CN101527603B - 恒定功率模式受控的光学放大器中的快速功率瞬变抑制 - Google Patents

恒定功率模式受控的光学放大器中的快速功率瞬变抑制 Download PDF

Info

Publication number
CN101527603B
CN101527603B CN200910006394.0A CN200910006394A CN101527603B CN 101527603 B CN101527603 B CN 101527603B CN 200910006394 A CN200910006394 A CN 200910006394A CN 101527603 B CN101527603 B CN 101527603B
Authority
CN
China
Prior art keywords
photodetector
output signal
amplifier
input
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200910006394.0A
Other languages
English (en)
Other versions
CN101527603A (zh
Inventor
Y·德加尼
范宇
C·C·高
孙昆泉
孙立国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photop Technologies Inc
Original Assignee
Photop Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photop Technologies Inc filed Critical Photop Technologies Inc
Publication of CN101527603A publication Critical patent/CN101527603A/zh
Application granted granted Critical
Publication of CN101527603B publication Critical patent/CN101527603B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • H04B10/296Transient power control, e.g. due to channel add/drop or rapid fluctuations in the input power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1306Stabilisation of the amplitude

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

本发明描述了抑制光学放大器系统中快速瞬变的改进的方法。该方法依赖于通过额外的损耗组件以自动功率模式控制操作放大器。这可适用于基于稀土放大器介质的光学放大器,例如掺铒光纤放大器。

Description

恒定功率模式受控的光学放大器中的快速功率瞬变抑制
技术领域
本发明的领域是光学放大器。更具体而言,本发明针对用于控制恒定功率模式的掺铒光纤放大器(EDFA)中的光功率瞬变的方法和系统。
背景技术
随着包括可重构的光插/分复用器(ROADM)在内的具有复杂联网体系结构的高比特率(>10Gbps)、可重构光传输系统变得更加流行,恒定功率模式的光学放大器变得越来越重要。这种ROADM组件的添加增加了损耗,并且增加了对紧挨在接收器之前的终端-EDFA的需求,超过了更传统的内联(in-line)EDFA,如图1中所示。高比特率(40Gbps及更大)比低比特率具有更严格的光学信噪比(OSNR)要求,而且需要配置图1所示的每通道可调色散补偿器,这进一步增加了对终端-EDFA的需求。由于以上提到对ROADM的使用的增加导致的动态通道插/分事件,使得对终端-EDFA的输入功率电平可以在大范围内变化。由于突然的输入功率浪涌而在终端-EDFA输出处导致的瞬时过冲会造成对接收器不可修复的损害。这种接收器输入功率限制用于降低终端EDFA的最大可接受输出功率,同时来自高比特率的光学信噪比(OSNR)约束用于增加终端EDFA的最小可接受输出功率。因此,快速过冲抑制是恒定功率模式EDFA中有用的特征。OSNR要求一般阻止用户简单地以低到足以允许应用传统恒定增益模式的EDFA控制技术的输出功率电平操作终端-EDFA。
尽管广泛采用恒定增益受控的EDFA,其中放大器固有的增益漂移通过泵浦功率中的调节来补偿,但是非常快速的恒定功率受控的EDFA给出了不同的挑战,且仍在寻找解决方案。简单且低成本的解决方案总是令人期望但具有挑战性的。关键的问题是在足够短的时间内抑制由于输入功率瞬变导致的输出功率浪涌,以确保击中光电探测器的总体(integrated)能量充分小于造成过载或损害所需的能量。如果任何EDFA添加到PIN光电探测器的上游,则抑制功率瞬变来避免对光电探测器的过载或损害是很重要的。
解决这个问题的一种方法在美国专利No.6,757,099中描述。在这个专利中所描述的解决方案涉及使用前馈和反馈控制算法来进行功率瞬变抑制。但是,这种方法对非常快的瞬变上升时间不提供足够快的响应。
另一种方法在美国专利No.5,187,610中描述,该专利描述了在EDFA输出端处使用集总损耗元件来增加噪声品质因数。但是,不是很显然这种解决方案适当地解决了快速瞬变性能的问题。
已知的现有技术瞬变控制策略以某种方式通过响应输入功率的变化升高和降低泵浦功率来运行。这些受到了增益介质的特征响应时间的限制。
因此,需要对快速输入功率瞬变抑制的改进。
发明内容
我们已经开发出了抑制恒定功率模式的光学放大器中的快速瞬变的一种改进的方法。该方法依赖于以自动功率控制模式操作放大器。它可适用于基于稀土放大器介质的光学放大器,例如掺铒光纤放大器(EDFA)。
附图说明
当联系附图考虑时,本发明可以得到更好的理解,附图中:
图1是具有可重构光学插/分复用器的典型EDFA的功能图;
图2是用于实现本发明的电路的示意性电路图;
图3a和图4a是对于50微秒升/降功率瞬变的信号功率输入随时间的曲线图;及
图3b和图4b是示出在具有和没有本发明的电路改进的情况下的信号功率输出的曲线图。
具体实施方式
典型光纤放大器的操作依赖于增益介质,其中稀土离子被泵到反转状态,然后通过信号波长的激励发射或者自发发射衰减到基态。在恒定功率模式的EDFA中,当输入功率增加时,信号增益必须减小,以便保持输出功率的恒定。增益的减小通常是通过控制泵浦驱动电流以减小粒子数反转来实现的。但是,由于增益介质(在这个例子中是铒)的长衰减时间,使得粒子数反转的减小不是非常快。因此,在恒定功率模式的EDFA中,缩短衰减时间对于控制和抑制功率瞬变事件中的过冲是很重要的。已经发现,如果增益介质中的信号功率可以推到更高电平,则衰减时间变得更短。
图1例示了具有可重构光学插/分复用器11和关联的放大器12的内联EDFA。这种系统一般包括带通滤波器13及诸如可调色散补偿器和偏振模式补偿器的各种补偿器元件14。EDFA输出放大器/接收器以15、16示出。
图2示出了根据本发明操作的放大器的基本元件。输入信号被引入EDFA放大器介质21。输入信号一般具有大约1550nm的波长。EDFA是利用一般工作在980nm的泵浦激光器22进行光学泵浦的。典型的EDFA是芯掺杂了锗和铒的一段光纤。EDFA的结构与操作的其它细节是众所周知的,不需要在这里具体描述。
根据本发明的EDFA是利用自动功率控制系统操作的。测量输入信号和放大器输出端的信号的功率。功率数据馈送到用于调节放大器泵浦功率的控制器,以便产生满足功率电平规格的输出信号。
图2示出了用于采样输入信号的光分接头(tap)25。输入信号的功率电平由光电探测器26测量。同样地,光分接头28采样放大器输出信号,且放大器输出信号的功率电平由光电探测器29测量。光电探测器一般是半导体光电探测器,但也可以是任何合适的用于测量光功率的光电器件。优选的探测器是PIN光电二极管。测量数据由控制器30处理,以便根据需要调节光泵22处的泵浦功率。这是自动功率控制系统的一个例子。也可以使用用于自动控制EDFA的输出功率的其它系统选择。这些描述为以自动增益/功率控制模式操作。在本发明中有用的自动增益/功率系统的特征是使用用于光泵控制机制的放大器输出的样本的那些系统。这些是由术语放大器输出信号受控的增益/功率控制系统定义的,并以放大器输出信号受控的增益/功率控制模式操作。
根据本发明,光衰减器31插入到EDFA的输出处。光衰减器可以是可变的光衰减器、光耦合器、分光器或分接头、有损耗连接器或用于降低放大器输出端处信号功率的任何其它器件。总的来说,这个元件被称为光衰减器并被定义为显著降低放大器输出端处功率电平(例如降低功率电平至少10%)的任何元件。在需要具有相同功率瞬变性能的可变EDFA输出功率的情况下,诸如可变光衰减器的可调损耗元件可能是优选的。
本发明是利用30/70光耦合器作为光衰减器元件来证明的,其中信号在30耦合器输出端进入。耦合到耦合器70侧的功率被舍弃了,这导致近似70%(5.3dB)的信号衰减。光衰减器的作用是误导光电二极管传感器29,以人为地造成对泵浦功率的调节,以便抬高放大器的反转状态。这使得增益介质中的实际信号功率非常高,当输入功率在短时间内增加时,这可以有效地加速衰减时间。
为了验证本发明的有效性,对利用图2的电路的快速瞬变响应进行有和没有光衰减器元件的比较。在图3a和图3b及图4a和图4b中示出了性能的改进。图3a示出了工作在0和-7dB之间的-7dB输入信号中非常短的瞬变,即50微秒,而图4a示出了工作在-13dB和-20dB之间的输入信号中的类似快速瞬变。图3b和图4b示出了作为图3a和图4a快速瞬变结果的输出信号中的变化。
图3b和图4b每个中的虚线曲线示出了在没有光衰减器元件的情况下操作放大器电路的结果。由于对图3a和图4a快速瞬变的慢速响应,微控制器造成放大器输出功率中多于3dB的过冲。
这些图中的实线示出了在具有如图2所示插入到放大器输出端的光衰减器的情况下操作放大器电路的结果。性能的改进是明显的。图3b示出了在没有本发明的光衰减器元件的情况下的3.5dB的过冲,而在利用本发明的光衰减器元件的情况下该过冲减小到了1.7dB。类似地,图4b示出了在没有光衰减器的情况下的3.1dB的过冲,但在利用光衰减器的情况下则只有1.5dB的过冲。这些结果验证了快速瞬变响应中显著的改进。
本领域技术人员可以想到对本发明的各种附加修改。所有偏离本说明书的特定教义但基本上依赖于现有技术通过其得以改进的本发明原理及其等价物的情况都正确地在如所描述和要求保护的本发明范围中被考虑。

Claims (11)

1.一种用于放大恒定功率模式的掺稀土光纤放大器中的光信号的方法,其中所述掺稀土光纤放大器包括放大介质和用于泵浦该放大介质的光泵,光泵控制器在自动恒定功率控制模式下操作,该方法依次包括以下步骤:
(a)引导输入光信号通过放大介质,
(b)利用光泵对放大介质进行光学泵浦,以便产生放大器输出信号,
(c)使用固定值光衰减器以至少10%的衰减来衰减所述放大器输出信号,以便产生衰减的放大器输出信号,
(d)经由分接头探测衰减的放大器输出信号的一部分,其中所述分接头采样所述衰减的放大器输出信号,而所述衰减的放大器输出信号是光电探测器的输入,所述光电探测器产生代表所述衰减的放大器输出信号的功率水平的光电探测器输出信号,
(e)部分地基于所述光电探测器输出信号调节泵浦功率水平,从而抬高放大器的反转状态,由此当输入功率在短时间内增加时加速衰减时间,其中所述固定值光衰减器被配置为误导光电探测器,以人为地造成对泵浦功率的调节,以便抬高放大器的反转状态。
2.如权利要求1所述的方法,其中衰减的放大器输出信号被分接,以便产生输出控制信号,而且该输出控制信号连接到光电探测器的输入端,以便产生第一光泵控制信号。
3.如权利要求2所述的方法,其中所述第一光泵控制信号连接到光泵控制器。
4.如权利要求3所述的方法,其中输入光信号被分接,以便产生输入控制信号,而且该输入控制信号连接到光电探测器的输入端,以便产生第二光泵控制信号。
5.如权利要求4所述的方法,其中第二光泵控制信号连接到光泵控制器。
6.如权利要求5所述的方法,其中所述掺稀土光纤放大器是掺铒光纤放大器。
7.如权利要求1所述的方法,其中固定值光衰减器是光耦合器,在光耦合器的一个输出中具有放大器输出信号,而另一个输出被舍弃。
8.一种掺稀土光纤放大器设备,包括放大介质和用于泵浦该放大介质的光泵:
(a)连接到放大介质的输入光信号,
(b)用于泵浦放大介质以便产生放大器输出信号的光泵,
(c)用于控制光泵的光泵控制器,
(d)用于分接放大器输出信号的一部分的第一分接头,所述第一分接头采样所述放大器输出信号的所述一部分,
(e)具有输入端和输出端的第一光电探测器,该第一光电探测器的输入端连接到第一分接头,而该第一光电探测器的输出端连接到光泵控制器,所述第一光电探测器被配置为产生代表所述放大器输出信号的所述一部分的功率水平的光电探测器输出信号,
(f)连接在放大介质和第一分接头之间的具有至少10%的衰减的固定值光衰减器,
其中所述光泵控制器部分地基于所述光电探测器输出信号调节泵浦功率水平,从而抬高放大器的反转状态,由此当输入功率在短时间内增加时加速衰减时间,并且其中所述固定值光衰减器被配置为误导第一光电探测器,以人为地造成对泵浦功率的调节,以便抬高放大器的反转状态。
9.如权利要求8所述的掺稀土光纤放大器设备,还包括:
(g)用于分接光输入信号的一部分的第二分接头,
(h)具有输入端和输出端的第二光电探测器,该第二光电探测器的输入端连接到第二分接头,而该第二光电探测器的输出端连接到光泵控制器。
10.如权利要求9所述的掺稀土光纤放大器设备,其中所述掺稀土光纤放大器是掺铒光纤放大器。
11.如权利要求8所述的掺稀土光纤放大器设备,其中光衰减器是光耦合器,在光耦合器的一个输出中具有放大器输出信号,而另一个输出被舍弃。
CN200910006394.0A 2008-02-19 2009-02-16 恒定功率模式受控的光学放大器中的快速功率瞬变抑制 Active CN101527603B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/070,523 US7961380B2 (en) 2008-02-19 2008-02-19 Fast power transient supression in constant power-mode controlled optical amplifiers
US12/070,523 2008-02-19

Publications (2)

Publication Number Publication Date
CN101527603A CN101527603A (zh) 2009-09-09
CN101527603B true CN101527603B (zh) 2017-04-26

Family

ID=40954871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910006394.0A Active CN101527603B (zh) 2008-02-19 2009-02-16 恒定功率模式受控的光学放大器中的快速功率瞬变抑制

Country Status (3)

Country Link
US (1) US7961380B2 (zh)
EP (1) EP2120300A1 (zh)
CN (1) CN101527603B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025414B (zh) 2009-09-11 2013-11-06 华为技术有限公司 中继站点和中继站点输出光信号调整方法
EP2320582A1 (en) 2009-11-06 2011-05-11 Nokia Siemens Networks Oy Optical fiber amplifier with improved performance
US8908264B2 (en) * 2010-08-31 2014-12-09 Jds Uniphase Corporation Reducing transients in an optical amplifier
US10727365B2 (en) * 2012-07-30 2020-07-28 Technion Research & Development Foundation Limited Energy conversion system
CN108510959B (zh) * 2017-02-28 2020-03-10 富泰华工业(深圳)有限公司 图像旋转控制装置及数码相框
US10727643B1 (en) 2019-02-05 2020-07-28 Ii-Vi Delaware, Inc. Master oscillator power amplifier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0570941A1 (en) * 1992-05-21 1993-11-24 Sumitomo Electric Industries, Limited Optical fiber amplifier
US6173106B1 (en) * 1998-09-11 2001-01-09 Corning Incorporated Fiber coupler variable optical attenuator
US6414788B1 (en) * 2000-10-02 2002-07-02 Onetta, Inc. Optical amplifier system with transient control
CN1630966A (zh) * 2002-01-31 2005-06-22 通用仪器公司 具有可调节的回转速率限制器的光放大器控制器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187610A (en) 1991-12-19 1993-02-16 At&T Bell Laboratories Low noise, optical amplifier having post-amplification loss element
JP3730299B2 (ja) * 1996-02-07 2005-12-21 富士通株式会社 光等化増幅器および光等化増幅方法
US6025947A (en) * 1996-05-02 2000-02-15 Fujitsu Limited Controller which controls a variable optical attenuator to control the power level of a wavelength-multiplexed optical signal when the number of channels are varied
JPH11122192A (ja) * 1997-10-17 1999-04-30 Fujitsu Ltd 光増幅器及び該光増幅器を備えた光通信システム
DE60138935D1 (de) * 2000-02-23 2009-07-23 Fujitsu Ltd Optischer Verstärker
KR100358115B1 (ko) * 2000-12-14 2002-10-25 한국전자통신연구원 자동 이득 제어된 광섬유 증폭 장치
US6535330B1 (en) * 2001-03-31 2003-03-18 Corning Incorporated Dynamic controller for a multi-channel optical amplifier
US20040017603A1 (en) 2002-07-29 2004-01-29 Paul Jay Optical amplifier controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0570941A1 (en) * 1992-05-21 1993-11-24 Sumitomo Electric Industries, Limited Optical fiber amplifier
US6173106B1 (en) * 1998-09-11 2001-01-09 Corning Incorporated Fiber coupler variable optical attenuator
US6414788B1 (en) * 2000-10-02 2002-07-02 Onetta, Inc. Optical amplifier system with transient control
CN1630966A (zh) * 2002-01-31 2005-06-22 通用仪器公司 具有可调节的回转速率限制器的光放大器控制器

Also Published As

Publication number Publication date
US7961380B2 (en) 2011-06-14
US20090207484A1 (en) 2009-08-20
EP2120300A1 (en) 2009-11-18
CN101527603A (zh) 2009-09-09

Similar Documents

Publication Publication Date Title
CN101527603B (zh) 恒定功率模式受控的光学放大器中的快速功率瞬变抑制
EP1033834B1 (en) Wavelength division multiplexing optical amplifier and optical communication system
US7417791B2 (en) Optical amplifier for amplifying multi-wavelength light
US8670176B2 (en) Optical amplifying device
US20060087723A1 (en) Optical amplifier
JP3936698B2 (ja) 光ファイバ増幅器及びその制御方法
JPH08304856A (ja) 光ファイバ増幅器
JP3527627B2 (ja) 光ファイバ増幅器
Mahad et al. EDFA gain optimization for WDM system
US8908264B2 (en) Reducing transients in an optical amplifier
US8363311B2 (en) Optical amplifier and a method of light amplification
CA2096179C (en) Optical fiber amplifier
US6563629B2 (en) Method and apparatus for full C-band amplifier with high dynamic gain range
EP1528698B1 (en) Raman amplifier with gain control
JP4337545B2 (ja) 光通信システム
EP1427118A1 (en) Optical fiber amplifier having automatic power control function and automatic power control method
KR101892196B1 (ko) 소형화된 광섬유 증폭기
US20050007656A1 (en) Apparatus and method for gain-spectrum-tilt compensation in long-wavelength band dispersion-compensating hybrid fiber amplifier
US6366394B1 (en) Gain-locked dual stage optical amplifier
JP2010262988A (ja) 光増幅装置および光伝送システム
KR100546753B1 (ko) 장파장 에르븀 첨가 광섬유 증폭기 및 그의 온도 보상 방법
JP2006245334A (ja) 光ファイバ増幅器
Bolshtyansky et al. Dynamic compensation of Raman tilt in a fiber link by EDFA during transient events
KR100194960B1 (ko) 광 증폭기
CA2306097C (en) Gain-locking method for dual-stage optical amplifiers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB02 Change of applicant information

Address after: American California

Applicant after: Oclaro North America Inc.

Address before: American California

Applicant before: Avanex Corp.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: AVANEX CORP. TO: OCLARO (NORTH AMERICA) INC.

ASS Succession or assignment of patent right

Owner name: II VI INC.

Free format text: FORMER OWNER: OCLARO (NORTH AMERICA) INC.

Effective date: 20140730

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20140730

Address after: Pennsylvania

Applicant after: II-VI Inc.

Address before: American California

Applicant before: Oclaro North America Inc.

TA01 Transfer of patent application right

Effective date of registration: 20170322

Address after: No. 39 Fuxing Road, Jinan District, Fuzhou City, Fujian Province

Applicant after: Photop Technologies, Inc.

Address before: Pennsylvania

Applicant before: II-VI Inc.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant