CN101538005B - Method for manufacturing optical modulation thermal imaging focal plane array - Google Patents

Method for manufacturing optical modulation thermal imaging focal plane array Download PDF

Info

Publication number
CN101538005B
CN101538005B CN2009100802779A CN200910080277A CN101538005B CN 101538005 B CN101538005 B CN 101538005B CN 2009100802779 A CN2009100802779 A CN 2009100802779A CN 200910080277 A CN200910080277 A CN 200910080277A CN 101538005 B CN101538005 B CN 101538005B
Authority
CN
China
Prior art keywords
etching
focal plane
thermal imaging
plane array
imaging focal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009100802779A
Other languages
Chinese (zh)
Other versions
CN101538005A (en
Inventor
焦斌斌
陈大鹏
欧毅
叶甜春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN2009100802779A priority Critical patent/CN101538005B/en
Publication of CN101538005A publication Critical patent/CN101538005A/en
Application granted granted Critical
Publication of CN101538005B publication Critical patent/CN101538005B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)
  • Weting (AREA)

Abstract

The invention relates to a method for manufacturing an optical modulation thermal imaging focal plane array, which comprises the following steps: step 1, manufacturing a doped layer on the upper surface of a monocrystalline silicon piece; step 2, etching a groove on the upper surface of the monocrystalline silicon piece according to a preset pattern; step 3, covering a silicon oxide layer on the inner wall of the groove; step 4, growing polysilicon to fill the groove; step 5, covering a thin film layer A on the upper surface of the monocrystalline silicon piece; step 6, covering a metal layer on the thin film layer A; step 7, etching the metal layer according to a preset pattern; step 8, etching the thin film layer A according to a preset pattern; step 9, corroding monocrystalline silicon from the back of the silicon wafer according to a preset pattern; and step 10, corroding the doped layer according to a preset pattern to obtain the fully-hollowed structure optical modulation thermal imaging focal plane array with the silicon support frame.

Description

光调制热成像焦平面阵列的制作方法 Fabrication method of light modulation thermal imaging focal plane array

技术领域technical field

本发明属于微电子技术中的硅微机械加工领域,特别涉及一种硅微机械加工技术制作带硅支撑框架的全镂空结构光调制热成像焦平面阵列(FPA)的方法。 The invention belongs to the field of silicon micromachining in microelectronic technology, and in particular relates to a method for manufacturing a fully hollowed-out structural light modulation thermal imaging focal plane array (FPA) with a silicon support frame by silicon micromachining technology. the

背景技术Background technique

采用光学调制方法的、基于微机电系统(MEMS)的非制冷型红外探测焦平面阵列(FPA)大多采用微悬臂梁热隔离结构,他们的探测灵敏度和器件的结构有着直接的关系。此种类型的焦平面阵列(FPA)通常采用带有牺牲层的多层双材料悬臂梁热隔离结构,这种结构的特点是保留有红外敏感区的硅衬底,而利用多层结构实现热隔离,其缺点是红外辐射在到达敏感单元之前先会被硅衬底所反射,从而造成这类器件的红外辐射利用率低,影响器件性能。为了解决这一问题,我们曾提出了一种衬底全镂空结构的光调制非制冷红外焦平面阵列,这种器件的特点是在红外敏感单元区域的硅衬底全部被去掉,敏感单元完全依靠一层薄膜结构支撑。此种全镂空结构的光调制非制冷红外焦平面阵列解决了红外辐射被硅衬底反射的问题,从而极大地提高了器件的响应灵敏度性能。但是这种器件由于器件结构只由一层薄膜所支撑,所以异常脆弱,很容易破损。 Micro-electromechanical systems (MEMS)-based uncooled infrared detection focal plane arrays (FPA) that use optical modulation methods mostly use micro-cantilever thermal isolation structures, and their detection sensitivity is directly related to the structure of the device. This type of focal plane array (FPA) usually adopts a multilayer dual-material cantilever beam thermal isolation structure with a sacrificial layer. The disadvantage of isolation is that infrared radiation will be reflected by the silicon substrate before reaching the sensitive unit, resulting in low utilization of infrared radiation for such devices and affecting device performance. In order to solve this problem, we have proposed a light-modulating uncooled infrared focal plane array with a fully hollowed-out substrate structure. The feature of this device is that the silicon substrate in the infrared sensitive unit area is completely removed, and the sensitive unit relies entirely on Supported by a layer of membrane structure. This light-modulating uncooled infrared focal plane array with a fully hollow structure solves the problem that infrared radiation is reflected by a silicon substrate, thereby greatly improving the response sensitivity performance of the device. However, this device is extremely fragile and easily damaged because the device structure is only supported by a thin film. the

发明内容Contents of the invention

本发明所要解决的技术问题是提供一种制作带硅支撑框架的全镂空结构光调制热成像焦平面阵列(FPA)的制作方法。 The technical problem to be solved by the present invention is to provide a method for manufacturing a fully hollow structured light modulation thermal imaging focal plane array (FPA) with a silicon support frame. the

本发明是通过如下技术方案解决上述技术问题的,本发明提出一种带硅支撑框架的全镂空结构光调制热成像焦平面阵列的制作方法,包括如下步骤: The present invention solves the above-mentioned technical problems through the following technical solutions. The present invention proposes a method for manufacturing a fully hollow structured light modulation thermal imaging focal plane array with a silicon support frame, including the following steps:

步骤1、在单晶硅片上表面覆盖掺杂层; Step 1, covering the surface of the monocrystalline silicon wafer with a doped layer;

步骤2、按照预设图案,在单晶硅片上表面刻蚀沟槽; Step 2. Etching grooves on the surface of the single crystal silicon wafer according to the preset pattern;

步骤3、在沟槽内壁覆盖氧化硅层; Step 3, covering the inner wall of the trench with a silicon oxide layer;

步骤4、生长多晶硅填满沟槽; Step 4, growing polysilicon to fill the trench;

步骤5、在单晶硅片上表面覆盖薄膜层A; Step 5, covering the surface of the monocrystalline silicon wafer with a film layer A;

步骤6、在薄膜层A上覆盖金属层; Step 6, covering the metal layer on the film layer A;

步骤7、按照预设图案,刻蚀金属层; Step 7. Etching the metal layer according to the preset pattern;

步骤8、按照预设图案,刻蚀薄膜层A; Step 8. Etching the thin film layer A according to the preset pattern;

步骤9、按照预设图案,从背面腐蚀单晶硅; Step 9. Etch the monocrystalline silicon from the back according to the preset pattern;

步骤10、按预设图案,腐蚀掺杂层。 Step 10, etching the doped layer according to a preset pattern. the

从而得到带硅支撑框架的全镂空结构光调制热成像焦平面阵列。 Thus, a fully hollow structured light modulation thermal imaging focal plane array with a silicon support frame is obtained. the

优选的,上述单晶硅片单晶硅晶向为<100>。 Preferably, the monocrystalline silicon crystal orientation of the above-mentioned single crystal silicon wafer is <100>. the

优选的,上述步骤1中,所述的掺杂层是采用高能粒子注入后再高温退火的方法或者标准的杂质扩散掺杂工艺在所述的单晶硅片上掺加浓B(硼)、P(磷)、或As(砷)杂质实现的。 Preferably, in the above step 1, the doped layer is doped with concentrated B (boron), boron, P (phosphorus), or As (arsenic) impurities. the

优选的,上述步骤2中,所述的在单晶硅片上刻蚀沟槽是采用SiO2(二氧化硅)作为掩蔽层,使用RIE(反应粒子刻蚀)设备或者ICP(感应耦合等离子刻蚀)设备通过各向异性干法深硅刻蚀实现的。 Preferably, in the above-mentioned step 2, the described etching groove on the monocrystalline silicon wafer adopts SiO2 (silicon dioxide) as a masking layer, and uses RIE (Reactive Particle Etching) equipment or ICP (Inductively Coupled Plasma Etching) ) devices are realized by anisotropic dry deep silicon etching. the

优选的,上述步骤3中,在沟槽内壁生长氧化硅是采用干氧化工艺或者湿氧化工艺实现的。 Preferably, in the above step 3, growing silicon oxide on the inner wall of the trench is realized by using a dry oxidation process or a wet oxidation process. the

优选的,上述步骤4中,生长多晶硅是采用LPCVD(低压化学气相淀积)工艺在单晶硅片上表面生成一层多晶硅,并填满所述的沟槽,然后使用Br(溴)基刻蚀气体和RIE(反应离子刻蚀)设备,通过多晶硅干法刻蚀多余的多晶硅实现的。 Preferably, in the above step 4, growing polysilicon is to adopt LPCVD (low pressure chemical vapor deposition) process to generate a layer of polysilicon on the upper surface of the single crystal silicon wafer, and fill up the groove, and then use Br (bromine) substrate to etch Etching gas and RIE (Reactive Ion Etching) equipment, through polysilicon dry etching excess polysilicon. the

优选的,上述步骤5还包括,在所述的单晶硅片下表面覆盖薄膜层B,所述的薄膜层A和薄膜层B均为氮化硅材料或者氧化硅材料,该过程是采用LPCVD(低压化学气相淀积)或者PECVD(等离子增强化学气相淀积)实现的。 Preferably, the above step 5 also includes covering the lower surface of the single crystal silicon wafer with a thin film layer B, and the thin film layer A and the thin film layer B are both silicon nitride materials or silicon oxide materials, and the process adopts LPCVD (low pressure chemical vapor deposition) or PECVD (plasma enhanced chemical vapor deposition). the

优选的,上述步骤6中,所述的覆盖金属层是采用MSS(磁控溅射)工艺实现的。 Preferably, in the above step 6, the covering metal layer is realized by MSS (magnetron sputtering) process. the

优选的,上述步骤7中,所述的刻蚀金属层A是采用RIE(反应离子刻蚀)设备,通过干法刻蚀工艺实现的。 Preferably, in the above step 7, the etching of the metal layer A is achieved by using RIE (Reactive Ion Etching) equipment through a dry etching process. the

优选的,上述步骤8中,所述的刻蚀薄膜层A是采用RIE(反应离子刻蚀)设备刻蚀形成的。 Preferably, in the above step 8, the etching thin film layer A is formed by etching with RIE (Reactive Ion Etching) equipment. the

优选的,上述步骤9还包括,按照预设图案刻蚀薄膜层B,该刻蚀过程是通过使用RIE(反应离子刻蚀)设备,采用RIE(反应离子刻蚀)工艺实现的。 Preferably, the above step 9 further includes etching the thin film layer B according to a preset pattern, and the etching process is realized by using RIE (reactive ion etching) equipment and RIE (reactive ion etching) process. the

优选的,上述步骤9中,所述的腐蚀单晶硅采用的是KOH(氢氧化钾)溶液或者TMAH(四甲基氢氧化铵)溶液作为腐蚀溶液。 Preferably, in the above step 9, the etching of single crystal silicon uses KOH (potassium hydroxide) solution or TMAH (tetramethylammonium hydroxide) solution as the etching solution. the

优选的,上述步骤10中,所述的腐蚀掺杂层是采用XeF2(二氟化氙)作为腐蚀气体。 Preferably, in the above step 10, the etching of the doped layer uses XeF 2 (xenon difluoride) as the etching gas.

综上所述,本发明从微细加工角度出发,结合体硅深刻蚀、多晶硅沟槽填充、单晶硅湿法腐蚀自终止、硅的各相同性干法腐蚀等技术,提出的一种带硅支撑框架的全镂空结构光调制热成像焦平面阵列的制作方法,从而完善了本发明提出的一种制作带硅支撑框架的全镂空结构光调制热成像焦平面阵列(FPA)的制作方法。 In summary, from the perspective of microfabrication, the present invention combines technologies such as deep etching of bulk silicon, polysilicon trench filling, self-termination of monocrystalline silicon wet etching, and isotropic dry etching of silicon to propose a A method for manufacturing a fully hollow structured light modulation thermal imaging focal plane array of a supporting frame, thereby perfecting a method for manufacturing a fully hollow structured light modulating thermal imaging focal plane array (FPA) with a silicon support frame proposed by the present invention. the

本发明一种制作带硅支撑框架的全镂空结构光调制热成像焦平面阵列(FPA)的制作方法还包括:正性光刻胶的涂胶、曝光、显影等一系列图形转移工作。 A method for manufacturing a fully hollow structured light-modulated thermal imaging focal plane array (FPA) with a silicon support frame of the present invention also includes: a series of pattern transfer operations such as gluing, exposure, and development of positive photoresist. the

上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。 The above description is only an overview of the technical solutions of the present invention. In order to understand the technical means of the present invention more clearly and implement them according to the contents of the description, the preferred embodiments of the present invention and accompanying drawings are described in detail below. the

附图说明Description of drawings

图1至图12为本发明的带硅支撑框架的全镂空结构光调制热成像焦平面阵列的制作方法的各个步骤所形成产品的结构示意图。 1 to 12 are structural schematic diagrams of products formed in various steps of the method for manufacturing a fully hollow structured light modulation thermal imaging focal plane array with a silicon support frame according to the present invention. the

具体实施方式Detailed ways

为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的带硅支撑框架的全镂 空结构光调制热成像焦平面阵列的制作方法其具体实施方式、结构、特征及其功效,详细说明如后。 In order to further explain the technical means and effects of the present invention to achieve the intended purpose of the invention, the following combined with the accompanying drawings and preferred embodiments, the full hollow structured light modulation thermal imaging focal plane with a silicon support frame proposed according to the present invention The fabrication method of the array and its specific implementation, structure, features and functions are described in detail below. the

步骤1,参照图1,采用高能粒子注入后再高温退火的方法或者标准的杂质扩散掺杂工艺,在晶向为<100>的单晶硅片101的正面掺杂一层浓B(硼)掺杂层102,其杂质浓度大于1e19l/cm3,掺杂的浓B(硼)掺杂层102的深度在2微米到20微米之间; Step 1, referring to Fig. 1, adopting the method of high-temperature annealing after high-energy particle implantation or the standard impurity diffusion doping process, doping a layer of concentrated B (boron) on the front surface of the single crystal silicon wafer 101 with a crystal orientation of <100> A doped layer 102, the impurity concentration of which is greater than 1e19l/cm 3 , and the depth of the doped concentrated B (boron) doped layer 102 is between 2 microns and 20 microns;

步骤2,参照图2,使用RIE(反应粒子刻蚀)设备或者ICP(感应耦合等离子刻蚀)设备,采用SiO2(二氧化硅)作掩蔽层103,在单晶硅片101正面进行各向异性干法深硅刻蚀形成沟槽,得到深度在5微米到30微米之间,宽度在0.5微米到3微米之间的沟槽; Step 2, referring to FIG. 2, using RIE (Reactive Particle Etching) equipment or ICP (Inductively Coupled Plasma Etching) equipment, using SiO2 (silicon dioxide) as the mask layer 103, anisotropic Dry deep silicon etching to form trenches, and obtain trenches with a depth between 5 microns and 30 microns and a width between 0.5 microns and 3 microns;

步骤3,参照图3,采用干氧化工艺或者湿氧化工艺,对单晶硅片进行氧化,在所述的沟槽内侧壁生长一层0.05微米到0.1微米的氧化硅层104; Step 3, referring to FIG. 3, oxidizing the monocrystalline silicon wafer by using a dry oxidation process or a wet oxidation process, and growing a silicon oxide layer 104 of 0.05 micron to 0.1 micron on the inner wall of the trench;

步骤4,参照图4和图5,采用LPCVD(低压化学气相淀积)工艺,在所述的单晶硅片101正面生长一层多晶硅层105,多晶硅层105厚度在0.25微米到1.5微米之间,并将沟槽填满;使用Br(溴)基刻蚀气体,采用RIE(反应离子刻蚀)设备,刻蚀掉单晶硅片101上除沟槽中以外的多晶硅; Step 4, with reference to Fig. 4 and Fig. 5, adopt LPCVD (low pressure chemical vapor deposition) process, grow a layer of polysilicon layer 105 on the front side of described monocrystalline silicon wafer 101, the thickness of polysilicon layer 105 is between 0.25 microns to 1.5 microns , and fill the groove; use Br (bromine) based etching gas, adopt RIE (reactive ion etching) equipment, etch away the polysilicon on the single crystal silicon wafer 101 except in the groove;

步骤5,参照图6,采用LPCVD(低压化学气相淀积)工艺或者PECVD(等离子增强化学气相淀积)的工艺,在单晶硅片101的双面生长厚度在0.1微米到2微米之间的低应力氮化硅薄膜层106或者氧化硅薄膜层106; Step 5, referring to FIG. 6, using LPCVD (low pressure chemical vapor deposition) process or PECVD (plasma enhanced chemical vapor deposition) process, on both sides of the single crystal silicon wafer 101, grow Low-stress silicon nitride film layer 106 or silicon oxide film layer 106;

步骤6,参照图7,采用MSS(磁控溅射)工艺,在所述的氮化硅薄膜层106或者氧化硅薄膜层106上溅射一层厚度在0.1微米到0.8微米之间的铝金属薄膜层107; Step 6, referring to FIG. 7, using MSS (magnetron sputtering) process, sputtering a layer of aluminum metal with a thickness between 0.1 micron and 0.8 micron on the silicon nitride film layer 106 or silicon oxide film layer 106 film layer 107;

步骤7,参照图8,采用RIE(反应离子刻蚀)设备,采用干法刻蚀工艺刻蚀掉部分的铝金属薄膜层107; Step 7, referring to FIG. 8, using RIE (reactive ion etching) equipment, using a dry etching process to etch away part of the aluminum metal film layer 107;

步骤8,参照图9,采用RIE(反应离子刻蚀)设备,采用氟基气体,刻蚀掉部分氧化硅薄膜层106,形成悬臂梁结构; Step 8, referring to FIG. 9, using RIE (reactive ion etching) equipment, using fluorine-based gas, etching away part of the silicon oxide film layer 106 to form a cantilever beam structure;

步骤9,参照图10和图11,使用具有双面光刻功能的光刻机如SUSS公司的MA6或EVG公司的620光刻机在单晶硅片101背面定义出背面图形,使用RIE(反应离子刻蚀)设备,采用RIE(反应离子刻蚀)工艺,在硅片正面图形区所对应的硅片背面干法刻蚀掉部分背面的氮化硅薄膜层106或者氧化硅薄膜层106,使得单晶硅片101背面的单晶硅部分暴露,此需要使用到具有双面光刻功能的光刻机如SUSS公司的MA6或EVG公司的620光刻机;对单晶硅片101背面部分暴露出的单晶硅的窗口进行腐蚀,利用掺杂有高浓度的B元素的硅不会被腐蚀液所腐蚀以及各向异性腐蚀液对单晶硅<111>晶面腐蚀速度极低的原理,使腐蚀过程到达浓硼掺杂层102,然后自动终止,KOH(氢氧化钾)溶液或TMAH(四甲基氢氧化铵)溶液,浓度分别为33%的KOH(氢氧化钾)溶液或20%的TMAH(四甲基氢氧化铵)溶液,腐蚀温度为50度到90度之间。 Step 9, with reference to Fig. 10 and Fig. 11, use the lithography machine with double-sided lithography function such as the MA6 of SUSS company or the 620 lithography machine of EVG company to define the back pattern on the back side of the single crystal silicon wafer 101, use RIE (reaction Ion etching) equipment adopts the RIE (reactive ion etching) process to dry-etch the silicon nitride film layer 106 or silicon oxide film layer 106 on the back side of the silicon wafer corresponding to the pattern area on the front side of the silicon wafer, so that The monocrystalline silicon part on the back side of the monocrystalline silicon wafer 101 is exposed, which needs to use a photolithography machine with double-sided photolithography function such as the MA6 of SUSS Company or the 620 photolithography machine of EVG Company; the back part of the monocrystalline silicon wafer 101 is exposed The single crystal silicon window is etched, and the silicon doped with a high concentration of B element is not corroded by the etching solution and the anisotropic etching solution has a very low etching rate on the <111> crystal surface of the single crystal silicon. Make the etching process reach the concentrated boron-doped layer 102, then stop automatically, KOH (potassium hydroxide) solution or TMAH (tetramethylammonium hydroxide) solution, the concentration is respectively 33% KOH (potassium hydroxide) solution or 20% The TMAH (tetramethylammonium hydroxide) solution, the corrosion temperature is between 50 degrees and 90 degrees. the

步骤10,参照图12,采用XeF2(二氟化氙)作为腐蚀气体在常压下,采用干法各向异性腐蚀从硅片的正面腐蚀掉没有被湿法腐蚀所去除的拥有浓B(硼)杂质的单晶硅,即浓B(硼)掺杂层102,完成腐蚀工作,并最终释放出器件结构,完成整个器件的加工工序。 Step 10, referring to FIG. 12 , using XeF 2 (xenon difluoride) as the etching gas under normal pressure, using dry anisotropic etching to etch away the concentrated B ( The single crystal silicon with boron) impurity, that is, the concentrated B (boron) doped layer 102, completes the etching work, and finally releases the device structure to complete the processing procedure of the entire device.

上述实施例的方法还包括:正性光刻胶的涂胶、曝光、显影等一系列图形转移工作。 The method of the above embodiment also includes: a series of pattern transfer operations such as coating of positive photoresist, exposure, and development. the

Claims (13)

1.一种光调制热成像焦平面阵列的制作方法,其特征在于,该方法包括:1. A method for making a light-modulated thermal imaging focal plane array, characterized in that the method comprises: 步骤1、在单晶硅片上表面制造掺杂层;Step 1, manufacturing a doped layer on the upper surface of the single crystal silicon wafer; 步骤2、按照预设图案,在单晶硅片上表面刻蚀沟槽;Step 2. Etching grooves on the upper surface of the monocrystalline silicon wafer according to a preset pattern; 步骤3、在沟槽内壁覆盖氧化硅层;Step 3, covering the inner wall of the trench with a silicon oxide layer; 步骤4、生长多晶硅填满沟槽;Step 4, growing polysilicon to fill the trench; 步骤5、在单晶硅片上表面覆盖薄膜层A,在所述的单晶硅片下表面覆盖薄膜层B;Step 5, covering the upper surface of the monocrystalline silicon wafer with thin film layer A, and covering the lower surface of the single crystal silicon wafer with thin film layer B; 步骤6、在薄膜层A上覆盖金属层;Step 6, covering the metal layer on the film layer A; 步骤7、按照预设图案,刻蚀部分金属层;Step 7. Etching part of the metal layer according to the preset pattern; 步骤8、按照预设图案,刻蚀部分薄膜层A;Step 8. Etching part of the thin film layer A according to the preset pattern; 步骤9、按照预设图案,从硅片背面腐蚀单晶硅;按照预设图案刻蚀薄膜层B;Step 9. Etch the single crystal silicon from the back of the silicon wafer according to the preset pattern; etch the thin film layer B according to the preset pattern; 步骤10、按预设图案,腐蚀掺杂层,得到带硅支撑框架的全镂空结构光调制热成像焦平面阵列。Step 10: Etching the doped layer according to a preset pattern to obtain a fully hollow structured light modulation thermal imaging focal plane array with a silicon support frame. 2.根据权利要求1所述的光调制热成像焦平面阵列的制作方法,其特征在于,上述单晶硅片的单晶硅晶向为<100>。2 . The method for fabricating a light modulation thermal imaging focal plane array according to claim 1 , wherein the monocrystalline silicon crystal orientation of the monocrystalline silicon wafer is <100>. 3 . 3.根据权利要求1所述的光调制热成像焦平面阵列的制作方法,其特征在于,上述步骤1中,所述的掺杂层是采用高能粒子注入后再高温退火的方法或者标准的杂质扩散掺杂工艺在所述的单晶硅片上掺加浓硼、砷或磷实现的。3. The manufacturing method of light modulation thermal imaging focal plane array according to claim 1, characterized in that, in the above-mentioned step 1, the doped layer adopts the method of high-temperature annealing after high-energy particle implantation or standard impurity The diffusion doping process is realized by doping concentrated boron, arsenic or phosphorus on the single crystal silicon wafer. 4.根据权利要求1所述的光调制热成像焦平面阵列的制作方法,其特征在于,上述步骤2中所述的在单晶硅片上刻蚀沟槽是采用二氧化硅作为掩蔽层,使用反应粒子刻蚀设备或者感应耦合等离子刻蚀设备通过各向异性干法深硅刻蚀实现的。4. The manufacturing method of light modulation thermal imaging focal plane array according to claim 1, characterized in that, the etching groove on the monocrystalline silicon wafer described in the above step 2 is to use silicon dioxide as a masking layer, It is realized by anisotropic dry deep silicon etching using reactive particle etching equipment or inductively coupled plasma etching equipment. 5.根据权利要求1所述的光调制热成像焦平面阵列的制作方法,其特征在于,上述步骤3中,在沟槽内壁生长氧化硅是采用干氧化工艺或者湿氧化工艺实现的。5 . The method for fabricating a light modulation thermal imaging focal plane array according to claim 1 , wherein, in the above step 3, the growth of silicon oxide on the inner wall of the trench is realized by a dry oxidation process or a wet oxidation process. 6 . 6.根据权利要求1所述的光调制热成像焦平面阵列的制作方法,其特征在于,上述步骤4中,生长多晶硅是采用低压化学气相淀积工艺在单晶硅片上表面生成一层多晶硅,并填满所述的沟槽,然后使用溴基刻蚀气体和反应离子刻蚀设备,通过多晶硅干法刻蚀所述单晶硅片上除沟槽中以外的多晶硅实现的。6. The manufacturing method of light modulation thermal imaging focal plane array according to claim 1, characterized in that, in the above-mentioned step 4, growing polysilicon is to adopt a low-pressure chemical vapor deposition process to generate a layer of polysilicon on the upper surface of a single crystal silicon wafer , and fill the trenches, and then use bromine-based etching gas and reactive ion etching equipment to dry-etch the polysilicon on the single crystal silicon wafer except in the trenches. 7.根据权利要求1所述的光调制热成像焦平面阵列的制作方法,其特征在于,上述步骤5中所述的薄膜层A和薄膜层B均为氮化硅材料或者氧化硅材料,该过程是采用低压化学气相淀积或者等离子增强化学气相淀积实现的。7. The manufacturing method of light modulation thermal imaging focal plane array according to claim 1, characterized in that, the thin film layer A and the thin film layer B described in the above step 5 are both silicon nitride materials or silicon oxide materials, the The process is realized by low pressure chemical vapor deposition or plasma enhanced chemical vapor deposition. 8.根据权利要求1所述的光调制热成像焦平面阵列的制作方法,其特征在于,上述步骤6中,所述的覆盖金属层是采用磁控溅射工艺实现的。8 . The method for fabricating a light-modulated thermal imaging focal plane array according to claim 1 , wherein, in the above step 6, the covering metal layer is realized by using a magnetron sputtering process. 9.根据权利要求1所述的光调制热成像焦平面阵列的制作方法,其特征在于,上述步骤7中,所述的刻蚀金属层是采用反应离子刻蚀设备,通过干法刻蚀工艺实现的。9. The manufacturing method of light-modulated thermal imaging focal plane array according to claim 1, characterized in that, in the above-mentioned step 7, the etching metal layer is to use reactive ion etching equipment, through a dry etching process Achieved. 10.根据权利要求7所述的光调制热成像焦平面阵列的制作方法,其特征在于,上述步骤8中,所述的刻蚀薄膜层A是采用反应离子刻蚀设备刻蚀形成的。10 . The method for manufacturing a light modulation thermal imaging focal plane array according to claim 7 , wherein, in the above step 8, the etching thin film layer A is formed by etching with reactive ion etching equipment. 11 . 11.根据权利要求1所述的光调制热成像焦平面阵列的制作方法,其特征在于,上述步骤9的刻蚀过程是通过使用反应离子刻蚀设备,采用反应离子刻蚀工艺实现的。11. The manufacturing method of light modulation thermal imaging focal plane array according to claim 1, characterized in that, the etching process in the above step 9 is realized by using reactive ion etching equipment and adopting reactive ion etching process. 12.根据权利要求1所述的光调制热成像焦平面阵列的制作方法,其特征在于,上述步骤9中,所述的腐蚀单晶硅采用的是氢氧化钾溶液或者四甲基氢氧化铵溶液作为腐蚀溶液。12. The manufacturing method of light modulation thermal imaging focal plane array according to claim 1, characterized in that, in the above step 9, potassium hydroxide solution or tetramethylammonium hydroxide is used for the etching of single crystal silicon solution as a corrosion solution. 13.根据权利要求1所述的光调制热成像焦平面阵列的制作方法,其特征在于,上述步骤10中,所述的腐蚀掺杂层是采用二氟化氙作为腐蚀气体。13 . The method for fabricating a light modulation thermal imaging focal plane array according to claim 1 , wherein, in the above step 10, xenon difluoride is used as the etching gas for the etching of the doped layer. 14 .
CN2009100802779A 2009-03-17 2009-03-17 Method for manufacturing optical modulation thermal imaging focal plane array Active CN101538005B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100802779A CN101538005B (en) 2009-03-17 2009-03-17 Method for manufacturing optical modulation thermal imaging focal plane array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100802779A CN101538005B (en) 2009-03-17 2009-03-17 Method for manufacturing optical modulation thermal imaging focal plane array

Publications (2)

Publication Number Publication Date
CN101538005A CN101538005A (en) 2009-09-23
CN101538005B true CN101538005B (en) 2011-04-20

Family

ID=41121447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100802779A Active CN101538005B (en) 2009-03-17 2009-03-17 Method for manufacturing optical modulation thermal imaging focal plane array

Country Status (1)

Country Link
CN (1) CN101538005B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101538006B (en) * 2009-04-24 2011-04-20 中国科学院微电子研究所 Method for manufacturing optical modulation thermal imaging focal plane array
CN103318836B (en) * 2012-03-21 2016-01-06 中国科学院微电子研究所 Optical readout full-hollow focal plane array with heat sink structure and manufacturing method thereof
CN110589755A (en) * 2019-09-06 2019-12-20 赣南师范大学 A double-sided self-aligned etched silicon cantilever array thermoelectric transducer embedded with polysilicon resistors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1807221A (en) * 2005-12-29 2006-07-26 中国科学院上海微系统与信息技术研究所 Anchor production method in xenon difluoride gas corrosion process
CN1911781A (en) * 2005-08-11 2007-02-14 中国科学院微电子研究所 Manufacturing method for improving performance of uncooled infrared focal plane array device
CN101538006A (en) * 2009-04-24 2009-09-23 中国科学院微电子研究所 Fabrication method of light modulation thermal imaging focal plane array

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1911781A (en) * 2005-08-11 2007-02-14 中国科学院微电子研究所 Manufacturing method for improving performance of uncooled infrared focal plane array device
CN1807221A (en) * 2005-12-29 2006-07-26 中国科学院上海微系统与信息技术研究所 Anchor production method in xenon difluoride gas corrosion process
CN101538006A (en) * 2009-04-24 2009-09-23 中国科学院微电子研究所 Fabrication method of light modulation thermal imaging focal plane array

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
何伟等.非制冷红外焦平面阵列进展.《电子工业专用设备》.2008, *
李超波等.基于MEMS技术的红外成像焦平面阵列.《半导体学报》.2006, *

Also Published As

Publication number Publication date
CN101538005A (en) 2009-09-23

Similar Documents

Publication Publication Date Title
Pal et al. Fabrication methods based on wet etching process for the realization of silicon MEMS structures with new shapes
CN100561148C (en) An uncooled infrared focal plane array detector and its manufacturing method
CN103245421B (en) Pyrogenicity type MEMS (micro-electro-mechanical system) thermopile infrared detector structure and manufacturing method thereof
CN108646329A (en) The preparation method of X-ray self-supporting glittering transmission grating
US4978421A (en) Monolithic silicon membrane device fabrication process
CN101559916A (en) Method for preparing masking microstructure
CN101538005B (en) Method for manufacturing optical modulation thermal imaging focal plane array
CN108931321A (en) Beam-island-film integration resonant mode pressure sensor structure and manufacturing method
CN103439032B (en) Processing method of silicon micro resonator
CN110577188B (en) Method for manufacturing suspended infrared thermopile on substrate
CN101538006B (en) Method for manufacturing optical modulation thermal imaging focal plane array
CN101402445A (en) Method for manufacturing micro-structure with self-alignment and manufactured infrared thermopile detector
CN107316829B (en) Gas phase lithographic method and vapor etching device based on TMAH
CN103145094B (en) Form the body silicon micromachined method of MEMS thermopile detector cavity structure
CN110627014B (en) Method for manufacturing suspended infrared thermopile on substrate
CN110286432B (en) Preparation method of X-ray gold transmission grating
CN105129718A (en) Optical readout infrared detector structure and manufacturing method thereof
CN105576070B (en) Cavity forming method, thermopile IR detector and preparation method thereof
CN101985348B (en) Method for manufacturing micron-scale grid structure made of monocrystalline silicon material
CN102139855A (en) Manufacturing method of micro-nano cantilever beam structure for hypersensitive detection
CN210193393U (en) MEMS structure
JP3950628B2 (en) Method for manufacturing a broad membrane mask
CN109678103B (en) MEMS structure and method of manufacturing the same
CN103482566A (en) Deep groove manufacturing method used in MEMS process
CN100396593C (en) Fabrication method of single-layer dual-material microcantilever thermally isolated focal plane array

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant