RIE(反应离子刻蚀)设备,采用RIE(反应离子刻蚀)工艺实现的。 Preferably, the above step 9 further includes etching the thin film layer B according to a preset pattern, and the etching process is realized by using RIE (reactive ion etching) equipment and RIE (reactive ion etching) process. the
优选的,上述步骤9中,所述的腐蚀单晶硅采用的是KOH(氢氧化钾)溶液或者TMAH(四甲基氢氧化铵)溶液作为腐蚀溶液。 Preferably, in the above step 9, the etching of single crystal silicon uses KOH (potassium hydroxide) solution or TMAH (tetramethylammonium hydroxide) solution as the etching solution. the
优选的,上述步骤10中,所述的腐蚀掺杂层是采用XeF2(二氟化氙)作为腐蚀气体。 Preferably, in the above step 10, the etching of the doped layer uses XeF 2 (xenon difluoride) as the etching gas.
综上所述,本发明从微细加工角度出发,结合体硅深刻蚀、多晶硅沟槽填充、单晶硅湿法腐蚀自终止、硅的各相同性干法腐蚀等技术,提出的一种带硅支撑框架的全镂空结构光调制热成像焦平面阵列的制作方法,从而完善了本发明提出的一种制作带硅支撑框架的全镂空结构光调制热成像焦平面阵列(FPA)的制作方法。 In summary, from the perspective of microfabrication, the present invention combines technologies such as deep etching of bulk silicon, polysilicon trench filling, self-termination of monocrystalline silicon wet etching, and isotropic dry etching of silicon to propose a A method for manufacturing a fully hollow structured light modulation thermal imaging focal plane array of a supporting frame, thereby perfecting a method for manufacturing a fully hollow structured light modulating thermal imaging focal plane array (FPA) with a silicon support frame proposed by the present invention. the
本发明一种制作带硅支撑框架的全镂空结构光调制热成像焦平面阵列(FPA)的制作方法还包括:正性光刻胶的涂胶、曝光、显影等一系列图形转移工作。 A method for manufacturing a fully hollow structured light-modulated thermal imaging focal plane array (FPA) with a silicon support frame of the present invention also includes: a series of pattern transfer operations such as gluing, exposure, and development of positive photoresist. the
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。 The above description is only an overview of the technical solutions of the present invention. In order to understand the technical means of the present invention more clearly and implement them according to the contents of the description, the preferred embodiments of the present invention and accompanying drawings are described in detail below. the
附图说明Description of drawings
图1至图12为本发明的带硅支撑框架的全镂空结构光调制热成像焦平面阵列的制作方法的各个步骤所形成产品的结构示意图。 1 to 12 are structural schematic diagrams of products formed in various steps of the method for manufacturing a fully hollow structured light modulation thermal imaging focal plane array with a silicon support frame according to the present invention. the
具体实施方式Detailed ways
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的带硅支撑框架的全镂 空结构光调制热成像焦平面阵列的制作方法其具体实施方式、结构、特征及其功效,详细说明如后。 In order to further explain the technical means and effects of the present invention to achieve the intended purpose of the invention, the following combined with the accompanying drawings and preferred embodiments, the full hollow structured light modulation thermal imaging focal plane with a silicon support frame proposed according to the present invention The fabrication method of the array and its specific implementation, structure, features and functions are described in detail below. the
步骤1,参照图1,采用高能粒子注入后再高温退火的方法或者标准的杂质扩散掺杂工艺,在晶向为<100>的单晶硅片101的正面掺杂一层浓B(硼)掺杂层102,其杂质浓度大于1e19l/cm3,掺杂的浓B(硼)掺杂层102的深度在2微米到20微米之间; Step 1, referring to Fig. 1, adopting the method of high-temperature annealing after high-energy particle implantation or the standard impurity diffusion doping process, doping a layer of concentrated B (boron) on the front surface of the single
步骤2,参照图2,使用RIE(反应粒子刻蚀)设备或者ICP(感应耦合等离子刻蚀)设备,采用SiO2(二氧化硅)作掩蔽层103,在单晶硅片101正面进行各向异性干法深硅刻蚀形成沟槽,得到深度在5微米到30微米之间,宽度在0.5微米到3微米之间的沟槽; Step 2, referring to FIG. 2, using RIE (Reactive Particle Etching) equipment or ICP (Inductively Coupled Plasma Etching) equipment, using SiO2 (silicon dioxide) as the
步骤3,参照图3,采用干氧化工艺或者湿氧化工艺,对单晶硅片进行氧化,在所述的沟槽内侧壁生长一层0.05微米到0.1微米的氧化硅层104; Step 3, referring to FIG. 3, oxidizing the monocrystalline silicon wafer by using a dry oxidation process or a wet oxidation process, and growing a
步骤4,参照图4和图5,采用LPCVD(低压化学气相淀积)工艺,在所述的单晶硅片101正面生长一层多晶硅层105,多晶硅层105厚度在0.25微米到1.5微米之间,并将沟槽填满;使用Br(溴)基刻蚀气体,采用RIE(反应离子刻蚀)设备,刻蚀掉单晶硅片101上除沟槽中以外的多晶硅; Step 4, with reference to Fig. 4 and Fig. 5, adopt LPCVD (low pressure chemical vapor deposition) process, grow a layer of
步骤5,参照图6,采用LPCVD(低压化学气相淀积)工艺或者PECVD(等离子增强化学气相淀积)的工艺,在单晶硅片101的双面生长厚度在0.1微米到2微米之间的低应力氮化硅薄膜层106或者氧化硅薄膜层106; Step 5, referring to FIG. 6, using LPCVD (low pressure chemical vapor deposition) process or PECVD (plasma enhanced chemical vapor deposition) process, on both sides of the single
步骤6,参照图7,采用MSS(磁控溅射)工艺,在所述的氮化硅薄膜层106或者氧化硅薄膜层106上溅射一层厚度在0.1微米到0.8微米之间的铝金属薄膜层107; Step 6, referring to FIG. 7, using MSS (magnetron sputtering) process, sputtering a layer of aluminum metal with a thickness between 0.1 micron and 0.8 micron on the silicon
步骤7,参照图8,采用RIE(反应离子刻蚀)设备,采用干法刻蚀工艺刻蚀掉部分的铝金属薄膜层107; Step 7, referring to FIG. 8, using RIE (reactive ion etching) equipment, using a dry etching process to etch away part of the aluminum metal film layer 107;
步骤8,参照图9,采用RIE(反应离子刻蚀)设备,采用氟基气体,刻蚀掉部分氧化硅薄膜层106,形成悬臂梁结构; Step 8, referring to FIG. 9, using RIE (reactive ion etching) equipment, using fluorine-based gas, etching away part of the silicon
步骤9,参照图10和图11,使用具有双面光刻功能的光刻机如SUSS公司的MA6或EVG公司的620光刻机在单晶硅片101背面定义出背面图形,使用RIE(反应离子刻蚀)设备,采用RIE(反应离子刻蚀)工艺,在硅片正面图形区所对应的硅片背面干法刻蚀掉部分背面的氮化硅薄膜层106或者氧化硅薄膜层106,使得单晶硅片101背面的单晶硅部分暴露,此需要使用到具有双面光刻功能的光刻机如SUSS公司的MA6或EVG公司的620光刻机;对单晶硅片101背面部分暴露出的单晶硅的窗口进行腐蚀,利用掺杂有高浓度的B元素的硅不会被腐蚀液所腐蚀以及各向异性腐蚀液对单晶硅<111>晶面腐蚀速度极低的原理,使腐蚀过程到达浓硼掺杂层102,然后自动终止,KOH(氢氧化钾)溶液或TMAH(四甲基氢氧化铵)溶液,浓度分别为33%的KOH(氢氧化钾)溶液或20%的TMAH(四甲基氢氧化铵)溶液,腐蚀温度为50度到90度之间。 Step 9, with reference to Fig. 10 and Fig. 11, use the lithography machine with double-sided lithography function such as the MA6 of SUSS company or the 620 lithography machine of EVG company to define the back pattern on the back side of the single
步骤10,参照图12,采用XeF2(二氟化氙)作为腐蚀气体在常压下,采用干法各向异性腐蚀从硅片的正面腐蚀掉没有被湿法腐蚀所去除的拥有浓B(硼)杂质的单晶硅,即浓B(硼)掺杂层102,完成腐蚀工作,并最终释放出器件结构,完成整个器件的加工工序。 Step 10, referring to FIG. 12 , using XeF 2 (xenon difluoride) as the etching gas under normal pressure, using dry anisotropic etching to etch away the concentrated B ( The single crystal silicon with boron) impurity, that is, the concentrated B (boron) doped
上述实施例的方法还包括:正性光刻胶的涂胶、曝光、显影等一系列图形转移工作。 The method of the above embodiment also includes: a series of pattern transfer operations such as coating of positive photoresist, exposure, and development. the
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100802779A CN101538005B (en) | 2009-03-17 | 2009-03-17 | Method for manufacturing optical modulation thermal imaging focal plane array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100802779A CN101538005B (en) | 2009-03-17 | 2009-03-17 | Method for manufacturing optical modulation thermal imaging focal plane array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101538005A CN101538005A (en) | 2009-09-23 |
CN101538005B true CN101538005B (en) | 2011-04-20 |
Family
ID=41121447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100802779A Active CN101538005B (en) | 2009-03-17 | 2009-03-17 | Method for manufacturing optical modulation thermal imaging focal plane array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101538005B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101538006B (en) * | 2009-04-24 | 2011-04-20 | 中国科学院微电子研究所 | Method for manufacturing optical modulation thermal imaging focal plane array |
CN103318836B (en) * | 2012-03-21 | 2016-01-06 | 中国科学院微电子研究所 | Optical readout full-hollow focal plane array with heat sink structure and manufacturing method thereof |
CN110589755A (en) * | 2019-09-06 | 2019-12-20 | 赣南师范大学 | A double-sided self-aligned etched silicon cantilever array thermoelectric transducer embedded with polysilicon resistors |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1807221A (en) * | 2005-12-29 | 2006-07-26 | 中国科学院上海微系统与信息技术研究所 | Anchor production method in xenon difluoride gas corrosion process |
CN1911781A (en) * | 2005-08-11 | 2007-02-14 | 中国科学院微电子研究所 | Manufacturing method for improving performance of uncooled infrared focal plane array device |
CN101538006A (en) * | 2009-04-24 | 2009-09-23 | 中国科学院微电子研究所 | Fabrication method of light modulation thermal imaging focal plane array |
-
2009
- 2009-03-17 CN CN2009100802779A patent/CN101538005B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1911781A (en) * | 2005-08-11 | 2007-02-14 | 中国科学院微电子研究所 | Manufacturing method for improving performance of uncooled infrared focal plane array device |
CN1807221A (en) * | 2005-12-29 | 2006-07-26 | 中国科学院上海微系统与信息技术研究所 | Anchor production method in xenon difluoride gas corrosion process |
CN101538006A (en) * | 2009-04-24 | 2009-09-23 | 中国科学院微电子研究所 | Fabrication method of light modulation thermal imaging focal plane array |
Non-Patent Citations (2)
Title |
---|
何伟等.非制冷红外焦平面阵列进展.《电子工业专用设备》.2008, * |
李超波等.基于MEMS技术的红外成像焦平面阵列.《半导体学报》.2006, * |
Also Published As
Publication number | Publication date |
---|---|
CN101538005A (en) | 2009-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pal et al. | Fabrication methods based on wet etching process for the realization of silicon MEMS structures with new shapes | |
CN100561148C (en) | An uncooled infrared focal plane array detector and its manufacturing method | |
CN103245421B (en) | Pyrogenicity type MEMS (micro-electro-mechanical system) thermopile infrared detector structure and manufacturing method thereof | |
CN108646329A (en) | The preparation method of X-ray self-supporting glittering transmission grating | |
US4978421A (en) | Monolithic silicon membrane device fabrication process | |
CN101559916A (en) | Method for preparing masking microstructure | |
CN101538005B (en) | Method for manufacturing optical modulation thermal imaging focal plane array | |
CN108931321A (en) | Beam-island-film integration resonant mode pressure sensor structure and manufacturing method | |
CN103439032B (en) | Processing method of silicon micro resonator | |
CN110577188B (en) | Method for manufacturing suspended infrared thermopile on substrate | |
CN101538006B (en) | Method for manufacturing optical modulation thermal imaging focal plane array | |
CN101402445A (en) | Method for manufacturing micro-structure with self-alignment and manufactured infrared thermopile detector | |
CN107316829B (en) | Gas phase lithographic method and vapor etching device based on TMAH | |
CN103145094B (en) | Form the body silicon micromachined method of MEMS thermopile detector cavity structure | |
CN110627014B (en) | Method for manufacturing suspended infrared thermopile on substrate | |
CN110286432B (en) | Preparation method of X-ray gold transmission grating | |
CN105129718A (en) | Optical readout infrared detector structure and manufacturing method thereof | |
CN105576070B (en) | Cavity forming method, thermopile IR detector and preparation method thereof | |
CN101985348B (en) | Method for manufacturing micron-scale grid structure made of monocrystalline silicon material | |
CN102139855A (en) | Manufacturing method of micro-nano cantilever beam structure for hypersensitive detection | |
CN210193393U (en) | MEMS structure | |
JP3950628B2 (en) | Method for manufacturing a broad membrane mask | |
CN109678103B (en) | MEMS structure and method of manufacturing the same | |
CN103482566A (en) | Deep groove manufacturing method used in MEMS process | |
CN100396593C (en) | Fabrication method of single-layer dual-material microcantilever thermally isolated focal plane array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |