CN101521459A - Resonant switched capacitor direct current voltage converter - Google Patents

Resonant switched capacitor direct current voltage converter Download PDF

Info

Publication number
CN101521459A
CN101521459A CN 200810082359 CN200810082359A CN101521459A CN 101521459 A CN101521459 A CN 101521459A CN 200810082359 CN200810082359 CN 200810082359 CN 200810082359 A CN200810082359 A CN 200810082359A CN 101521459 A CN101521459 A CN 101521459A
Authority
CN
China
Prior art keywords
node
voltage
switch
control circuit
diode
Prior art date
Application number
CN 200810082359
Other languages
Chinese (zh)
Other versions
CN101521459B (en
Inventor
凯 丁
何濠辉
郑家伟
Original Assignee
香港理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港理工大学 filed Critical 香港理工大学
Priority to CN 200810082359 priority Critical patent/CN101521459B/en
Publication of CN101521459A publication Critical patent/CN101521459A/en
Application granted granted Critical
Publication of CN101521459B publication Critical patent/CN101521459B/en

Links

Abstract

The invention relates to a resonant switched capacitor direct current voltage converter which comprises a first voltage node, a second voltage node, a first switch, a second switch, a first diode, a second diode and a control circuit, wherein a first voltage exists between the first voltage node and a negative wire; a second voltage exists between the second voltage node and the negative wire; and the control circuit provides switching gate signals for the first and the second switches. The resonant switched capacitor direct current voltage converter further comprises a center-tapped inductor and a resonant capacitor, wherein the center-tapped inductor is connected between the first switch and the second switch; and the resonant capacitor is connected between the common node of the first and the second diodes and the central node of the center-tapped inductor. Compared with the conventional switched capacitor direct current voltage converter, the invention has the advantages of reducing complexity, loss and cost, improving the speed, and avoiding the limitation.

Description

谐振开关电容直流电压变换器 DC voltage converter RSC

技术领域 FIELD

本发明涉及谐振开关电容直流电压变换器。 The present invention relates to DC converter RSC. 背景技术 Background technique

在直流电源变换领域,采用一种结合开关和电容的变换电路来变换不同 DC power conversion art, using one binding converting circuit switches and capacitors to the transformation of different

电压。 Voltage. 此类变换器将电容用于储存电能,称之为开关电容变换器(Switched Capacity Converter, SCC)。 Such a capacitor for storing electrical energy converter, called switched capacitor converter (Switched Capacity Converter, SCC). 由于此类变换器没有电感或变压器,其体积小于其他类型的变换器且易于在集成电路上制成。 Since no inductor or transformer type converter having a volume smaller than other types of converters and easily formed on the integrated circuit. 但是,在为开关电容充电放电时通常会出现高尖峰电流。 However, high peak currents typically occurs when the switched capacitor charge and discharge. 因此,此类变换器通常用于低压环境。 Accordingly, such a converter is generally used for a low pressure environment. 美国专利公开号US20040141345A1提供了一种称为谐振开关电容变换器(Switched Capacitor Resonant Converter, SCRC)的新的开关电容电路,其可工作在高开关频率以及高电压环境下。 U.S. Patent Publication No. US20040141345A1 provides a new called switched capacitor circuit RSC converters (Switched Capacitor Resonant Converter, SCRC), which can be operated at a high switching frequency and a high voltage environment.

SCRC是基于去除包括谐振变换器的主磁能存储设备而设计的。 SCRC is based on removing the magnetic energy storage device comprises a primary resonant converter designed. SCRC工作在零电流幵关环境,如开关损耗极低且没有EMI (Electromagnetic Interference,电磁干扰)问题。 SCRC zero current Jian off work environment, as no switching losses and very low EMI (Electromagnetic Interference, electromagnetic interference) problems. 而且,其效率也相当高,有可能高于90%。 Furthermore, the efficiency is quite high, it may be higher than 90%. 其结构简单,在电路中只了加入一个与开关电容一起谐振的小电感,因此磁性部件的成本较低。 Simple structure, added in the resonant circuit only with a switched capacitor low inductance, thus a lower cost magnetic member.

虽然SCRC具有诸多优点,但简单门驱动电路不可应用于该变换器,需要隔离变压器和/或半桥门驱动,因此提高了SCRC的复杂性。 Although SCRC has many advantages, but can not be applied to a simple gate drive circuit of the converter, the transformer needs to be isolated and / or half-bridge gate driver, thereby increasing the complexity of the SCRC. 而且,门驱动变压器中的寄生电感限制了驱动速度,导致在高频应用中产生更多开关损耗。 Further, gate drive transformer parasitic inductance limits the driving speed, resulting in additional switching losses in high frequency applications. 半桥门驱动具有高频操作的局限性而且变换器成本提高。 Half-bridge gate drivers with high frequency operation of the limitations of the inverter and increase costs.

发明内容 SUMMARY

本发明目的在于提供一种谐振开关电容直流电压变换器,该直流变换器将采用简单门驱动电路,降低了SCRC的复杂性,同时通过降低寄生电感提高了驱动速度,降低了高频应用中的开关损耗,而且避免了高频操作的局限性,降低了变换器的成本。 Object of the present invention to provide a resonant converter switched capacitor DC voltage, the DC-DC converter to the gate drive circuit simple, reducing the complexity of the SCRC, while increasing the driving speed by reducing the parasitic inductance is reduced in high frequency applications switching losses, and avoids the limitations of high-frequency operation, reduces the cost of the converter.

4为了达到上述发明目的,本发明为一种谐振开关电容直流电压变换器, 包括第一电压节点,第二电压节点,第一开关,第二开关,第一二极管,第二二极管,控制电路,其中,第一电压节点和负线之间具有第一电压,该第二电压节点和负线之间具有第二电压,控制电路为该第一开关和第二开关提供开关门信号,该谐振开关电容直流电压变换器进一步包括中心抽头电感和谐振电容,其中,中心抽头电感连接在所述第一开关和第二开关之间,谐振电容连接在所述第一二极管和第二二极管的共同节点和该中心抽头电感的中心节点之间。 4 In order to achieve the above object, the present invention is a resonant switched capacitor DC voltage converter comprising a first voltage node, a second voltage node, a first switch, a second switch, a first diode, a second diode , the control circuit having a first voltage between wherein the first node and the negative voltage line, having a second voltage between the second node and the negative voltage line, the gate control circuit provides switching signals for the first and second switches the RSC DC converter further comprises a center tapped inductor and resonant capacitor, wherein the center tapped inductor connected between the first and second switches, a resonant capacitor connected between said first and second diodes between the central node and the common node of the two diodes of the center tap inductor.

如本发明优选具体实施例所述的谐振开关电容直流电压变换器,其中, 该第一开关和该第二开关为一对互补金属氧化物半导体场效应管开关,该第 The preferred embodiment of the present invention DETAILED RSC embodiment of the DC voltage converter, wherein the first switch and the second switch is a pair of complementary metal oxide semiconductor FET switch, the second

一开关是P沟道金属氧化物半导体场效应管,该第二开关是N沟道金属氧化物半导体场效应管。 A switch is a P-channel metal oxide semiconductor field effect transistor, the second switch is an N-channel metal oxide semiconductor field effect transistor.

如本发明优选具体实施例所述的谐振开关电容直流电压变换器,其中, 该第一开关和该第二开关为绝缘栅双极型晶体管。 The preferred embodiment of the present invention DETAILED RSC embodiment of the DC voltage converter, wherein the first switch and the second switch is an insulated gate bipolar transistor.

如本发明优选具体实施例所述的谐振开关电容直流电压变换器,其中, 所述第一开关和第二开关串联在第一电压节点和负线之间,该第一二极管和该第二二极管串联在该第一电压节点和该第二电压节点之间。 The preferred embodiment of the present invention DETAILED RSC embodiment of the direct current voltage converter, wherein said first and second switches connected in series between the first node and the negative voltage line, the first diode and the second two diodes connected in series between the first node and the voltage of the second voltage node.

如本发明优选具体实施例所述的直流电压变换器,其中,所述控制电路为自启动门驱动控制电路。 DC voltage converter, such as the particular preferred embodiment of the present invention, wherein the control circuit is self-starting gate drive control circuit.

如本发明优选具体实施例所述的谐振开关电容直流电压变换器,其中, 所述第一开关和第二开关串联在该第一电压节点和该第二电压节点之间,该第一二极管和该第二二极管串联在该第二电压节点和该负线之间。 The present invention is particularly preferably RSC DC converter according to Example Embodiment, wherein the first and second switches connected in series between the first node and the voltage of the second voltage node, the first diode the tube and a second diode connected in series between the second node and the negative voltage line.

如本发明优选具体实施例所述的直流电压变换器,其中,所述控制电路为自启动门驱动控制电路。 DC voltage converter, such as the particular preferred embodiment of the present invention, wherein the control circuit is self-starting gate drive control circuit.

如本发明优选具体实施例所述的直流电压变换器,其中,所述控制电路利用所述第一节点和第二节点之间的电压作为自启动提供给门驱动的电源 The DC voltage converter according to the present invention, a preferred embodiment wherein the control circuit uses a voltage between the first node and the second node as from the start power is supplied to the gate drive

如本发明优选具体实施例所述的谐振开关电容直流电压变换器,其中, 所述第一开关和第二开关串联在该第一电压节点和该负线之间,该第一二极管和该第二二极管串联在该第二电压节点和该负线之间。 The present invention preferably RSC DC voltage converter according to the specific embodiment, wherein said first and second switches connected in series between the first node and the negative voltage line, and the first diode the second diode connected in series between the second node and the negative voltage line.

如本发明优选具体实施例所述的直流电压变换器,其中,所述控制电路为自启动门驱动控制电路。 DC voltage converter, such as the particular preferred embodiment of the present invention, wherein the control circuit is self-starting gate drive control circuit.

如本发明优选具体实施例所述的谐振开关电容直流电压变换器,其中, 所述控制电路利用所述第一电压节点和所述负线之间的电压作为自启动提供给门驱动的电源。 The preferred embodiment of the present invention DETAILED RSC embodiment of the direct current voltage converter, wherein said control circuit using the first voltage node and the negative voltage between the gate line as a driving power source is supplied to the self-starting.

本发明有点在于应用简单门驱动,降低了SCRC的复杂性,同时通过降低寄生电感提高了驱动速度,降低了高频应用中的开关损耗,而且避免了高频操作的局限性,降低了变换器的成本。 Application of the present invention is simple in that the gate driver bit, reducing the complexity of the SCRC, while increasing the driving speed by reducing the parasitic inductance, reduced switching losses in high frequency applications, high frequency operation and avoid the limitations of the converter is reduced the cost of.

附图说明 BRIEF DESCRIPTION

以下参照附图详述本发明的优点和特征,其中 Detailed description of the features and advantages of the present invention the following drawings, in which

图1为根据本发明具体实施例的升压型谐振开关电容直流电压变换器的电路图; FIG 1 is a circuit diagram of a step-up DC voltage converter RSC embodiment of the present invention;

图2和图3为图1所示电路的工作原理示意图; 图4为图1所示电路的门极和电流波形图; 图5为图1所示电路的门极源极电压和电容电流波形图; 图6为图1所示电路的漏极门极电压和电容电流波形图; 图7为根据本发明具体实施例的降压型谐振开关电容直流电压变换器的电路图;以及 2 and FIG. 3 is a schematic illustration of the working principle of the circuit shown in FIG. 1; FIG. 4 is a gate electrode and a current waveform diagram of the circuit shown in FIG. 1; FIG. 5 is a gate circuit shown in FIG. 1 and the capacitor electrode source voltage current waveforms FIG.; FIG. 6 is a circuit shown in FIG. 1 and the gate voltage of the drain capacitance current waveform diagram; FIG. 7 is a circuit diagram of a step-down DC voltage converter RSC embodiment of the present invention; and

图8为根据本发明具体实施例的逆变型谐振开关电容直流电压变换器的电路图。 8 is a circuit diagram of an inverter type RSC DC voltage transformer according to the present invention specific embodiments.

具体实施方式 Detailed ways

图1所示为升压型谐振开关电容直流电压变换器13的电路图。 Figure 1 is a circuit diagram of a step-up DC voltage converter RSC 13. 直流电压变换器13包括一对互补金属氧化物半导体场效应管(MOSFET)开关4、 5。 DC converter 13 comprises a pair of complementary metal-oxide semiconductor field effect transistor (MOSFET) switches 4, 5. 开关4是P沟道金属氧化物半导体场效应管,而开关5是N沟道金属氧化物半导体场效应管。 Switch 4 is a P-channel metal oxide semiconductor field effect transistor, and the switch 5 is an N-channel metal oxide semiconductor field effect transistor. 在其他实施例中,亦可采用绝缘栅双极型晶体管(IGBTs) 及其它适用的半导体开关。 In other embodiments, it may use insulated gate bipolar transistors (as IGBTs) or other suitable semiconductor switch. 每个开关都配有反向并联二极管作为MOSFET封装的一部分。 Each switch with antiparallel diode as part of the MOSFET package. 第一和第二二极管6、 7串联在第一和第二电压节点1、 2之间。 First and second diodes 6, 7 connected in series between the first node and the second voltage 1, 2.

直流电压变换器13在第一电压节点1和地或负线3之间具有第一电压VI,在第二电压节点和地或负线3之间具有第二电压电压V2。 DC voltage converter 13 in the node 1 and a first voltage or a first voltage having a negative line between VI 3, the second node and a ground voltage or a negative voltage having a second voltage V2 between the lines 3. 地或负线3位于任一电压低于节点l、 2的电势。 Or negative line voltage is lower than 3 be located in any node l, 2 potential. 两个滤波电容8、 ll分别与第一和第二电压端V1、 V2并联。 Two filter capacitors 8, ll, respectively, the first and second terminal voltages V1, V2 connected in parallel.

中心抽头电感10连接在第一和第二MOSFET4、 5之间。 Center tapped inductor 10 connected between the first and second MOSFET4, between 5. 谐振电容9连接在二极管6、 7的共同节点和电感10的中心节点15之间。 9 between the resonance capacitor 6 is connected in a diode, the common node 7 and the center node 15 of the inductor 10. 在变换器中,电容9提供主要储能器件。 In the converter, the capacitor 9 provides the main energy storage device. 电感10可采用由聚合物粘合磁芯所制成的电感或空心电感与电容9产生谐振。 Inductor core 10 can be made from a polymer adhesive or the inductance of the resonant inductance and capacitance hollow 9.

自驱门驱动控制电路12为MOSFET4、 5提供开关门信号。 Since the gate drive circuit 12 to drive control MOSFET4, 5 provides a switching gate signal. 门驱动控制电路12在门极和源极之间提供高电压来开启N沟道MOSFET5并关断P沟道MOSFET4。 Gate drive control circuit 12 provides a high voltage between the gate and the source to turn off the N-channel and P-channel MOSFET5 MOSFET4. 门驱动控制电路12提供零伏特或最好负电压来开启P沟道MOSFET4并关断N沟道MOSFET5。 Gate drive control circuit 12 is preferably a negative voltage or zero volts to turn off the P-channel and N-channel MOSFET4 MOSFET5. 优选的,输入电压VI应小于或等于MOSFET4、 5的门极和源极之间的最高电压。 Preferably, the input voltage VI is less than or equal MOSFET 4, the highest voltage between the gate and the source 5. 门驱门驱动电路12可为集成电路或具有高速晶振电路来提供必要的门极驱动信号。 The gate drive the gate drive circuit 12 may be an integrated circuit or crystal oscillator circuit having a high speed to provide the necessary gate drive signals.

直流电压变换器13为升压型电压变换器。 DC converter 13 is a boost voltage converter. 电压VI为输入端而V2为输出端。 As an input voltage VI and V2 is an output terminal. 在理想情况下,电压V2等于电压V1的两倍。 In the ideal case, the voltage V2 is equal to twice the voltage V1.

直流电压变换器13通过电容9充电放电工作。 DC voltage converter 13 through the charge and discharge of the capacitor 9 work. 电容9作用为与电感10 谐振的电容从而为MOSFET获取零电流开关环境。 9 functions as capacitor and inductor of the resonant capacitor 10 so as to obtain a zero-current switching environment a MOSFET. 当MOSFET4开启,二极管7正向偏置并开启,电流通过包括MOSFET4、电感10的上部电感,开关电容以及二极管7的串联电路。 When the MOSFET 4 is turned on, the diode 7 is forward biased and turned on, current through the MOSFET 4 comprising, an upper inductance inductor, capacitor and diode series circuit of a switch 10 7. 最初,电感中的电流总为零;因此开启状态下串联电路的电流为零。 Initially, the total current in the inductor is zero; hence the current in the series circuit of the ON state is zero. 由于串联的电容9以及电感10的上部电感,在串联电路中的电流为以 9 due to the capacitance and inductance of the inductor 10 in series with the upper portion, the current in the series circuit is to

为周期的正弦曲线,其中L是电感10的电感值,C是电容9的电容值。 Sinusoidal cycle, where L is the inductance of the inductor 10, C is the capacitance of the capacitor 9. 假设首先通过正电流,在第一半周期的末端,二极管7反向偏置从而抵消负半周期的电流。 By first assuming a positive current, at the end of the first half-cycle, diode 7 is reverse-biased so as to counteract the negative current half-cycle. 零电流环境产生且MOSFET4关断。 Zero-current environment and MOSFET4 off. 第二MOSFET5开启且二极管6正向偏置。 MOSFET5 second diode 6 is turned on and forward-biased. 最初电流为零且谐振电流的负半周期流过。 The first current is zero and the negative half cycle of the resonant current flows. 在负半周期的末端, 二极管6反向偏置,产生零电流环境。 At the end of the negative half cycle, the reverse bias the diode 6, to produce zero current environment. 通过长于LC谐振电流半个周期的MOSFET开关时间,达到产生零电流开关的效果。 Longer than the LC resonance by the current half cycle of the MOSFET switch time, achieve an effect of zero-current switching.

因为开关电容9通过谐振正弦电流充电放电,所以电路不存在电流尖峰问题。 Because the switched capacitor 9 through the resonant sinusoidal current charge and discharge, so there is no problem circuit current spikes.

图2和图3显示一个升压开关周期的两个阶段,粗体表示电流通路。 Figures 2 and 3 show two stages of a cycle of the boost switch, a current path indicated in bold. 图4 Figure 4

7显示门极和电流波形。 7 shows the current waveform and the gate.

参照图1和图4,本发明的升压型开关电容变换器包括一对互补P沟道/N 沟道MOSFET4、 5。 Referring to FIGS. 1 and 4, the switched capacitor step-up converter according to the present invention includes a complementary pair of P-channel / N-channel MOSFET4, 5. 自驱门驱动控制电路12为MOSFET4、 5提供开关门信号。 Since the gate drive circuit 12 to drive control MOSFET4, 5 provides a switching gate signal. 门驱动控制电路12在门极和源极之间提供高电压来开启N沟道MOSFET5 并关断P沟道MOSFET4。 Gate drive control circuit 12 provides a high voltage between the gate and the source to turn off the N-channel and P-channel MOSFET5 MOSFET4. 门驱动12提供门极和漏极电压来开启P沟道MOSFET4并关断N沟道MOSFET5。 Gate driver 12 provides the gate and drain voltages to turn off the P-channel and N-channel MOSFET4 MOSFET5. 当自驱控制电路12为两个互补开关提供高于3的信号时,半桥臂的N沟道开关开启,同时利用中心抽头电感的下部电感与开关电感产生谐振。 When the self-driving circuit 12 provides the control signal is higher than 3, N-channel switching half bridge arm of the two complementary switching opening, while using a lower inductance resonating with the inductance of the switching center tap inductor. 或者,当自驱控制电路为两个互补开关提供低于地3的信号时,上部P沟道开关的漏极和门极之间的电压处于高位,因此半桥臂的上部MOSFET4开启,采用中心抽头电感的上部电感与开关电感谐振。 Alternatively, when the signal provided from the drive control circuit 3 is lower than the two complementary switches, voltage between the drain and gate of P-Channel switch upper high, thus opening the upper MOSFET4 half bridge arm, with central an upper portion of a tapped inductor and resonant inductor switch.

参照图2和图4,在时间to处,MOSFET5开启而MOSFET4关断。 Referring to FIG. 2 and FIG. 4, at time to, MOSFET 5 is turned on and off MOSFET4. 二极管6正向偏置。 6 forward biased diode. 滤波电容11对连接在第二电压节点2的负载放电。 Filter capacitor 11 pairs of a load connected to the discharge voltage of the second node 2. MOSFET5 和二极管6与电容9以及电感10的下部电感串联。 MOSFET5 a lower inductance and the diode 6 and the capacitor 9 and the inductor 10 in series. 与电感10的下部电感谐振的开关电容产生的正弦电流经过串联电路。 A lower inductance inductor sinusoidal current resonance switch 10 through a series circuit of capacitance. 在第一谐振周期的末端,串联电流(电容9电流)为零且二极管6反向偏置抵消负半周期中的电流。 At the end of the first resonance period, series current (capacitive current 9) is zero reverse bias current and the diode 6 in the negative half cycle offset. 电容被充电达到直流电压V1。 DC capacitor is charged to a voltage V1.

参照图3和图4,在时间h处,二极管6反向偏置而且电流为零。 3 and FIG. 4, at time h, the diode 6 and the reverse bias current is zero. MOSFET4 开启而MOSFET5关断。 MOSFET4 open and MOSFET5 shutdown. 二极管7正向偏置。 Diode 7 is forward biased. 输入电压VI和开关电容9串联, 理想状况下,电压V2为电压V1的两倍,谐振电流的负半周期产生。 Input voltage VI and switching capacitor 9 in series, under ideal conditions, the voltage V2 generated as a double negative half cycles, the voltage V1 of the resonance current. 滤波电容ll再次充电。 Ll filter capacitor to recharge. 在负半周期的末端,二极管7反向偏置而电流停止。 At the end of the negative half cycle, the reverse bias the diode 7 and the current stops. 在时间t2处,MOSFET5再次开启而MOSFET4关断。 At time t2, MOSFET5 MOSFET4 again turned off.

图5和图6显示谐振开关电容直流变换器的波形,在升压模式下,该变换器配有上述参数和器件值。 Figures 5 and 6 show waveforms RSC DC converter, in boost mode, the converter with the above parameters and component values. 输入电压V1测量值为12V,输出电压V2测量值为24V。 Measuring the input voltage V1 is 12V, the output voltage V2 measured value of 24V. 电源(17.1W)最大效率为92.53%。 Power (17.1W) maximum efficiency of 92.53%. 额定电源(50W)效率为86.38%。 Rated power (50W) efficiency was 86.38%. 图5和图6图形的水平分辨率为每单位1微秒。 Horizontal resolution graphics FIGS. 5 and 6 per unit 1 microsecond. 在开关频率为200kHz的情况下,每个MOSFET的开关时间为2.5微秒。 At a switching frequency of 200kHz, each MOSFET switching time of 2.5 microseconds. 电容9和电感10的谐振时间为4 微秒。 A resonant inductor and capacitor time 9 10 4 microseconds. 因此,半谐振周期为4微秒。 Thus, the half resonant period of 4 microseconds.

可见,本发明提供了具有升压功能的谐振开关电容直流变换器。 Be seen, the present invention provides a switched capacitor resonant DC converter having the boosting function. 除了需要中心抽头电感来与开关电容谐振,本发明的直流电路还包括一对互补P沟道/N沟道MOSFET,因此两个互补开关共享同一自驱控制电路,从而降低门驱动成本。 In addition to the center tapped inductor to the resonant capacitor and the switch, the DC circuit of the present invention further comprises a complementary pair of P-channel / N-channel the MOSFET, so that the two share the same complementary switches from drive control circuit, thereby reducing the cost of the gate driver. 无时滞控制的驱动信号可直接用于互补开关,而且半桥臂的电流直通短路可由中心抽头电感限制。 No Delay control signal may be used directly for driving complementary switches, and the current through the half bridge arm short circuit by limiting the center tapped inductor.

图7为本发明的第二具体实施例。 FIG 7 a second specific embodiment of the present invention. 降压型开关电容准谐振变换器20在第一电压节点1和地或负线3之间具有第一电压端VI,以及在第二节点2和地或负线3之间具有第二电压端V2。 Switched Capacitor quasi-resonant buck converter 20 having a first end voltage VI between the first node 1 and the ground voltage or a negative line 3, and the second node 2 and 3 or between the negative line having a second voltage terminal V2. 地或负线3位于低于电压节点1和2的任何电势。 Or negative line 3 located below the voltage potential of any node 1 and 2. 两个滤波电容8、 ll分别与第一和第二电压端Vl、 V2并联。 Two filter capacitors 8, ll, respectively, the first and second terminal voltages Vl, V2 connected in parallel. 变换器20包括一对互补金属氧化物半导体场效应管(MOSFET)开关4、 5。 Converter 20 includes a pair of complementary metal-oxide semiconductor field effect transistor (MOSFET) switches 4, 5. 开关4为P沟道MOSFET,开关5为N沟道MOSFET。 4 is a switching P-channel MOSFET, the switch 5 is an N-channel MOSFET. 开关4和开关5串联在第一节点VI和第二节点V2之间,二极管6和二极管7串联在第二节点V2和负线3之间,构成降压型谐振开关电容直流电压变换器。 Switch 4 and the switch 5 are connected in series between the first node and the second node V2 VI, the diode 6 and the diode 7 connected in series between the second node and the negative line V2 3, constituting the step-down DC-DC converter RSC.

中心抽头电感10连接在第一和第二MOSFET4、 5之间。 Center tapped inductor 10 connected between the first and second MOSFET4, between 5. 谐振电容9连接在电感10的中心节点15和二极管6、 7的共同节点14之间。 Resonant capacitor 9 is connected between the center node of inductor 15 and common node 10 of the diode 6, 7, 14. 电容9在该变换器中提供主要的储能器件。 Providing primary capacitive energy storage device 9 in the converter. 电感10可采用由聚合物粘合磁芯所制成的电感或空心电感与电容9产生谐振。 Inductor core 10 can be made from a polymer adhesive or the inductance of the resonant inductance and capacitance hollow 9.

自驱门驱动控制电路12利用节点1和节点2之间的电压作为自启动提供给门驱动的电源。 Since the gate drive circuit 12, the drive control using the voltage between nodes 1 and 2 as from the start of the driving power provided to the door. 自驱门驱动控制电路12为MOSFET4、 5提供开关门信号。 Since the gate drive circuit 12 to drive control MOSFET4, 5 provides a switching gate signal. 直流电压变换器20为降压型直流电压变换器。 DC converter 20 is a step-down DC-DC converter. 电压V1为输入端,V2在负载端。 Input voltage V1, V2 at the load. 理想情况下,电压V2等于电压V1的一半。 Ideally, the voltage V2 is equal to half of the voltage V1. 直流电压变换器通过将电容9充放电来工作。 DC voltage converter by charging and discharging the capacitor 9 to work. 电容9作用为与电感10谐振的电容从而为MOSFET获取零电流开关环境。 9 functions as capacitor and inductor of the resonant capacitor 10 so as to obtain a zero-current switching environment a MOSFET.

图8为本发明的第三具体实施例。 FIG 8 shows a third specific embodiment of the invention. 逆变型开关电容准谐振变换器30在第一电压节点1和地或负线3之间具有第一电压端V1,以及在第二节点2和地或负线3之间具有第二电压端V2。 Quasi-resonant inverter switched capacitor voltage converter 30 having a first terminal voltage V1 between the first node 1 and the ground or negative line 3, and between the second node 2 and the ground or negative line having a second voltage terminal 3 V2. 地或负线3可为低于电压节点1和2的任何电位。 3 or may be a negative line voltage is lower than the potential of the node 1 and 2 of any. 两个滤波电容8、 ll分别与第一和第二电压端Vl、 V2并联。 Two filter capacitors 8, ll, respectively, the first and second terminal voltages Vl, V2 connected in parallel. 变换器30包括一对互补金属氧化物半导体场效应管(MOSFET)开关4、 5。 Converter 30 includes a pair of complementary metal-oxide semiconductor field effect transistor (MOSFET) switches 4, 5. 开关4为P沟道MOSFET,开关5为N沟道MOSFET。 4 is a switching P-channel MOSFET, the switch 5 is an N-channel MOSFET. 开关4和开关5串联在第一节点1和负线3之间,二极管6和二极管7串联在第二节点V2和负线3之间,构成逆变型谐振开关电容直流电压变换器。 Switch 4 and the switch 5 are connected in series between the first node 1 and the negative line 3, the diode 6 and the diode 7 connected in series between the second node and the negative line V2 3, constituting the inverter type RSC DC converter.

中心抽头电感10连接在第一和第二MOSFET4、 5之间。 Center tapped inductor 10 connected between the first and second MOSFET4, between 5. 谐振电容9连接在电感10的中心节点15和二极管6、 7的共同节点14之间。 Resonant capacitor 9 is connected between the center node of inductor 15 and common node 10 of the diode 6, 7, 14. 电容9在该变换器中提供主要的储能器件。 Providing primary capacitive energy storage device 9 in the converter. 电感IO可采用由聚合物粘合磁芯所制成的电感或空心电感与电容9产生谐振。 IO inductor core can be made from a polymer adhesive or the inductance of the resonant inductance and capacitance hollow 9.

自驱门驱动控制电路12利用节点1和节点3之间的电压作为自启动提供给门驱动的电源。 Since the gate drive circuit 12, the drive control using the voltage between node 1 and node 3, as from the start of the driving power provided to the door. 自驱门驱动控制电路12为MOSFET4、 5提供开关门信号。 Since the gate drive circuit 12 to drive control MOSFET4, 5 provides a switching gate signal. 直流变换器30为逆变电压变换器。 An inverter DC converter 30 is a voltage converter. 电压V1为输入端,V2在负载端。 Input voltage V1, V2 at the load. 理想情况下,电压V2等于电压V1的负值。 Ideally, the negative voltage V2 is equal to the voltage V1. 变换器通过将电容9充放电来工作。 Converter by the capacitor 9 to charge and discharge the work. 电容9作用为与电感10谐振的电容从而为MOSFET获取零电流开关环境。 9 functions as capacitor and inductor of the resonant capacitor 10 so as to obtain a zero-current switching environment a MOSFET.

以上,是为了本领域技术人员理解本发明,而对本发明所进行的详细描述,但可以想到,在不脱离本发明的权利要求所涵盖的范围内还可以做出其它的变化和修改,这些变化和修改均在本发明的保护范围内。 Above, to those skilled in the art to understand the invention and detailed description made with the present invention, it is contemplated within the scope without departing from the invention covered by the claims may also be made of other variations and modifications of these changes and modifications are within the scope of the present invention.

Claims (11)

1. 一种谐振开关电容直流电压变换器,包括第一电压节点,第二电压节点,第一开关,第二开关,第一二极管,第二二极管,控制电路,其中,第一电压节点和负线之间具有第一电压,该第二电压节点和负线之间具有第二电压,控制电路为该第一开关和第二开关提供开关门信号,其特征在于,该谐振开关电容直流电压变换器进一步包括中心抽头电感和谐振电容,其中,中心抽头电感连接在所述第一开关和第二开关之间,谐振电容连接在所述第一二极管和第二二极管的共同节点和该中心抽头电感的中心节点之间。 An RSC DC converter comprising a first voltage node, a second voltage node, a first switch, a second switch, a first diode, a second diode, a control circuit, wherein the first having a line between a first voltage node and a negative voltage, the voltage between the second node and the negative line having a second voltage, the control circuit provides a gate signal for switching the first and second switches, characterized in that the resonant switch capacitor DC converter further comprises a center-tapped inductor and resonant capacitor, wherein the center tapped inductor connected between the first and second switches, a resonant capacitor connected between said first and second diodes the common node between the central node and the center-tapped inductor.
2. 如权利要求1所述的谐振开关电容直流电压变换器,其特征在于,该第一开关和该第二开关为一对互补金属氧化物半导体场效应管开关,该第一开关是P沟道金属氧化物半导体场效应管,该第二开关是N沟道金属氧化物半导体场效应管。 2. The RSC DC voltage converter according to claim 1, wherein the first switch and the second switch is a pair of complementary metal oxide semiconductor FET switch, the first switch is a P-channel channel metal oxide semiconductor field effect transistor, the second switch is an N-channel metal oxide semiconductor field effect transistor.
3. 如权利要求1所述的谐振开关电容直流电压变换器,其特征在于,该第一开关和该第二开关为绝缘栅双极型晶体管。 RSC DC voltage converter according to claim 1, wherein the first switch and the second switch is an insulated gate bipolar transistor.
4. 如权利要求1所述的谐振开关电容直流电压变换器,其特征在于,所述第一开关和第二开关串联在第一电压节点和负线之间,该第一二极管和该第二二极管串联在该第一电压节点和该第二电压节点之间。 RSC as claimed in claim 1 DC voltage converter and the diode of the first claim, characterized in that said first and second switches connected in series between the first node and the negative voltage line, a second diode connected in series between the first node and the voltage of the second voltage node.
5. 如权利要求5所述的直流电压变换器,其特征在于,所述控制电路为自启动门驱动控制电路。 5. The DC voltage converter according to claim 5, characterized in that the control circuit is self-starting gate drive control circuit.
6. 如权利要求1所述的谐振开关电容直流电压变换器,其特征在于,所述第一开关和第二开关串联在该第一电压节点和该第二电压节点之间,该第一二极管和该第二二极管串联在该第二电压节点和该负线之间。 6. The RSC DC voltage converter according to claim 1, wherein said first and second switches connected in series between the first node and the voltage of the second voltage node, the first two the diode and a second diode connected in series between the second node and the negative voltage line.
7. 如权利要求6所述的直流电压变换器,其特征在于,所述控制电路为自启动门驱动控制电路。 7. The DC voltage converter according to claim 6, wherein the control circuit is self-starting gate drive control circuit.
8. 如权利要求7所述的直流电压变换器,其特征在于,所述控制电路利用所述第一节点和第二节点之间的电压作为自启动提供给门驱动的电源。 8. The DC voltage converter according to claim 7, characterized in that said control circuit uses a voltage between the first node and the second node as a gate drive power supply to the self-starting.
9. 如权利要求1所述的谐振开关电容直流电压变换器,其特征在于,所述第一开关和第二开关串联在该第一电压节点和该负线之间,该第一二极管和该第二二极管串联在该第二电压节点和该负线之间。 9. The RSC DC voltage converter according to claim 1, wherein said first and second switches connected in series between the first node and the negative voltage line, the first diode and a second diode connected in series between the second node and the negative voltage line.
10. 如权利要求9所述的直流电压变换器,其特征在于,所述控制电路为自启动门驱动控制电路。 10. The DC voltage converter according to claim 9, wherein the control circuit is self-starting gate drive control circuit.
11.如权利要求10所述的谐振开关电容直流电压变换器,其特征在于, 所述控制电路利用所述第一电压节点和所述负线之间的电压作为自启动提供给门驱动的电源。 11. The RSC DC voltage converter according to claim 10, characterized in that said control circuit uses a voltage between the first node and the negative voltage line as the power source is supplied to the gate drive from the start of .
CN 200810082359 2008-02-29 2008-02-29 Resonant switched capacitor direct current voltage converter CN101521459B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810082359 CN101521459B (en) 2008-02-29 2008-02-29 Resonant switched capacitor direct current voltage converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810082359 CN101521459B (en) 2008-02-29 2008-02-29 Resonant switched capacitor direct current voltage converter

Publications (2)

Publication Number Publication Date
CN101521459A true CN101521459A (en) 2009-09-02
CN101521459B CN101521459B (en) 2011-09-28

Family

ID=41081872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810082359 CN101521459B (en) 2008-02-29 2008-02-29 Resonant switched capacitor direct current voltage converter

Country Status (1)

Country Link
CN (1) CN101521459B (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312151A (en) * 2012-03-05 2013-09-18 太阳能安吉科技有限公司 Direct current link circuit
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
CN109617407A (en) * 2018-12-19 2019-04-12 北京理工大学 A kind of series-parallel complex resonance Switching capacitors of boost type
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI579570B (en) * 2016-10-27 2017-04-21 Sea Sonic Electronics Co Ltd Step - down power conversion circuit

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
CN103312151A (en) * 2012-03-05 2013-09-18 太阳能安吉科技有限公司 Direct current link circuit
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
CN109617407A (en) * 2018-12-19 2019-04-12 北京理工大学 A kind of series-parallel complex resonance Switching capacitors of boost type

Also Published As

Publication number Publication date
CN101521459B (en) 2011-09-28

Similar Documents

Publication Publication Date Title
US6069803A (en) Offset resonance zero volt switching flyback converter
JP2806320B2 (en) Synchronous rectification circuit
US6853569B2 (en) DC to DC converter
ES2355202T3 (en) General scheme of self-excited synchron rectification for synchronous rectifiers
CN1391720B (en) External driving circuit for bridge type synchronous rectification
JP4763606B2 (en) High frequency control of semiconductor switches
US8027179B2 (en) Inverter circuit and method for operating the inverter circuit
JP2010516223A (en) Power converter with snubber
CN1230967C (en) Flyback converter
TWI384745B (en) Gate driver apparatus for alternately driving a half- or a full-bridge
US6483724B1 (en) DC/DC ZVS full bridge converter power supply method and apparatus
KR100889528B1 (en) Soft start circuit and power supply including the circuit
US7596007B2 (en) Multiphase DC to DC converter
DE60109504T2 (en) Resonant power converter
JP4147414B2 (en) Power conversion device and power conversion method
JP5632191B2 (en) Bidirectional DC / DC converter
US8917068B2 (en) Quasi-resonant controlling and driving circuit and method for a flyback converter
US7729144B2 (en) DC/DC power conversion device
US7307857B2 (en) Non-isolated DC-DC converters with direct primary to load current
JP2003189602A (en) Dc-dc converter and electric equipment using the same
EP1813013B1 (en) Push-pull inverter with snubber energy recovery
JP5590124B2 (en) DC-DC converter
CN1588773A (en) Boost type active interlaced parallel soft switch circuit
JP2003324956A (en) Method of controlling series resonant bridge inverter circuit and the circuit
US7486055B2 (en) DC-DC converter having a diode module with a first series circuit and a second series with a flywheel diode

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted