CN101495971A - 包括智能检测断层-断层关系的方法的断层建模的交互自动化方法 - Google Patents

包括智能检测断层-断层关系的方法的断层建模的交互自动化方法 Download PDF

Info

Publication number
CN101495971A
CN101495971A CN200780028660.9A CN200780028660A CN101495971A CN 101495971 A CN101495971 A CN 101495971A CN 200780028660 A CN200780028660 A CN 200780028660A CN 101495971 A CN101495971 A CN 101495971A
Authority
CN
China
Prior art keywords
tomography
explained
exponent
former
annexation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200780028660.9A
Other languages
English (en)
Other versions
CN101495971B (zh
Inventor
K·格拉夫
D·M·恩德雷斯
M·哈尔
J·C·皮肯斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Canada Ltd
Prad Research and Development Ltd
ExxonMobil Upstream Research Co
Original Assignee
Prad Research and Development Ltd
ExxonMobil Upstream Research Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prad Research and Development Ltd, ExxonMobil Upstream Research Co filed Critical Prad Research and Development Ltd
Publication of CN101495971A publication Critical patent/CN101495971A/zh
Application granted granted Critical
Publication of CN101495971B publication Critical patent/CN101495971B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/301Analysis for determining seismic cross-sections or geostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Geophysics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Debugging And Monitoring (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Devices For Executing Special Programs (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

公开了检测断层-断层关系的方法,包括:自动检测断层之间的相互关系,并向解释者呈现表示断层之间相互关系的最终的模型,该模型包括断层-断层交叉曲线以及在该曲线上截断的一个断层。

Description

包括智能检测断层-断层关系的方法的断层建模的交互自动化方法
背景技术
本说明书公开的主题涉及断层建模的交互自动化方法及相应的系统和程序存储设备和计算机程序,更具体地,涉及作为断层解释过程的一部分,智能地检测断层-断层关系的方法。
当计算机作为用于钻井目的来描绘油气储藏、或做出开采需要的其它决定的优选方法时,‘断层建模的交互自动化’简化了生成断层构架的传统上难以使用的过程。储藏结构(即,地层、断层、地质体(geobody))对储藏建模是重要的。本说明书公开了断层建模的交互自动化’的方法,属于将地层中的断层结构作为断层解释的嵌入部分来建模的方式中的提高或改善。
以下美国专利通过引用结合于此:(1)Abbott的美国专利5,982,707,题为“为交叉断层确定地质关系的方法和设备”,以及(2)Graf等的美国专利6,014,343,题为“基于自动非人工扩展断层表面的地层建模系统”。
发明内容
本发明的一个方面涉及断层建模的交互自动化方法,包括:检测一对断层之间的断层-断层关系;并显示包括该对断层的最终模型,该最终模型示出了该对断层是互连的。
本发明的另一方面涉及可以被机器读取的程序存储设备,确实地包含了可以被机器执行,以进行断层建模的交互自动化的方法步骤的指令的程序,所述方法步骤包括:检测一对断层之间的断层-断层关系;并且显示包括该对断层的最终模型,该最终模型示出了该对断层是互连的。
本发明的又一方面涉及一种适于被处理器执行的计算机程序,当所述计算机程序被处理器执行时,引导断层建模的交互自动化的过程,该过程包括:检测一对断层之间的断层-断层关系;并且显示包括该对断层的最终模型,该最终模型示出了该对断层是互连的。
本发明的又一方面涉及作为断层解释过程的一部分,智能检测断层-断层关系的方法,该方法包括:好像每个断层与任何其它断层不相关地计算一个或更多个断层的模型;检测一种条件,其中与正被解释的一个断层关联的数据指示该断层接近于一个或更多个其它断层,该一个断层和该一个或更多个其它断层是可能相关的断层;向解释者呈现该一个或更多个可能相关的断层,解释者确认或否认可能相关的断层之间存在连接关系;以及在解释者确认可能相关的断层之间存在连接关系的条件下,计算可能相关的断层之间的连接关系,由此生成最终模型。
本发明的又一方面涉及一种可以被机器读取的程序存储设备,确实地包含了可以被机器执行,以进行作为断层解释过程的一部分智能地检测断层-断层关系的方法步骤的指令的程序,所述方法步骤包括:好像每个断层与任何其它断层不相关地计算一个或更多个断层的模型;检测一种条件,其中与正被解释的一个断层关联的数据指示该断层接近于一个或更多个其它断层,该一个断层和该一个或更多个其它断层是可能相关的断层;向解释者呈现该一个或更多个可能相关的断层,解释者确认或否认可能相关的断层之间存在连接关系;以及在解释者确认可能相关的断层之间存在连接关系的条件下,计算可能相关的断层之间的连接关系,由此生成最终模型。
本发明的又一方面涉及一种适于被处理器执行的计算机程序,当该计算机程序被处理器执行时,进行作为断层解释过程的一部分智能地检测断层-断层关系的方法,该方法包括:好像每个断层与任何其它断层不相关地计算一个或更多个断层的模型;检测一种条件,其中与正被解释的一个断层关联的数据指示该断层接近于一个或更多个其它断层,该一个断层和该一个或更多个其它断层是可能相关的断层;向解释者呈现该一个或更多个可能相关的断层,解释者确认或否认可能相关的断层之间存在连接关系;以及在解释者确认可能相关的断层之间存在连接关系的条件下,计算可能相关的断层之间的连接关系,由此生成最终模型。
本发明的又一方面涉及一种系统,适于作为断层解释过程的一部分智能地检测断层-断层关系,该系统包括:第一设备,适于好像每个断层与任何其它断层不相关地计算一个或更多个断层的模型;第二设备,适于检测一种条件,其中与正被解释的一个断层关联的数据指示该断层接近于一个或更多个其它断层,该一个断层和该一个或更多个其它断层是可能相关的断层;第三设备,适于向解释者呈现该一个或更多个可能相关的断层,解释者确认或否认可能相关的断层之间存在连接关系;以及第四设备,适于在解释者确认可能相关的断层之间存在连接关系的情况下,计算可能相关的断层之间的连接关系,由此生成最终模型。
本发明的又一方面涉及一种适于断层建模的交互自动化的系统,包括:第一设备,适于检测一对断层之间的断层-断层关系;以及第二设备,适于显示包括该对断层的最终模型,该最终模型示出了该对断层是互连的。
本发明的又一方面涉及一种检测断层-断层关系的方法,包括:自动检测断层之间的相互关系;以及向解释者呈现表现断层之间的相互关系的最终模型,该最终模型包括断层-断层交叉曲线,以及在该曲线上截断的一个断层。
本发明的又一方面涉及一种适于被处理器执行的计算机程序,当该计算机程序被处理器执行时,引导检测断层-断层关系的过程,该过程包括:自动检测断层之间的相互关系,以及向解释者呈现表现断层之间相互关系的最终模型,该最终模型包括断层-断层交叉曲线,以及在该曲线上截断的一个断层。
本发明的又一方面涉及一种可以被机器读取的程序存储设备,确实地包含了可以被机器执行,以进行检测断层-断层关系的方法步骤的一组指令,所述方法步骤包括:自动检测断层之间的相互关系,以及向解释者呈现表现断层之间相互关系的最终模型,该最终模型包括断层-断层交叉曲线,以及在该曲线上截断的一个断层。
本发明的又一方面涉及一种适于检测断层-断层关系的系统,包括:适于自动检测断层之间的相互关系的设备,以及适于向解释者呈现表现断层间相互关系的最终模型的设备,该最终模型包括断层-断层交叉曲线,以及在该曲线上截断的一个断层。
适用性的进一步范围将从以下详细描述变得更明显。但是,应该理解,下面阐述的详细描述和特定例子仅以说明的方法给出,因为在如本说明书中描述和要求的“断层建模软件”的精神和范围内的各种改变和修改,将通过阅读下列详细描述而对本领域技术人员变得明显。
附图说明
从下面示出的详细描述,以及通过示例的方式给出的附图,将获得完整的理解,而不是为了任何程度的限制,在附图中:
图1示出了存储称为“断层建模软件”的软件包的工作站或其它计算机系统;
图2和图3示出了描述由图1的断层建模软件实现的功能的第一实施例(A)的框图;
图4和图5示出了描述由图1的断层建模软件实现的功能的第二实施例(B)的框图;
图6示出了在布有(ridden)断层的地球地层中地层和断层的结构模型的一个例子;
图7示出了沿图6的剖面线7-7获取的图6中的地层82b的顶视图;
图8示出了全部由断层构成的网络;
图9和图11到13表现断层关系的各种示例,被应用或没有被应用;
图10示出了两个断层的断层解释数据,也称为“断层切割”;
图14示出了当与任何其它断层不相关地建模时,断层边缘(前端环线(tip loop))将看起来如何;
图15描述了用来检测在一个正被解释的断层附近存在另一断层的处理步骤,图15(包括与‘断层接近度检查’相关的多个步骤)是图2中‘接近’步骤20的详细构造,图15也是图4中‘接近’步骤21的详细构造;
图16示出了位于最右侧截断断层附近的一组点(在图中位于中央);
图17示出了在解释者确认断层-断层关系正确之后,对两个断层的交叉建模,如图17中示出的最长的线所示;
图18描述了用来将被解释的断层投影到附近的断层并计算共同的‘断层-断层交叉曲线’的处理步骤,图18是图3中步骤28的详细构造,图18还是图5中步骤31的详细构造;
图19示出了两个相关断层的最终模型,其中一个断层被建模直到与另一断层的共同交叉处并在那里结束;
图20和21示出了在图2和图3以及在图4和图5中说明的断层建模的上述方法的最终目的;即,从地球地层中提取油和/或气,图20示出了包括地球地层中油和/或气所在位置的地球地层的特征,图21示出了在地球地层的该位置部署的钻探设备,该钻探设备用于从图20的地球地层的位置提取油和/或气;
图22和23示出了用于生成钻井日志输出记录的方法;
图24、25和26示出了用于生成简化(reduced)地震数据输出记录的方法;以及
图27示出了图23的钻井日志输出记录和图26的简化地震数据输出记录如何共同地,并结合地,表示输入到图1的计算机系统10的‘输入数据’15。
具体实施方式
本说明书公开了称为‘断层建模的交互自动化’的概念,这是作为与油和/或气勘探和生产相关的‘断层解释’的一部分执行的过程。‘断层建模的交互自动化’简化了生成断层构架的传统上难以使用的方法。在解释期间,使用后台建模过程,其呈现‘自动检测的断层间关系’。这些后台过程(在本说明书中下面还要讨论)在解释期间自动生成断层表面,并检查它们的相对接近度。‘自动检测的断层间关系’的例子可以是:一个断层如何截断另一个断层。解释者确认这些关系,继续解释过程,并且‘互连断层模型的构架’变得可用,其代表对断层解释过程的‘增加的价值’。
‘断层建模的交互自动化’过程,特别是‘自动检测的断层间关系’过程,在计算机代表用于描绘油气储藏以及用于钻井的优选方式时,以及对在油和/或气勘探和生产期间需要做出的与储藏勘探相关的决定,是有用的。由地层、断层和地质体的组合定义的‘储藏结构’作为‘储藏建模’的基础。结果,本说明书公开了对该方法的进一步改善和提高,由此作为断层解释过程的嵌入部分,断层构架被建模。
结果,在本说明书中,作为断层解释工作流程过程的一部分,对‘断层的互连网络’建模,通过:(1)自动检测‘断层间的相互关系’;例如,一种‘断层间相互关系’是:一个断层如何截断另一个断层,以及(2)作为解释过程的不可分离的一部分,向用户/操作员呈现‘断层间相互关系’。该‘断层建模的交互自动化’被考虑为交互和动态的过程,假设它遵从(compliment)了断层解释的迭代本性。该功能被设计为对解释者最小打扰。反过来,解释者被允许集中在地表下的地质情况,而不是模型建立过程。但是,无论如何,作为‘断层建模的交互自动化’过程的结果,产生了‘模型’,它代表对断层解释过程的‘增加的价值’。
本说明书中描述的‘断层建模的交互自动化’过程,实际上表示以交互响应速度执行的“智能检测(即‘intelisensing’)断层-断层关系的方法”。
根据(图2和图3指示的)第一实施例,执行并实现‘智能检测(即‘intelisensing’)断层-断层关系的方法’的上述‘断层建模的交互自动化’过程通过以下步骤完成:(a)好像每个断层和任何其它断层不相关地计算每个断层的模型,(b)随着产生新的解释数据保持(不相关的)模型最新,(c)检测一种条件,由此一个断层(正被解释的那个)的数据‘接近于’一个或更多个其它断层(见图15中‘断层接近度检测’的详细构造,该‘断层接近度检测’中该一个断层被确定为‘接近于’该一个或更多个其它断层),(d)在弹出窗口中、或以‘断层-断层交叉曲线’的显示上的闪烁,向解释者呈现该‘一个或更多个可能相关的断层’,从而解释者接着可以确认或否认连接关系正确,(e)记录来自解释者的响应,并且如果关系被解释者确认,计算连接关系属性,(f)将特定的交叉类型属性作为新的解释加到断层,该断层以解释数据嵌入该关系;(g)可选地计算并显示经过关联的模型,以示出断层为连接的(即交叉的)。
断层和地层建模的例子可以在以下专利中找到:(1)Graf等的美国专利6,014,343,(2)Graf等的美国专利6,138,076,以及(3)Abbott的美国专利5,982,707,这些公开通过引用结合到本申请的说明书中。
参考图1,示出了存储‘断层建模软件’的工作站或其它计算机系统,该软件执行或实现上述‘断层建模的交互自动化’过程,其中‘断层建模的交互自动化’过程执行并实现‘智能检测(即intellisensing)断层-断层关系的方法’。
在图1中,示出了适于存储‘断层建模软件’的工作站、个人计算机、或其它计算机系统10。图1的计算机系统10包括操作地连接到系统总线10b的处理器10a,操作地连接到系统总线10b的存储器或其它程序存储设备10c,以及操作地连接到系统总线10b的记录器或显示设备10d。存储器或其它程序存储设备10c存储‘断层建模软件’12,该软件实现‘断层建模的交互自动化’,其中‘断层建模的交互自动化’过程执行并实现‘智能检测(即intellisensing)断层-断层关系的方法’。
在图1中的计算机系统10的存储器10c中存储的‘断层建模软件’12可以被初始存储在CD-ROM 14上,其中该CD-ROM 14也是‘程序存储设备’。该CD-ROM 14可以被插入到计算机系统10,且‘断层建模软件’12可以从该CD-ROM 14上载入到图1中计算机系统10的存储器/程序存储设备10c。图1的计算机系统10响应于特定的‘输入数据’13,‘输入数据’13在本说明书的后续章节中详细讨论。响应于‘输入数据’13,计算机系统10的处理器10a将执行在图1的存储器10c中存储的‘断层建模软件’12;并且响应于此,处理器10a将生成在图1的记录器或显示设备10d上记录或显示的‘输出显示’。图1的计算机系统10可以是个人计算机(PC)、工作站、微处理器或主机。可能的工作站的例子包括Dell Precision M90工作站或HP Pavilion工作站或Sun ULTRA工作站或Sun BLADE工作站。存储器或程序存储设备10c(包括上面提到的CD-ROM 14)是可以被机器,例如处理器10a读取的‘计算机可读媒介’或‘程序存储设备’。处理器10a可以是,例如,微处理器、微控制器、或主机或工作站处理器。存储‘断层建模软件’12的存储器或程序存储设备10c或14可以是,例如,硬盘、ROM、CD-ROM、DRAM、或其它RAM,闪存、磁存储、光存储、寄存器、或其它易失性及/或非易失性存储器。
参考图2和图3,示出了描述由图1的断层建模软件12的第一实施例实现的功能的框图。
在图2和图3中,断层建模软件12的第一实施例实现‘断层建模的交互自动化’过程,且‘断层建模的交互自动化’过程实际上通过执行或实现或进行下列步骤来执行并实现‘智能检测(即intellisensing)断层-断层关系的方法’:
(1)好像每个断层和任何其它断层不相关地计算每个断层的模型,图2的步骤16,
(2)随着产生新的解释数据,保持每个断层的不相关的模型最新,图2的步骤18,
(3)检测一种条件,由此与一个断层(即正被解释的断层)关联的数据指示该正被解释的断层‘接近于’一个或更多个其它断层,图2的步骤20(见图15‘断层接近度检查’),
(4)在弹出窗口中向解释者呈现该一个或更多个可能相关的断层,作为响应,解释者确认或否认可能相关的断层之间的连接关系正确,图2的步骤22,
(5)记录来自解释者的响应,并且如果连接关系被解释者确认,计算所有连接关系属性,图3的步骤24,
(6)将代表新的解释的交叉曲线和其它连接属性加到断层,断层以解释数据嵌入连接关系,图3的步骤26,以及
(7)可选地计算并显示最终模型,以示出断层为连接的,即,交叉的,图3的步骤28,其中最终模型还包括与作为解释数据的步骤(6)的交叉曲线分开的‘最终’交叉曲线。最终模型的所有元素都是动态的,即,每当解释的任何部分被修改时被重新计算,并且这包括最终交叉曲线。
上面提到的图2和图3的步骤16到28,在下面将参考附图中的图6到19更详细地讨论。
参考图4和图5,示出了描述由图1的断层建模软件12实现的第二实施例的功能的框图。
在图4和图5中,断层建模软件12的第二实施例实现了‘断层建模的交互自动化’过程,且‘断层建模的交互自动化’过程实际上通过执行或实现或进行下列步骤来执行并实现‘智能检测(即,intellisensing)断层-断层关系的方法’:
(1)好像每个断层和任何其它断层不相关地计算每个断层的模型,图4的步骤17,
(2)随着产生新的解释数据,保持每个断层的不相关的模型最新,图4的步骤19,
(3)检测一种条件,由此与一个断层(即正被解释的断层)相关的数据指示该正被解释的断层‘接近于’一个或更多个其它断层,图4的步骤21(见图15的‘断层接近度检测’),
(4)计算被解释的断层和该一个或更多个其它断层之间的连接关系属性,包括:断层-断层交叉曲线和截断规则,图4的步骤23,
(5)向解释者呈现该一个或更多个可能相关的断层的交叉曲线,作为响应,解释者确认或否认可能相关的断层之间的连接关系正确,图5的步骤25,
(6)记录来自解释者的响应,并且如果连接关系被解释者确认,计算剩余的连接关系属性,图5的步骤27,
(7)将代表新的解释的交叉曲线和其它连接属性加到断层,断层以解释数据嵌入连接关系,图5的步骤29,以及
(8)可选地计算并显示最终模型,以示出断层为连接的,即,交叉的,图5的步骤31,其中最终模型还包括与作为解释数据的步骤(6)的交叉曲线分开的‘最终’交叉曲线。最终模型的所有元素都是动态的,即,每当解释的任何部分被改变时被重新计算,并且这包括最终交叉曲线。
参考附图的图6到19,下面将更详细地讨论上面提到的图4和图5中的步骤17到31。
参考图6和图7。图6和图7涉及由地层和断层构成的结构模型的例子。图6给出了该模型的三维表示,且图7表示穿过该模型的深度切片(剖面线7-7)。
在图6和图7中,先参考图6,在图6中示出了断层和地层的储藏结构模型116的例子。图6的断裂地层模型116是一地球地层的部分的三维表示,其中该地球地层由与多个断层交叉的很多地层组成。例如,在图6中,具有多个地层的一地球地层被多个断层交叉,并且在图6中,多个地层82a、82b和82c分别被多个断层15a、15b和15c交叉。在图6中,断裂地层模型116是该地球地层的三维视图,示出了被多个断层15a、15b和15c交叉的多个地层82a、82b和82c。在图7中,示出了图6的地层82a、82b和82c中的一个的地图(map),术语‘地图’被定义为图6中地层82a、82b和82c中的一个的顶视图。例如,图7中,图7中示出的‘地图’示出了图6中地层82a的顶视图,地层82a的顶视图是沿着图6中的剖面线7-7在图6中向下看。在图7中,注意断层区域15a。
参考图8,示出了包括全部由断层组成的网络的地球地层模型。
在图8中,结合包括‘智能检测(即intellisensing)断层-断层关系的方法’的上述‘断层建模的交互自动化的方法’,建立结构模型的典型方法由‘建立断层结构’开始。‘建立断层结构’的步骤需要断层解释数据,该数据典型地从地震数据中提取。建立‘结构模型’的过程由断层构架的构造而变得容易,在该构架内地层被解释。图8示出了全部由断层组成的断层构架。
参考图10,图10中示出的示意图示出了很多‘断层解释数据’(也称为‘断层切割’),其中‘断层解释数据’描述或表示两个断层。在图10中,示出了两个断层中的每个的建模的描画,该建模的描画初始地示出了图10中示出的两个断层之间的‘连接关系’。图10中示出的两个断层之间的‘连接关系’由穿透另一个断层的一个断层被显示,由此在两个断层之间建立‘交叉’。因此,给定图10中示出的‘断层-断层关系’,如图10所示,断层中的一个可以被削减(即,截断或裁剪)到‘交叉’处。
参考图9,11,12和13,在图9,11,12和13中示出了断层关系的各种示例,被应用或没有被应用。
在图9中,在图9中示出了‘断层构架元素’的示例。在图9中,断层构架管理并存储在构建过程期间计算的各种数据对象。这些对象包括紧靠着它们相关的主断层被截断的小断层,要求存储断层-断层交叉线,以及所有建立的断层关系。这些元素中的一些在图9中示出。
在图11和12中,两个断层34和36可以以图11示出的方式交叉;但是,两个断层30和32也可以以图12示出的方式交叉。在图12中,主断层30被小断层32交叉;但是,小断层32在主断层30的下面被截断。
在图13中,在图13中示出了断层模型元素的又一个示例。主要元素是适合到断层切割数据的真实部分、虚构或外推部分、以及断层边缘,这是真实和虚构部分之间的分界。边缘也被称为前端环线(tip loop)。
图1中实现包括‘智能检测(即intellisensing)断层-断层关系的方法’的‘断层建模的交互自动化’的断层建模软件12,之前称为‘断层建模服务’,该‘断层建模服务’被结合在‘断层解释工作流程’之内。
为了使与图1的断层建模软件12关联的‘断层建模服务’激活(或去激活),‘设置对话框’将被使用,该‘设置对话框’在图1的记录器或显示设备10d上显示。
‘设置对话框’包括下列信息:
(1)‘构架断层建模’是‘开启(on)/关闭(off)切换’,其激活与解释同时的断层建模以及断层智能检测过程。当切换到‘开启’时,可以设置参数来控制断层建模服务。
(2)‘断层-断层连接距离,默认为200’控制智能检测被解释的断层附近的其它断层的敏感度。类似地,它还控制被解释的断层被外推来连接附近的断层并与其构成交叉的距离。
(3)‘断层平滑,默认为2’控制在对断层建模时经过的平滑的数量。
(4)‘断层前端环线型式,默认为各向同性外推’控制前端环线的大致形状。选项包括:
各向同性外推-在所有方向上相同地外推断层。
各向异性外推-在水平方向上外推断层,而没有垂直外推。
被造型的(sculpted)-收缩限制(shrink-wrapped)适合到解释数据。
(5)‘断层前端环线质量因子,默认为1’控制前端环线的具体质量,包括好(1)、更好(2)、最好(4)。
(6)‘断层外推距离,默认为50’控制模型在其数据之外的外推。它仅用于前端环线型式‘各向同性外推’和‘各向异性外推’。
(7)‘断层前端环线造型直径,默认为400’控制前端环线在边缘数据点之间造型的程度。这设置了绕着经过前端环线位置的数据的边缘滚动(rolling)的球体的尺寸(直径),直径越小,球体(前端环线)在数据点之间造型地越多。
除了‘构架断层建模’开启/关闭切换,所有这些参数可以为每个断层单独设置。‘设置对话框’设置‘全局默认值’。这些设置然后在断层第一次被建模时,被使用和拷贝作为断层建模的默认值。
为了解释并建模到构架的目的,断层的选择是动态的过程。解释者可以决定包括一断层来建模,然后,解释者可以排除该断层。例如,如果解释者决定该断层对当前的任务来说是不重要的,解释者可以排除该断层;但是,解释者也可以决定再次加上该断层并进行解释/建模。类似地,用户可以随着他/她的解释成熟,修改/编辑存在的断层。
术语‘断层-断层连接距离’(在下面提到)是在本说明书公开的包括‘智能检测(即intellisensing)断层-断层关系的方法’的‘断层建模的交互自动化的方法’中使用的距离。特别地,术语‘断层-断层连接距离’被用来初始地检测‘两个断层’是‘接近’的;并且,当‘两个断层’被确定为是‘接近’的时,‘两个断层’可能是‘相关的’。如果‘两个断层’是‘相关’的,‘两个断层’然后可以被‘连接为断层-断层关系’。见图15中涉及‘断层接近度检测’的多个步骤,其中,根据图15的步骤,‘两个断层’被确定为互相‘接近’,互相‘邻近’或互相‘靠近’。
在解释期间,当‘构架断层建模’活动时,断层智能检测将使用‘弹出型式’的对话,或将在显示器上闪烁断层-断层交叉曲线,作为向解释者通知由建模算法做出的关于‘断层接近度检测’的决定、然后允许解释者确认或拒绝的方式。建模软件知道整个集合的断层已被解释或部分被解释,而解释者一次集中在一个或少数几个断层上。当‘智能检测断层建模’检测到在正被解释的断层附近有另一个或更多个断层时,解释被中断。弹出的对话框列出了‘参数化距离’内(即在’断层-断层连接距离’内)的断层,或者它们通过在显示器上闪烁交叉曲线来指明。解释者接受或拒绝每个可能的关系,并继续解释。接受或拒绝是通过对话框交互或图形画面交互或两者来完成。每个决定被断层建模软件12记录。默认地,‘拒绝’决定防止相同断层对的重现被再次显示给解释者,尽管如果需要,该决定可以在此后被取消。但是,‘接受’决定引起截断规则被计算以及显示最终(被截断)的模型。‘智能检测’(由断层建模软件12执行并实现)以交互的速度执行,而截断以近似交互的速度执行。
最终模型还包括与作为解释数据的之前计算并显示的交叉曲线分开的‘最终’交叉曲线。最终模型的所有元素是动态的,即,每当解释的任何部分被改变时被重新计算,并且这包括最终交叉曲线。
现在参考图14。
图14示出了与任何其它断层不相关地建模的断层边缘(前端环线)看起来如何,这实际上是‘默认解释模型’。该模型随着增加‘解释’而不断更新。在图14中,增加的‘解释’由图11中的线40表示。
当断层被与任何其它断层‘不相关’地建模时,即图2的步骤16和图4的步骤17,下列元素被包括,并使能断层智能检测工作流程的‘交互执行’:
1.最优断层模型-在已知在断层智能检测计算中提供性能和准确性的平衡的某个最优坐标系中的断层模型。一种这样的最优空间是所谓的‘最佳拟合平面’笛卡尔坐标系,取向为其中X-Y坐标平面与断层数据的整体趋势平行。然后Z轴可以作为断层的平均法线。断层智能检测中的关键计算是以某种近似的方法快速测量从任意三维点,即,解释点P(x,y,z),到由某个函数F(x,y)表示的断层的距离。在该计算中,需要与断层垂直的方向。使用最优断层模型的‘最佳拟合平面’类型,垂直方向近似为Z轴方向,从而距离计算d是Z分量的简单相减:
d=Pz-F(x,y)
替换地,考虑到断层的曲率,可以应用更精确的距离计算。除了建模空间的的‘最佳拟合平面’类型,考虑存在其它断层模型空间,其用于在交互响应时刻的智能检测工作流程中平衡性能和准确性的相似目的。
2.真实和虚构模型成分-断层模型是断层在规则间隔的离散位置的有限元表示。每个位置具有作为真实或虚构,二元状态的附加的分类,在断层模型被计算时被计算并被保存为模型的成分。当在与断层垂直的方向上相对于断层F(x,y)估算任意三维点,即解释点P(x,y,z)时(如在上面的距离计算中),相同的二元状态(真实vs.虚构)应用到该点。这样断层智能检测工作流程对前端环线边界处的断层终止敏感,并且如果超过其边缘则不感应或检测断层为接近。投影到断层的边界外,即,到虚构部分上,的解释点P(x,y,z),与投影到断层的真实部分上的点不同地处理。
参考图15,示出了‘接近度检测’的方法。每个解释点被检查是否‘靠近’(或是否‘接近’或‘邻近’)其它断层。定义的术语‘靠近’、‘接近’、‘邻近’是指‘每个解释点到任何其它断层的近似垂直距离’。关于术语‘接近’,其中一个断层被测试为‘接近’另一个断层,在图15中描述了‘接近度检测的方法’。在图15中,‘接近度检测的方法’(其中一个断层被检验为‘接近’、‘靠近’或‘紧邻’另一个断层)包括下列步骤:
(1)关于构架中的每个断层,除了‘被解释的断层’,图15的步骤33,(2)我们是否要忽略与该断层的任何关系,图15的步骤35,(3)如果是,回到步骤33,否则如果不是,访问‘最佳拟合平面’断层模型及其变换,图15的步骤37,(4)得到‘断层-断层连接距离’,图15的步骤39,(5),对每个新的解释点‘P’,图15的步骤41,(6)将‘P’变换到‘最佳拟合平面’坐标空间’,图15的步骤43,(7)将‘P’投影到断层作为点P’(即,点P原(prime)),图15的步骤45,(8)点P’(即点P原)在断层的真实部分上?图15的步骤47,(9)P到P’的距离<D?(即P到P原的距离小于D?),图15的步骤49,(10)如果不是,回到步骤41,但是,如果是,标记该断层为‘靠近’(或‘接近’或‘邻近’)解释断层,图15的步骤51。在操作中,参考图15,结合‘接近度检测的方法’,每个新的解释点被测试到所有其它断层的接近度。对于给定的断层,每个点P在与断层近似垂直的方向上投影到断层上的位置P’。P’必须落在断层的真实部分中(见图13真实对虚构断层部分的示例)。为了获得交互的性能,最优断层模型被用于接近度计算。每个点P被变换到断层模型空间(这可以是从一种三维笛卡尔坐标系简单变换到另一种三维笛卡坐标系)。从P到P’的距离则可以是P到P’的Z分量的简单差值,并且该差值与断层-断层连接距离D比较,以估算该断层是否足够接近一解释。或者,可以考虑断层的弯曲,估算更确切的点P’和对应的距离。然后估算P’在断层模型内真实或虚构的位置。
特殊的变换被用来获得交互的性能并计入断层边缘-前端环线。投影在断层边缘外的点不会触发可能的关系。
位于离另一个第二断层‘断层-断层连接距离’以内的第一断层的一个或更多个点使得第一断层在‘弹出列表’中呈现给解释者,或通过在显示器上闪烁‘断层-断层交叉曲线’来呈现,除非该第一断层已经被拒绝为‘不相关’的。
参考图16,该图16示出了位于最左侧断层44上‘接近’图16中的最右侧(截断)断层46的一组点42,由此生成最左侧断层44和最右侧断层46之间的‘断层-断层’关系。因此,最右侧(截断)断层46将在‘弹出列表’中示出,或通过在显示器上闪烁‘断层-断层交叉曲线’来示出,这在图1中的记录器或显示设备10d上呈现给解释者。在记录器或显示设备10d上看到‘弹出列表’或看到‘断层-断层交叉曲线’的闪烁时,解释者必须确认上述‘断层-断层关系’正确。
参考图17,在解释者确认上述‘断层-断层关系’正确后,图16的两个断层44和46的交叉如果还没有被建模则‘建模’,如图17中出现的‘最长线’48所指示。该‘最长线’48曲线很可能比其所需的更长,并被有意地建模超过它应该结构上结束的地方。该‘交叉解释’(由图17中的‘最长线’48表示)然后被加到‘断层解释的集合’(即,手动选取的那些),并和任何其它解释类似地处理。尽管在该阶段确切的交叉,它的主要目的是解释在相关的截断断层附近的该断层。最终交叉曲线以后被建模,与本步骤不同,并被在其补充解释实体之外单独存储为模型实体。其中断层截断被应用的断层构架建模计算该建模的交叉。
参考图3、5和19,先参考图19,图19中示出的模型表示‘两个相关断层’的‘最终模型’,其中一个断层被建模直到与另一个断层的共同交叉处并在那里结束;见图3的步骤28中“显示经过相关联的模型以示出断层为连接的(即交叉的)”,并见图5的步骤31中“显示最终的模型以示出断层为连接的(即交叉的)”。
在图17中,‘计算的交叉曲线’由图17中示出的‘最长线’48表示。和其它解释一起存储‘计算的交叉曲线’(由图17中的‘最长线’48表示),允许进行编辑和调整,正如人们将对任何解释做的那样。估算的交叉可以被改变,如果需要。通过以普通解释数据并入建模的曲线,该步骤进一步将建模工作流程绑定并集成到解释工作流程。
参考图18,示出了图3的步骤28及图5的步骤31的更详细的构造。在图18中,示出了计算‘断层-断层交叉曲线’的方法,该方法适于计算‘计算的交叉曲线’,该曲线也称为由图17示出的‘最长线’48表示的‘断层-断层交叉曲线’。在图18中,示出了由图1的计算机系统的处理器10a执行,以计算上述‘计算的交叉曲线’的多个步骤53到63,该曲线也称为‘断层-断层交叉曲线’。当图1的计算机系统10的处理器10a执行图18的步骤53-63时,下列步骤被顺序执行,以便计算‘断层-断层交叉曲线’:(1)访问被解释的断层模型Fa及其变换,图18的步骤53,(2)访问智能检测的断层模型Fb及其变换,图18的步骤55,(3)在整个共同模型感兴趣容积(VOI)中计算(Fa-Fb)交叉曲线,该感兴趣容积通常包括真实和虚构部分两者的曲线,图18的步骤57,(4)得到断层-断层连接距离D,图18的步骤59,(5)使用选择的前端环线型式(各向同性或各向异性),来计算外推超过Fa数据D的前端环线,图18的步骤61,以及(6)将交叉曲线重置为在前端环线内估值的真实部分,图18的步骤63。参考图18的步骤57,‘未裁剪’的交叉被计算,且其它步骤被用来将其‘裁剪’到相关的部分。由于所有断层模型在整个模型VOI(感兴趣容积)中被全部外推-标志为真实或虚构的组成部分-交叉曲线将类似地在整个模型VOI中延伸为延伸或未裁剪的交叉。在计算外推前端环线的图18的步骤61中,该步骤61被用来将交叉裁剪到相关,即真实部分。
在图17中,‘第二曲线’被计算,与交叉曲线48平行,在图13中的截断断层50的对侧上偏移。该‘第二曲线’是如图17中示出的‘较短线’65表示的‘截断的解释’。其目的是用于建模;即,在图2的步骤16期间,即当断层与任何其它断层不相关地建模时,初始地对经过截断断层后的被截断的断层建模。这允许在断层被建模为相关和交叉的、以及最终模型被计算时,形成‘清楚的交叉’。在交叉后,使用已经建立的关系规则来移除投影的扩展。该‘第二曲线’65的点也被增加作为附加断层解释。它允许进行编辑和调整,正如人们将对任何解释做的那样。该‘第二曲线’65可以被改变,如果需要。它还具有将建模工作流程绑定并集成到解释工作流程的效果。
在图17中,存储上述‘第二曲线’65(其在图17的截断断层50的对侧上偏移)作为解释,允许截断断层50随后被重新解释并从图17中被截断的断层67拉开,而不影响断层-断层关系的正确性或其截断规则。当重建断层构架,即图17中的断层对时,仍会存在正确的交叉,且最终的被截断的模型还可以被建立。在此情况下,‘建模的交叉’重新定位到不同于此前计算的‘解释交叉’-图17中的‘最长线’48的位置。由于一条交叉曲线与解释一起存储,且另外的作为最终模型的部分存储(并按需要被重新计算以保证两个断层在共同位置结合),断层重新解释的情况被支持。如果一个或多个连接的断层被编辑,从而交叉的线不再正确,断层在智能检测过程中再次变得‘活动’或‘符合条件’。断层之间的交叉线也可以被编辑,而仍然保持断层-断层连接。
图17的‘第二曲线’65是用来将一个断层模型‘拉动’穿过另一个断层以实现交叉和截断的方法,但存在其它方法。假设‘第二曲线’65在算法上以断层模型及第一(交叉)曲线位置的几何形状为条件,显式的表示可以被隐式的计算或表示替换,而仍然达到将一个断层模型‘拉动’穿过另一个断层以实现交叉和截断的相同目的。
在图17中,注意图中的‘虚线’48。这是如图18中步骤61描述所计算的前端环线。‘断层-断层连接距离’D是前端环线延伸超过被解释的断层的数据的距离。注意到该相同的距离被用来初始地检测附近断层的接近度,然后被再次用来投影正被解释的断层并捕获其与该附近断层的交叉。当计算该前端环线时,可选的型式(‘各向同性外推’或‘各向异性外推’)只影响交叉曲线的长度。在图17中,‘各向同性外推’被选为‘断层前端环线型式’。选择‘各向异性外推’将引起水平方向的外推而没有垂直外推,并具有缩短交叉曲线的可能的效果。
因此,作为断层解释过程的一部分,如图2和3的第一实施例及图4和5的第二实施例所示的包括‘智能检测断层-断层关系的方法’的‘断层建模的交互自动化’过程将提供非干扰性的智能系统,用于帮助或训练或辅助解释者在较早阶段以及随着断层解释成熟设置‘断层-断层关系’。该过程被称为‘断层智能检测’,因为解释者在执行‘解释’功能的同时,交互地响应于在记录器或显示设备10d上显示的‘弹出列表’或显示器上断层-断层交叉曲线的闪烁。当解释者在解释第二断层时,‘智能检测’功能将建议可能应该连接到‘正被解释的第二断层’的‘候选的断层’。响应于‘智能检测’功能,解释者接受或拒绝这些建议,并且建模系统建立或禁止该连接。
绑定为断层解释过程的一部分,包括如图2和3的第一实施例和图4和5的第二实施例所示的‘智能检测断层-断层关系的方法’的‘断层建模的交互自动化’过程,总地实现‘建模事件驱动的决策制定’过程,以在断层解释期间求解断层-断层关系。
此外,作为断层解释过程的一部分,包括如图2和3的第一实施例和图4和5的第二实施例所示的‘智能检测断层-断层关系的方法’的‘断层建模的交互自动化’过程,将‘附加数据’加到解释数据的池中,其中附加数据表示断层对之间的‘交叉线’。该‘附加数据’类似于自动解释,使得解释者不需要解释断层在哪里交叉,并且该‘附加数据’在断层对之间建立近似的‘交叉位置’,意味着当整个断层构架被建模和存储,即产生最终的模型时,确切的交叉被求解并在另外的地方存储。
此外,作为断层解释过程的一部分,包括如图2和3的第一实施例和图4和5的第二实施例所示的‘智能检测断层-断层关系的方法’的‘断层建模的交互自动化’过程,将‘附加数据’加到解释数据的池中,该‘附加数据’给解释者一定程度的自由,以在之后的时间随后移动或编辑断层中的一个,而仍然保留解释者的能力来求解断层之间建模的连接。
现在参考图20和21。这些图20和21示出了如图1和19所示的上述包括‘智能检测断层-断层关系的方法’的‘断层建模的交互自动化’的过程的最终目的;即,为了从地球地层中提取包括油和/或气的烃类的地下储藏。图20示出了包括地层中油和/或气所在位置的地球地层的特征,图21示出了钻探设备,其可以被用来从图20的地球地层中的位置提取包括油和/或气的烃类的地下储藏。
在图20中,第一地层(H1)140和第二地层(H2)142被‘断层表面’58交叉。现在‘断层表面’58已被定义,需要解释钻井日志输出记录和简化的(reduced)地震数据输出记录(在图23和26中示出),以定义‘烃类的地下储藏’在地层中的精确位置。例如,在图20中,‘断层表面’58穿过地层中的第一地层140和第二地层142。线144表示油146和水148的分隔,油146和水148在‘断层表面’58的一侧存在。岩石和多孔渗水物质在‘断层表面’58的另一侧存在。‘断层表面’58在两处交叉地层(H1)140和(H2)142,第一交叉150和第二交叉152。根据图20,很明显油(和/或气)146通常在‘断层表面’58和地层(H1)140及(H2)142之间的交叉150和152附近存在。为了从地球地层中提取油145,需要在第一交叉150附近在点154处钻井。
在图21中,从图20想到需要第一交叉150附近在点154处钻井以从地球地层中提取油146,钻探设备可以被布置在地球表面直接位于图20的点154上方,用于从地球地层中提取油146的目的。
在图21中,示出了钻探设备101的例子。钻探设备101位于地球地层中‘特殊位置’的上方(即,在图20的地球地层中的点154的上方),在这里油和/或气可能存在。在图21中,钻探设备101的一个实施例包括地表系统103、井下系统105以及地表控制单元107。在示出的实施例中,钻孔109通过众所周知的方式旋转钻孔来形成。但是,从本公开受益的本领域普通技术人员将理解,本发明也可用于钻孔应用中不同于传统旋转钻孔的应用(例如基于钻井发动机的方向性钻孔),并且不限于基于陆地的设备。井下系统105包括钻杆111,悬挂在钻孔109内,在其底端有钻头113。地表系统103包括位于穿透地下地层17的钻孔109上方的基于陆地的平台和起重部件115。部件115包括旋转台117、传动钻杆119、吊钩121和旋转体123。通过未示出的方式提供能量,旋转台117接合位于钻杆上端的传动钻杆119,旋转钻杆111。钻杆111通过传动钻杆117和旋转体123从吊钩121悬挂,吊钩121连接在移动块(也未示出)上,传动钻杆117和旋转体123允许钻杆相对于吊钩的旋转。地表系统还包括在钻井地点形成的深坑127中存储的钻探泥浆125。泵129通过旋转体123上的口将钻探泥浆125输送到钻杆111的内部,引导钻探泥浆向下流过钻杆111,如方向箭头131所指示。钻探泥浆通过钻头113上的口流出钻杆111,然后通过钻杆外侧和钻孔壁之间被称为环面的区域向上循环,如方向箭头133所指示。用这种方式,钻探泥浆润滑钻头113,并在它回到深坑127用于循环的同时,将地层的切屑带到地表。钻杆111还包括底部孔部件(BHA),一般地称为135,在钻头113附近(换句话说,在离钻头几个钻环长度之内)。底部孔部件包括测量、处理并存储信息,以及与地表进行通信的能力。BHA 135还包括钻环137、139和141,用于执行各种其它测量功能。BHA 135的钻环137包括装置143,用于确定并传送围绕钻孔109的地层17的一个或更多个特性,例如地层电阻率(或电导率)、自然辐射、密度(伽马射线或中子)、以及空隙压力。钻环139容纳了钻井时测量(measurement-while-drilling)(MWD)工具。MWD工具还包括用于向井下系统生成电能的装置。虽然泥浆脉冲系统用由流过钻杆111和MWD钻环141的钻探泥浆125流所提供动力的发电机来描述,可以使用其它电力和/或电池系统。传感器位于钻井地点附近,优选实时地,搜集关于钻井地点的操作,以及钻井地点的条件的数据。例如,监视器例如相机147可以被提供,以提供操作的画面。地表传感器或测量表149布置在地表系统附近以提供关于地表单元的信息,例如竖管压力、吊钩负载、深度、地表力矩、旋转rpm等。井下传感器或测量表151布置在钻井工具和/或井孔附近以提供关于钻井条件的信息,例如井孔压力、钻头上的重量、钻头上的力矩、方向、倾斜度、钻环rpm、工具温度、环温度及工具面(toolface)等。由传感器和相机搜集的信息被传递到地表系统、井下系统和/或地表控制单元。MWD工具141包括与地表系统通信的通信部件145。通信部件145适于使用泥浆脉冲遥测来向地表发送信号或从地表接收信号。通信部件可以包括,例如,生成信号例如声学或电磁信号的发送器,信号表示被测量的钻井参数。生成的信号在地表被由附图标记151表示的转换器接收,其将接收到的声学信号转换为电信号,用于根据传统的方法和系统来进一步的处理、存储、加密以及使用。井下和地表系统之间的通信被描述为泥浆脉冲遥测,例如在转让给本发明的受让人的美国专利号5,517,464中所描述的。本领域技术人员将理解,可以使用各种遥测系统,例如有线钻杆(drill pipe)、电磁或其它已知的遥测系统。
现在参考图22到27。从图1想到‘输入数据’13被提供给计算机系统10,并且响应于‘输入数据’13,处理器10a执行在存储器10c中存储的‘软件’。图1中提供给计算机系统10的‘输入数据’13的细节将在下面参考附图中的图22到27来讨论。图22和23示出了用于生成钻井日志输出记录的方法。图24、25和26示出了用于生成简化的地震数据输出记录的方法。图27示出了钻井日志输出记录和简化的地震数据输出记录如何共同并结合地表示输入到图1的计算机系统10的‘输入数据’13。
在图22中,钻井日志记录车200将日志记录工具202放低到井孔204中,并且日志记录工具202激励和向地球地层206施加能量。作为响应,日志记录工具202中的传感器从地层206接收信号,并且响应于此,表示钻井日志数据208的其它信号从日志记录工具202沿孔向上传播到钻井日志记录车计算机210。钻井日志输出记录212由钻井日志记录车计算机210生成,该计算机显示钻井日志数据208。
在图23中,示出了钻井日志记录车计算机210的更详细的构造。总线210a接收钻井日志数据208,并且响应于此,钻井日志输出记录212由处理器210b生成,该钻井日志输出记录212显示并/或记录钻井日志数据208。钻井日志输出记录212被输入到图27的解释工作站或计算机系统。
在图24中,示出了用于在图22的井孔附近的地球表面上的位置执行三维(3D)地震操作的设备和关联的方法。
在图24中,位于地球的表面216以下的爆炸或声学能量源214引爆并生成多个声音或声学振动218,向下传播并在地球地层206中的地层220上反射。地层220可以是岩石或沙砾或页岩的顶层。当声音振动在地层220上反射,声音振动218将向上传播,并被位于地球表面的多个被称为地震检波器222的接收器222接收。响应于其中声音振动的接收,多个地震检波器222每个将生成电信号,并且多个电信号将从地震检波器222生成,该多个信号(被称为‘接收的地震数据226’)在记录车224中被接收。来自地震检波器222的多个电信号(即,‘接收的地震数据’226)表示位于地震检波器222下面的地球内部的包括地层220的地球地层的一组特征。记录车224包括计算机225,其接收并存储从地震检波器222接收的多个信号。地震输出记录232将从记录车224的计算机225产生,其包括并/或显示并/或存储该多个电信号,该多个电信号表示位于地震检波器222下面的地球内部的包括地层220的地球地层的特征。
在图25中,示出了记录车计算机225的更详细的构造。图24的记录车计算机225包括连接到系统总线的处理器228和存储器230。在三维地震操作期间从地震检波器222接收的、并被称为‘接收的地震数据’226的电信号,将通过图25中的‘接收的地震数据’块226被接收到记录车计算机225,并将被存储在记录车计算机225的存储器230中。当需要时,地震输出记录232由记录车计算机225生成,该地震输出记录232适于记录并显示‘多个地震数据’,表示由记录车计算机225从地震检波器222接收的‘接收的地震数据’道或电信号的集合。
在图26中,示出了主机234的简化图,该计算机使用存储的‘地震简化软件’以在图25的地震输出记录232中包括的“多个地震数据”上执行“数据简化”操作。主机234产生图26中的“简化的地震数据输出记录”240,其适于记录并显示表示在图26的地震输出记录232中包括的“多个地震数据”的“简化”版本的信息。图26的主机234包括连接到系统总线234的主机处理器236以及也连接到系统总线、其中存储“数据简化软件”的存储器238。图25中包括“多个地震数据”的地震输出记录232连接到图26的主机234的系统总线。结果,在图26的地震输出记录232中包括的“多个地震数据”现在被输入到图26的主机处理器236。图26中主机234的处理器236执行在主机的存储器238中存储的“数据简化软件”。在图26的主机234的存储器238中存储的“数据简化软件”,可以在Enders A.Robinson所著的题为“SeismicVelocity Analysis and the Convolutional Model”的书中找到,其公开通过引用结合在本说明书中。当存储器238中的“数据简化软件”被执行时,主机处理器236将在图26的地震输出记录232中包括的“多个地震数据”上执行“数据简化”操作。当“数据简化操作”完成时,主机处理器236将生成“简化的地震数据输出记录”240,其将记录并适于显示表示在图26的地震输出记录232中包括的“多个地震数据”的“简化版本”,并包括属于位于图22的井孔附近的地球地层的一组特征的信息,所述特征包括图24的地层220的位置和结构。
在图27中,图23的钻井日志输出记录212和图26的简化地震数据输出记录240共同并结合地表示输入到图1的计算机系统10的图1的‘输入数据’13。
将在下面的章节中参考附图的图1到图27来描述,当被图1的处理器10a执行时,图1的断层建模软件12的操作的功能描述,该处理器10a适于实现包括如图2和3的第一实施例和图4和5的第二实施例所示的‘智能检测断层-断层关系的方法’的‘断层建模的交互自动化’的过程。
在图1中,计算机系统10接收输入数据13。在图27中,输出数据13包括钻井日志输出记录212和简化的地震数据输出记录240。图22和23描述了如何生成钻井日志输出记录212,且图24-26描述了如何生成简化的地震数据输出记录240。在图1中,处理器10a执行在存储器10c中存储的断层建模软件12,同时使用输入数据13,并生成在记录器或显示设备10d上记录或显示的“输出”。在记录器或显示设备10d上记录或显示的“输出”的一个例子,在图19中示出。在图19中,例如“输出”可以包括两个相关断层的最终模型,其中一个断层被建模直到与另一个断层的共同交叉处并在那里结束(见图3的步骤28和图5的步骤31)。在图1中,在存储器10c中存储的断层建模软件12在被处理器10a执行时,将实现涉及包括‘智能检测断层-断层关系的方法’的‘断层建模的交互自动化’的过程。‘智能检测断层-断层关系的方法’的第一实施例在图2和3中示出,且‘智能检测断层-断层关系的方法’的第二实施例在图4和5中示出。‘智能检测断层-断层关系的方法’将提供非干扰性的智能系统,用于帮助或训练或辅助解释者在断层解释过程期间的较早阶段设置‘断层-断层关系’。‘智能检测断层-断层关系的方法’,实际上表示‘自动检测的断层间关系’过程,在计算机代表为了钻井的目的描绘油和气储藏的优选方式时、以及对于在油和/或气勘探和生产期间结合储藏勘探所需要做出的其它决定是有用的。因此,‘智能检测断层-断层关系的方法’表示对作为断层解释过程的嵌入部分,断层结构被建模的方法的改进。因此,‘智能检测断层-断层关系的方法’(当处理器10a执行在存储器10c中存储的断层建模软件12时,该方法被图1的处理器10a实现)包括下列步骤:
(步骤1)自动检测‘断层间的相互关系’(例如,一种‘断层间的相互关系’是:一个断层如何截断另一个断层),以及
(步骤2)作为解释过程的组成部分,将‘断层间的相互关系’呈现给用户/操作者。
在处理器10a完成对断层建模软件12的(步骤1)和(步骤2)的执行时,包括‘自动检测断层-断层关系的方法’的‘断层建模的交互自动化’过程完成。结果,生成了‘最终模型’,并且‘最终模型’的一个例子在图19中示出,该‘最终模型’表示断层解释过程的‘增加的价值’。
断层建模软件12的第一实施例在图2和图3中示出。当图1的处理器10a执行断层建模软件12的第一实施例时,处理器10a实现包括‘智能检测断层-断层关系的方法’的‘断层建模的交互自动化的方法’,‘智能检测断层-断层关系的方法’包括(步骤1)和(步骤2)。然而(步骤1)包括如下的下列附加步骤(1)到(6):(1)好像每个断层与任何其它断层不相关地计算每个断层的模型,图2的步骤16,(2)随着产生新的解释数据,保持每个断层的不相关的模型最新,图2的步骤18,(3)检测一种条件,由此与一个断层(即,正被解释的断层)关联的数据指示该正被解释的断层‘接近’一个或更多个其它断层,图2的步骤20(见图15的‘断层接近度检测’),(4)在弹出窗口中向解释者呈现该一个或更多个可能相关的断层,作为响应,解释者确认或否认可能相关的断层之间的连接关系正确,图2的步骤22,(5)记录来自解释者的响应,并且如果该连接关系被解释者确认,计算所有连接关系属性,图3的步骤24,以及(6)将表示新的解释的交叉曲线以及其它连接属性加到断层,断层以解释数据嵌入连接关系,图3的步骤26。此外,步骤(2)包括如下的下列附加步骤(7):(7)可选地计算并显示最终模型,以示出断层为连接的,即,被交叉的,图3的步骤28。上述附加步骤(3),适于检测一种条件,由此与一个断层(即正被解释的断层)关联的数据指示该正被解释的断层‘接近’一个或更多个其它断层(图2的步骤20),实际上包括在图15中示出的称为‘断层接近度检查’的另一种方法。在图15中,为了实现附加步骤(3)并检测一种条件,由此与一个断层(即正被解释的断层)关联的数据指示该正被解释的断层‘接近’(或‘靠近’或‘邻近’)一个或更多个其它断层,图1的处理器10a现在必须执行图15的如下步骤:
(1)关于构架中的每个断层,除了‘正被解释的断层’,图15的步骤33,(2)我们是否应该忽略该断层的任何关系,图15的步骤35,(3)如果是,回到步骤33,但如果不是,访问‘最佳拟合平面’断层模型及其变换,图15的步骤37,(4)得到‘断层-断层连接距离’,图15的步骤39,(5)对于每个新的解释点‘P’,图15的步骤41,(6)将‘P’变换到‘最佳拟合平面’坐标空间,图15的步骤43,(7)将‘P’投影到断层作为点P’(即点P原),图15的步骤45,(8)点P’(即点P原)在断层的真实部分上?,图15的步骤47,(9)P到P’的距离<D?(即,P到P原的距离小于D?),图15的步骤49,(10)如果不是,回到步骤41,但如果是,标记该断层‘靠近’(或‘接近’或‘紧邻’)解释断层,图15的步骤51。在执行图15的步骤后,如果已经确定‘一个断层’(即正被解释的断层)‘接近’(或‘靠近’或‘紧邻’)‘一个或更多个其它断层’,需要计算并确定该‘一个断层’和该‘一个或更多个其它断层’之间的‘断层-断层交叉曲线’。为了计算并确定该‘一个断层’和该‘一个或更多个其它断层’之间的‘断层-断层交叉曲线’,图1的处理器10a现在必须执行图18的如下步骤:(1)访问被解释的断层模型Fa及其变换,图18的步骤53,(2)访问智能检测的断层模型Fb及其变换,图18的步骤55,(3)计算整个共同模型VOI(真实或虚构)中的(Fa-Fb)交叉曲线,图18的步骤57,(4)得到断层-断层连接距离D,图18的步骤59,(5)使用选择的前端环线型式(各向同性或各向异性),计算外推超过Fa数据D的前端环线,图18的步骤61,以及(6)将交叉曲线重置为在前端环线内估值的真实部分,图18的步骤63。
在图4和5中示出了断层建模软件12的第二实施例。当图1的处理器10a执行断层建模软件12的第二实施例时,处理器10a实现了包括‘智能地检测断层-断层关系的方法’的‘断层建模的交互自动化的方法’,该‘智能地检测断层-断层关系的方法’包括(步骤1)和(步骤2)。但是,(步骤1)包括如下的下列附加步骤(1)到(7):(1)好像每个断层和任何其它断层不相关地计算每个断层的模型,图4的步骤17,(2)随着产生新的解释数据,保持每个断层的不相关的模型最新,图4的步骤19,(3)检测一种条件,由此与一个断层(即正被解释的断层)关联的数据指示该正被解释的断层‘接近’一个或更多个其它断层,图4的步骤21(见图15的‘断层接近度检测’),(4)计算被解释的断层和该一个或更多个其它断层之间的连接关系属性,包括:断层-断层交叉曲线和截断规则,图4的步骤23,(5)向解释者呈现一个或更多个可能相关的断层的交叉曲线,作为响应,解释者确认或否认可能相关的断层之间的连接关系正确,图5的步骤25,(6)记录来自解释者的响应,并且如果连接关系被解释者确认,计算剩余的连接关系属性,图5的步骤27,以及(7)表示新的解释的将交叉曲线及其它连接属性加到断层,断层以解释数据嵌入连接关系,图5的步骤29。此外,(步骤2)包括如下的下列附加步骤(8):(8)可选地计算并显示最终模型,以示出断层为连接的,即被交叉的,图5的步骤31。上述附加步骤(3),适于检测一种条件,由此与一个断层(即正被解释的断层)关联的数据指示该正被解释的断层‘接近’一个或更多个其它断层(图2的步骤20),实际上包括在图15中示出的称为‘断层接近度检测’的另一种方法。在图15中,为了实现附加步骤(3)并检测一种条件,由此与一个断层(即正被解释的断层)关联的数据指示该正被解释的断层‘接近’(或‘靠近’或‘邻近’)一个或更多个其它断层,图1的处理器10a现在必须执行图15的如下步骤:(1)关于构架中的每个断层,除了‘正被解释的断层’,图15的步骤33,(2)我们是否应该忽略该断层的任何关系,图15的步骤35,(3)如果是,回到步骤33,但如果不是,访问‘最佳拟合平面’断层模型及其变换,图15的步骤37,(4)得到‘断层-断层连接距离’,图15的步骤39,(5)对于每个新的解释点‘P’,图15的步骤41,(6)将‘P’变换到‘最佳拟合平面’坐标空间,图15的步骤43,(7)将‘P’投影到断层作为点P’(即点P原),图15的步骤45,(8)点P’(即点P原)在断层的真实部分上?,图15的步骤47,(9)P到P’的距离<D?(即,P到P原的距离小于D?),图15的步骤49,(10)如果不是,回到步骤41,但如果是,标记该断层‘靠近’(或‘接近’或‘紧邻’)解释断层,图15的步骤51。在执行图15的步骤后,如果已经确定‘一个断层’(即正被解释的断层)‘接近’(或‘靠近’或‘邻近’)‘一个或更多个其它断层’,现在需要计算并确定该‘一个断层’和该‘一个或更多个其它断层’之间的‘断层-断层交叉曲线’。为了计算并确定该‘一个断层’和该‘一个或更多个其它断层’之间的‘断层-断层交叉曲线’,图1的处理器10a现在必须执行图18的如下步骤:(1)访问正被解释的断层模型Fa及其变换,图18的步骤53,(2)访问智能检测的断层模型Fb及其变换,图18的步骤55,(3)计算整个共同模型VOI(真实或虚构)中的(Fa-Fb)交叉曲线,图18的步骤57,(4)得到断层-断层连接距离D,图18的步骤59,(5)使用选择的前端环线型式(各向同性或各向异性),计算外推超过Fa数据D的前端环线,图18的步骤61,以及(6)将交叉曲线重置为在前端环线内估值的真实部分,图18的步骤63。
在图19、20和21中,当生成‘最终模型’时(并想到‘最终模型’的一个例子在图19中示出),如图20所示的地层140、142及断层表面58的位置被知道。特别地,图20中的地层140和断层表面58之间的点或位置154处的油和/或气的位置可以被知道。当图20中点或位置154处的油和/或气的位置被知道时,如图21所示的钻探设备可以被用来从图20的点或位置154提取油和/或气。
‘断层建模软件’的以上详细描述被这样描述,很明显该相同方法可以以多种方式改变。这样的改变不应被认为偏离所要求的方法或系统或程序存储设备或计算机程序的精神和范围,并且对本领域技术人员来说很明显这样的修改旨在被包括在所附权利要求的范围内。

Claims (81)

1.一种断层建模的交互自动化的方法,包括:
检测一对断层之间的断层-断层关系;以及显示包括该对断层的最终模型,该最终模型示出该对断层是互连的。
2.如权利要求1所述的方法,其中,所述检测步骤包括:
好像每个断层与任何其它断层不相关地计算每个断层的模型。
3.如权利要求2所述的方法,其中,所述检测步骤包括:
随着产生新的解释数据,保持每个断层的不相关的模型最新。
4.如权利要求3所述的方法,其中,所述检测步骤包括:
检测一种条件,其中数据指示正被解释的断层接近于一个或更多个其它断层,由此确定一个或更多个可能相关的断层。
5.如权利要求4所述的方法,其中,所述检测步骤包括:
在弹出窗口中或以断层-断层交叉曲线显示的闪烁,向解释者呈现该一个或更多个可能相关的断层;作为响应,解释者确认或否认可能相关的断层之间的连接关系正确。
6.如权利要求5所述的方法,其中,所述检测步骤包括:
记录所述响应,并且如果连接关系被解释者确认,计算直到此时没有被计算的所有剩余的连接关系属性。
7.如权利要求6所述的方法,其中,所述检测步骤包括:
将交叉类型属性作为新的解释加到正被解释的断层,由此用一组解释数据嵌入连接关系。
8.如权利要求7所述的方法,其中,所述检测步骤包括:
计算包括该对断层的所述最终模型,该最终模型示出该对断层是互连的,该计算步骤包括通过计算每个断层的最终模型和计算最终交叉曲线,随着产生新的解释数据而保持交叉断层模型最新,沿着该最终交叉曲线,一个断层与另一个断层交叉,且在该最终交叉曲线处该一个断层被所述另一个断层终止或截断。
9.一种可以被机器读取的程序存储设备,确实地包含了可以被该机器执行,以进行断层建模的交互自动化的方法步骤的指令的程序,所述方法步骤包括:
检测一对断层之间的断层-断层关系;以及
显示包括该对断层的最终模型,该最终模型示出了该对断层是互连的。
10.如权利要求9所述的程序存储设备,其中,所述检测步骤包括:
好像每个与任何其它断层不相关地计算每个断层的模型。
11.如权利要求10所述的程序存储设备,其中,所述检测步骤包括:
随着产生新的解释数据,保持每个断层的不相关的模型最新。
12.如权利要求11所述的程序存储设备,其中,所述检测步骤包括:
检测一种条件,其中数据指示正被解释的断层接近于一个或更多个其它断层,由此确定一个或更多个可能相关的断层。
13.如权利要求12所述的程序存储设备,其中,所述检测步骤包括:
在弹出窗口中或以断层-断层交叉曲线显示的闪烁,向解释者呈现该一个或更多个可能相关的断层;作为响应,解释者确认或否认可能相关的断层之间的连接关系正确。
14.如权利要求13所述的程序存储设备,其中,所述检测步骤包括:
记录所述响应,并且如果连接关系被解释者确认,计算连接关系属性。
15.如权利要求14所述的程序存储设备,其中,所述检测步骤包括:
将交叉类型属性作为新的解释加到正被解释的断层,由此用一组解释数据嵌入连接关系。
16.如权利要求15所述的程序存储设备,其中,所述检测步骤包括:
计算包括该对断层的所述最终模型,该最终模型示出了该对断层是互连的,该计算步骤包括通过计算每个断层的最终模型以及计算最终交叉曲线,随着产生新的解释数据而保持交叉断层模型最新;沿着该最终交叉曲线,一个断层与另一个断层交叉,且在该最终交叉曲线处该一个断层被所述另一个断层终止或截断。
17.一种适于被处理器执行的计算机程序,当所述计算机程序被该处理器执行时,引导断层建模的交互自动化的过程,所述过程包括:
检测一对断层之间的断层-断层关系;以及
显示包括该对断层的最终模型,该最终模型示出了该对断层是互连的。
18.如权利要求17所述的计算机程序,其中,所述检测步骤包括:
好像每个与任何其它断层不相关地计算每个断层的模型。
19.如权利要求18所述的计算机程序,其中,所述检测步骤包括:
随着产生新的解释数据,保持每个断层的不相关的模型最新。
20.如权利要求19所述的计算机程序,其中,所述检测步骤包括:
检测一种条件,其中数据指示正被解释的断层接近于一个或更多个其它断层,由此确定一个或更多个可能相关的断层。
21.如权利要求20所述的计算机程序,其中,所述检测步骤包括:
在弹出窗口中或以断层-断层交叉曲线显示的闪烁,向解释者呈现该一个或更多个可能相关的断层;作为响应,解释者确认或否认可能相关的断层之间的连接关系正确。
22.如权利要求21所述的计算机程序,其中,所述检测步骤包括:
记录所述响应,并且如果连接关系被解释者确认,计算直到此时没有被计算的所有连接关系属性。
23.如权利要求22所述的计算机程序,其中,所述检测步骤包括:
将交叉类型属性作为新的解释加到正被解释的断层,由此用一组解释数据嵌入连接关系。
24.如权利要求23所述的计算机程序,其中,所述检测步骤包括:
计算包括该对断层的所述最终模型,该最终模型示出了该对断层是互连的,该计算步骤包括通过计算每个断层的最终模型以及计算最终交叉曲线,随着产生新的解释数据而保持交叉断层模型最新;沿着该最终交叉曲线,一个断层与另一个断层交叉,且在该最终交叉曲线处该一个断层被所述另一个断层终止或截断。
25.一种作为断层解释过程的一部分,智能地检测断层-断层关系的方法,所述方法包括:
好像每个断层与任何其它断层不相关地计算一个或更多个断层的模型;
检测一种条件,其中与正被解释的一个断层关联的数据指示该断层接近于一个或更多个其它断层,该一个断层和该一个或更多个其它断层是可能相关的断层;
将该一个或更多个可能相关的断层呈现给解释者,解释者确认或否认在可能相关的断层之间存在连接关系;以及
在解释者确认可能相关的断层之间存在连接关系的条件下,计算可能相关的断层之间的连接关系,由此生成最终模型。
26.如权利要求25所述的方法,其中,好像每个断层与任何其它断层不相关地计算一个或更多个断层的模型的步骤包括:
好像每个断层与任何其它断层不相关地计算一个或更多个断层的模型;以及
随着产生新的解释数据,保持每个断层的不相关的模型最新。
27.如权利要求26所述的方法,还包括:
计算并显示所述最终模型,以示出最终模型的断层为连接的。
28.一种可以被机器读取的程序存储设备,确实地包含了可以被该机器执行,以进行作为断层解释过程的一部分,智能地检测断层-断层关系的方法步骤的指令的程序,所述方法步骤包括:
好像每个断层与任何其它断层不相关地计算一个或更多个断层的模型。
检测一种条件,其中与正被解释的一个断层关联的数据指示该断层接近于一个或更多个其它断层,该一个断层和一个或更多个其它断层是可能相关的断层;
将一个或更多个可能相关的断层呈现给解释者,解释者确认或否认在可能相关的断层之间存在连接关系;以及
在解释者确认在可能相关的断层之间存在连接关系的条件下,计算该可能相关的断层之间的连接关系,由此生成最终模型。
29.如权利要求28所述的程序存储设备,其中,好像每个断层与任何其它断层不相关地计算一个或更多个断层的模型的步骤包括:
好像每个断层与任何其它断层不相关地计算一个或更多个断层的模型;以及
随着产生新的解释数据时,保持每个断层的不相关的模型最新。
30.如权利要求29所述的程序存储设备,还包括:
计算并显示所述最终模型,以示出最终模型的断层为连接的。
31.一种适于被处理器执行的计算机程序,当所述计算机程序被该处理器执行时,引导作为断层解释过程的一部分,智能地检测断层-断层关系的方法步骤,该方法包括:
好像每个断层与任何其它断层不相关地计算一个或更多个断层的模型。
检测一种条件,其中与正被解释的一个断层关联的数据指示该断层接近于一个或更多个其它断层,该一个断层和一个或更多个其它断层是可能相关的断层;
将一个或更多个可能相关的断层呈现给解释者,解释者确认或否认在可能相关的断层之间存在连接关系;以及
在解释者确认在可能相关的断层之间存在连接关系的条件下,计算该可能相关的断层之间的连接关系,由此生成最终模型。
32.如权利要求31所述的计算机程序,其中,好像每个断层与任何其它断层不相关地计算一个或更多个断层的模型的步骤包括:
好像每个断层与任何其它断层不相关地计算一个或更多个断层的模型;以及
随着产生新的解释数据,保持每个断层的不相关的模型最新。
33.如权利要求32所述的计算机程序,还包括:
计算并显示所述最终模型,以示出最终模型的断层为连接的。
34.一种系统,适于作为断层解释过程的一部分,智能地检测断层-断层关系,所述系统包括:
第一设备,适于好像每个断层与任何其它断层不相关地计算一个或更多个断层的模型;
第二设备,适于检测一种条件,其中与正被解释的一个断层关联的数据指示该断层接近于一个或更多个其它断层,该一个断层和该一个或更多个其它断层是可能相关的断层;
第三设备,适于将该一个或更多个可能相关的断层呈现给解释者,解释者确认或否认可能相关的断层之间存在连接关系;以及
第四设备,适于在解释者确认可能相关的断层之间存在连接关系的情况下,计算可能相关的断层之间的连接关系,由此生成最终模型。
35.如权利要求34所述的系统,其中第一设备,适于好像每个断层与任何其它断层不相关地计算一个或更多个断层的模型,包括:
适于好像每个断层与任何其它断层不相关地计算一个或更多个断层的模型的设备;
适于随着产生新的解释数据保持每个断层的不相关的模型最新的设备。
36.如权利要求35所述的系统,还包括:
第五设备,适于计算和显示最终模型,以示出最终模型的断层为连接的。
37.一种适于断层建模的交互自动化的系统,包括:
第一设备,适于检测一对断层之间的断层-断层关系;以及
第二设备,适于显示包括该对断层的最终模型,该最终模型示出该对断层是互连的。
38.一种用于检测断层-断层关系的方法,包括:
自动检测断层之间的相互关系;
向解释者呈现表现断层之间的相互关系的最终模型,该最终模型包括断层-断层交叉曲线,以及在该曲线上截断的一个断层。
39.如权利要求38所述的方法,其中所述检测步骤包括:
好像每个断层和任何其它断层不相关地计算每个断层的模型;
随着产生新的解释数据,保持每个断层的不相关的模型最新;以及
检测一种条件,其中与正被解释的断层关联的数据指示正被解释的断层接近于一个或更多个其它断层,在‘P’到‘P原’距离小于D的条件下,所述断层接近于所述一个或更多个断层,以及计算断层-断层交叉曲线。
40.如权利要求39所述的方法,还包括:
在弹出窗口中向解释者呈现所述一个或更多个可能相关的断层,作为响应,解释者确认或否认可能相关的断层之间的连接关系正确。
41.如权利要求40所述的方法,还包括:
记录来自解释者的响应,并且如果连接关系被解释者确认,计算所有连接关系属性;以及
将表示新的解释的交叉曲线以及其它连接属性加到断层,断层用一组解释数据嵌入连接属性。
42.如权利要求41所述的方法,还包括:
计算并显示最终模型,以示出断层为连接的或交叉的。
43.如权利要求39所述的方法,还包括:
计算被解释的断层与该一个或更多个其它断层之间的连接关系属性,包括断层-断层交叉曲线和截断规则;以及向解释者呈现该一个或更多个可能相关的断层的交叉曲线,作为响应,解释者确认或否认可能相关的断层之间的连接关系正确。
44.如权利要求43所述的方法,还包括:
记录来自解释者的响应,并且如果连接关系被解释者确认,计算剩余的连接关系属性;以及将表示新的解释的交叉曲线以及其它连接属性加到断层,断层用一组解释数据嵌入连接关系。
45.如权利要求44所述的方法,还包括:
计算并显示最终模型,以示出断层为连接的或交叉的。
46.如权利要求39所述的方法,其中,检测一种条件,由此与正被解释的断层关联的数据指示该正被解释的断层接近于一个或更多个其它断层的步骤包括:
关于不包括正被解释的断层的构架中的所述一个或更多个断层,确定所述被解释的断层与所述一个或更多个断层中的每个断层之间的关系是否应被忽略;
在所述关系不应被忽略的条件下,访问最佳拟合平面断层模型及其变换,
得到断层-断层连接距离,
对每个新的解释点‘P’,将‘P’变换到最佳拟合平面坐标空间,将‘P’投影到所述每个断层作为点‘P原’,
确定‘P原’是否在断层的真实部分上,
确定‘P’到‘P原’的距离是否小于D,
在‘P原’在断层的真实部分上且‘P’到‘P原’的距离小于D的情况下,标记所述每个断层是接近于正被解释的断层的。
47.如权利要求39所述的方法,其中,计算所述断层-断层交叉曲线的步骤包括:
访问被解释的断层模型,Fa,及其变换,
访问智能检测的断层模型,Fb,及其变换,
在感兴趣容积中,在整个共同模型中计算(Fb-Fa)交叉曲线,
得到断层-断层连接距离D,
使用选择的前端环线型式,计算外推超过Fa数据D的前端环线,并将交叉曲线重置为在前端环线内估值的真实部分。
48.一种适于被处理器执行的计算机程序,当所述计算机程序被所述处理器执行时,引导用于检测断层-断层关系的过程,所述过程包括:
自动检测断层之间的相互关系,以及
向解释者呈现表现断层之间相互关系的最终模型,该最终模型包括断层-断层交叉曲线,以及在该曲线上截断的一个断层。
49.如权利要求48所述的计算机程序,其中,所述检测步骤包括:
好像每个断层和任何其它断层不相关地计算每个断层的模型;
随着产生新的解释数据,保持每个断层的不相关的模型最新,并且
检测一种条件,其中与正被解释的断层关联的数据指示正被解释的断层接近于一个或更多个其它断层,在‘P’到‘P原’距离小于D的条件下,所述断层接近于所述一个或更多个断层;以及
计算断层-断层交叉曲线。
50.如权利要求49所述的计算机程序,还包括:
在弹出窗口中向解释者呈现所述一个或更多个可能相关的断层,作为响应,解释者确认或否认该可能相关的断层之间的连接关系正确。
51.如权利要求50所述的计算机程序,还包括:
记录来自解释者的响应,并且如果连接关系被解释者确认,计算所有连接关系属性;以及
将表示新的解释的交叉曲线以及其它连接属性加到所述断层,该断层用一组解释数据嵌入该连接属性。
52.如权利要求51所述的计算机程序,还包括:
计算并显示最终模型,以示出所述断层为连接的或交叉的。
53.如权利要求49所述的计算机程序,还包括:
计算正被解释的断层与一个或更多个断层之间的连接关系属性,该属性包括断层-断层交叉曲线和截断规则;以及向解释者呈现该一个或更多个可能相关的断层的交叉曲线,作为响应,解释者确认或否认该可能相关的断层之间的连接关系正确。
54.如权利要求53所述的计算机程序,还包括:
记录来自解释者的响应,并且如果所述连接关系被解释者确认,计算剩余的连接关系属性;以及将表示新的解释的交叉曲线以及其它连接属性加到所述断层,该断层用一组解释数据嵌入该连接属性。
55.如权利要求54所述的计算机程序,还包括:
计算并显示最终模型,以示出所述断层为连接的或互连的。
56.如权利要求49所述的计算机程序,其中,检测一种条件由此与正被解释的断层关联的数据指示该正被解释的断层接近于一个或更多个其它断层的步骤包括:
结合不包括所述正被解释的断层的构架中的所述一个或更多个断层,确定所述正被解释的断层与所述一个或更多个断层中的每个断层之间的关系是否应被忽略;
在所述关系应被忽略的条件下,访问最佳拟合平面断层模型及其变换,
得到断层-断层连接距离,
对每个新的解释点‘P’,将‘P’变换到最佳拟合平面坐标空间,
验证‘P’投影到所述每个断层的真实部分上,
将‘P’投影到所述每个断层上作为点‘P原’,
确定‘P原’是否在断层的真实部分上,
确定‘P’到‘P原’的距离是否小于D,
在‘P原’在断层的真实部分上且‘P’到‘P原’的距离小于D的情况下,标记所述每个断层是接近于正被解释的断层的。
57.如权利要求49所述的计算机程序,其中,计算所述断层-断层交叉曲线的步骤包括:
访问被解释的断层模型,Fa,及其变换,
访问智能检测的断层模型,Fb,及其变换,
在感兴趣容积中,在整个共同模型中计算(Fb-Fa)交叉曲线,
得到断层-断层连接距离D,
使用选择的前端环线型式,计算外推超过Fa数据D的前端环线,并将交叉曲线重置为在前端环线内估值的真实部分。
58.一种可以被机器读取的程序存储设备,确实地包含了可以被该机器执行,以进行检测断层-断层关系的方法步骤的一组指令,所述方法步骤包括:
自动检测断层之间的相互关系,以及
向解释者呈现表现断层之间相互关系的最终模型,该最终模型包括断层-断层交叉曲线,以及在该曲线上截断的一个断层。
59.如权利要求58所述的程序存储设备,其中,所述检测步骤包括:
好像每个断层和任何其它断层不相关地计算每个断层的模型;
随着产生新的解释数据,保持每个断层的不相关的模型最新,并且
检测一种条件,其中与正被解释的断层关联的数据指示正被解释的断层接近于一个或更多个其它断层,在‘P’到‘P原’距离小于D的条件下,所述断层接近于所述一个或更多个断层;以及
计算断层-断层交叉曲线。
60.如权利要求59所述的程序存储设备,还包括:
在弹出窗口中向解释者呈现所述一个或更多个可能相关的断层,作为响应,解释者确认或否认该可能相关的断层之间的连接关系正确。
61.如权利要求60所述的程序存储设备,还包括:
记录来自解释者的响应,并且如果连接关系被解释者确认,计算所有连接关系属性;以及
将表示新的解释的交叉曲线以及其它连接属性加到所述断层,该断层用一组解释数据嵌入该连接属性。
62.如权利要求61所述的程序存储设备,还包括:
计算并显示最终模型,以示出所述断层为连接的或交叉的。
63.如权利要求59所述的程序存储设备,还包括:
计算正被解释的断层与一个或更多个断层之间的连接关系属性,该属性包括断层-断层交叉曲线和截断规则;以及向解释者呈现该一个或更多个可能相关的断层的交叉曲线,作为响应,解释者确认或否认该可能相关的断层之间的连接关系正确。
64.如权利要求63所述的程序存储设备,还包括:
记录来自解释者的响应,并且如果所述连接关系被解释者确认,计算剩余的连接关系属性;以及
将交叉曲线以及表示新的解释的其它连接属性加到所述断层,该断层用一组解释数据嵌入该连接属性。
65.如权利要求64所述的程序存储设备,还包括:
计算并显示最终模型,以示出所述断层为连接的或互连的。
66.如权利要求59所述的程序存储设备,其中,检测一种条件由此与正被解释的断层关联的数据指示该正被解释的断层接近于一个或更多个其它断层的步骤包括:
结合不包括所述正被解释的断层的构架中的所述一个或更多个断层,确定所述正被解释的断层与所述一个或更多个断层中的每个断层之间的关系是否应被忽略;
在所述关系应被忽略的条件下,访问最佳拟合平面断层模型及其变换,
得到断层-断层连接距离,
对每个新的解释点‘P’,将‘P’变换到最佳拟合平面坐标空间,
将‘P’投影到所述每个断层上作为点‘P原’,
确定‘P原’是否在断层的真实部分上,
确定‘P’到‘P原’的距离是否小于D,
在‘P原’在断层的真实部分上且‘P’到‘P原’的距离小于D的情况下,标记所述每个断层是接近于正被解释的断层的。
67.如权利要求59所述的程序存储设备,其中,计算所述断层-断层交叉曲线的步骤包括:
访问正被解释的断层模型,Fa,及其变换,
访问智能检测的断层模型,Fb,及其变换,
在感兴趣容积中,在整个共同模型中计算(Fb-Fa)交叉曲线,
得到断层-断层连接距离D,
使用选择的前端环线型式,计算外推超过Fa数据D的前端环线,并将交叉曲线重置为在前端环线内估值的真实部分。
68.一种适于检测断层-断层关系的系统,包括:
适于自动检测断层之间的相互关系的设备,以及
适于向解释者呈现表现断层间相互关系的最终模型的设备,该最终模型包括断层-断层交叉曲线,以及在该曲线上被截断的一个断层。
69.如权利要求4所述的方法,其中,检测一种条件,其中数据指示正被解释的断层接近于一个或更多个其它断层的步骤包括:
关于不包括被解释的断层的构架中的所述一个或更多个断层,确定所述被解释的断层与所述一个或更多个断层中的每个断层之间的关系是否应被忽略;
在所述关系不应被忽略的条件下,访问最佳拟合平面断层模型及其变换,
得到断层-断层连接距离,
对每个新的解释点‘P’,将‘P’变换到最佳拟合平面坐标空间,
验证‘P’投影到所述每个断层的真实部分上,
将‘P’投影到所述每个断层上作为点‘P原’,
确定‘P原’是否在断层的真实部分上,
确定‘P’到‘P原’的距离是否小于D,
在‘P原’在断层的真实部分上且‘P’到‘P原’的距离小于D的情况下,标记所述每个断层是接近于正被解释的断层的。
70.如权利要求12的所述的程序存储设备,其中,检测一种条件其中数据指示正被解释的断层接近于一个或更多个其它断层的步骤包括:
结合不包括所述正被解释的断层的构架中的所述一个或更多个断层,确定所述正被解释的断层与所述一个或更多个断层中的每个断层之间的关系是否应被忽略;
在所述关系应被忽略的条件下,访问最佳拟合平面断层模型及其变换,
得到断层-断层连接距离,
对每个新的解释点‘P’,将‘P’变换到最佳拟合平面坐标空间,
验证‘P’投影到每个断层的真实部分上,
将‘P’投影到所述每个断层上作为点‘P原’,
确定‘P原’是否在断层的真实部分上,
确定‘P’到‘P原’的距离是否小于D,
在‘P原’在断层的真实部分上且‘P’到‘P原’的距离小于D的情况下,标记所述每个断层是接近于正被解释的断层的。
71.如权利要求20所述的计算机程序,其中,检测一种条件其中数据指示正被解释的断层接近于一个或更多个其它断层的步骤包括:
结合不包括所述正被解释的断层的构架中的所述一个或更多个断层,确定所述正被解释的断层与所述一个或更多个断层中的每个断层之间的关系是否应被忽略;
在所述关系应被忽略的条件下,访问最佳拟合平面断层模型及其变换,
得到断层-断层连接距离,
对每个新的解释点‘P’,将‘P’变换到最佳拟合平面坐标空间,
验证‘P’投影到每个断层的真实部分上,
将‘P’投影到所述每个断层上作为点‘P原’,
确定‘P原’是否在断层的真实部分上,
确定‘P’到‘P原’的距离是否小于D,
在‘P原’在断层的真实部分上且‘P’到‘P原’的距离小于D的情况下,标记所述每个断层是接近于正被解释的断层的。
72.如权利要求25所述的方法,其中,检测一种条件,其中与正被解释的一个断层关联的数据指示该断层接近于一个或更多个其它断层的步骤包括:
关于不包括所述正被解释的断层的构架中的所述一个或更多个断层,确定所述正被解释的断层与所述一个或更多个断层中的每个断层之间的关系是否应被忽略;
在所述关系不应被忽略的条件下,访问最佳拟合平面断层模型及其变换,
得到断层-断层连接距离,
对每个新的解释点‘P’,将‘P’变换到最佳拟合平面坐标空间,
验证‘P’投影到所述每个断层的真实部分上,
将‘P’投影到所述每个断层上作为点‘P原’,
确定‘P原’是否在断层的真实部分上,
确定‘P’到‘P原’的距离是否小于D,
在‘P原’在断层的真实部分上且‘P’到‘P原’的距离小于D的情况下,标记所述每个断层是接近于正被解释的断层的。
73.如权利要求28所述的程序存储设备,其中,检测一种条件其中与正被解释的一个断层关联的数据指示该断层接近于一个或更多个其它断层的步骤包括:
结合不包括所述正被解释的断层的构架中的所述一个或更多个断层,确定所述正被解释的断层与所述一个或更多个断层中的每个断层之间的关系是否应被忽略;
在所述关系应被忽略的条件下,访问最佳拟合平面断层模型及其变换,
得到断层-断层连接距离,
对每个新的解释点‘P’,将‘P’变换到最佳拟合平面坐标空间,
验证‘P’投影到每个断层的真实部分上,
将‘P’投影到所述每个断层上作为点‘P原’,
确定‘P原’是否在断层的真实部分上,
确定‘P’到‘P原’的距离是否小于D,
在‘P原’在断层的真实部分上且‘P’到‘P原’的距离小于D的情况下,标记所述每个断层是接近于正被解释的断层的。
74.如权利要求31所述的计算机程序,其中,检测一种条件其中与正被解释的一个断层关联的数据指示该断层接近于一个或更多个其它断层的步骤包括:
结合不包括所述正被解释的断层的构架中的所述一个或更多个断层,确定所述正被解释的断层与所述一个或更多个断层中的每个断层之间的关系是否应被忽略;
在所述关系应被忽略的条件下,访问最佳拟合平面断层模型及其变换,
得到断层-断层连接距离,
对每个新的解释点‘P’,将‘P’变换到最佳拟合平面坐标空间,
验证‘P’投影到每个断层的真实部分上,
将‘P’投影到所述每个断层上作为点‘P原’,
确定‘P原’是否在断层的真实部分上,
确定‘P’到‘P原’的距离是否小于D,
在‘P原’在断层的真实部分上且‘P’到‘P原’的距离小于D的情况下,标记所述每个断层是接近于正被解释的断层的。
75.如权利要求34所述的系统,其中,所述第二设备,适于检测一种条件,其中与正被解释的一个断层关联的数据指示该断层接近于一个或更多个其它断层,包括:
关于不包括所述正被解释的断层的构架中的所述一个或更多个断层,适于确定所述被解释的断层与所述一个或更多个断层中的每个断层之间的关系是否应被忽略的设备;
在所述关系不应被忽略的条件下,适于访问最佳拟合平面断层模型及其变换的设备,
适于得到断层-断层连接距离的设备,
对每个新的解释点‘P’,适于将‘P’变换到最佳拟合平面坐标空间的设备,
适于验证‘P’投影到所述每个断层的真实部分上的设备,
适于将‘P’投影到所述每个断层上作为点‘P原’的设备,
适于确定‘P原’是否在断层的真实部分上的设备,
适于确定‘P’到‘P原’的距离是否小于D的设备,
在‘P原’在断层的真实部分上且‘P’到‘P原’的距离小于D的情况下,适于标记所述每个断层是接近于正被解释的断层的设备。
76.如权利要求3所述的方法,其中随着产生新的解释数据保持每个断层的不相关的模型最新的步骤包括:
保持断层的整个构架最新,其中该构架的一些断层是独立的,且该构架的一些断层是非交叉的。
77.如权利要求8所述的方法,其中计算包括该对断层的所述最终模型的步骤包括:
保持断层的整个构架最新,其中该构架的一些断层是独立的,且该构架的一些断层是非交叉的,且该构架的一些断层是交叉的。
78.如权利要求11所述的程序存储设备,其中随着产生新的解释数据保持每个断层的不相关的模型最新的步骤包括:
保持整个构架的断层最新,其中该构架的一些断层是独立的,且该构架的一些断层是不交叉的。
79.如权利要求16所述的程序存储设备,其中计算包括一对断层的所述最终模型的步骤包括:
保持整个构架的断层最新,其中该构架的一些断层是独立的,且该构架的一些断层是不交叉的,且该构架的一些断层是交叉的。
80.如权利要求19所述的计算机程序,其中随着产生新的解释数据保持每个断层的不相关的模型最新的步骤包括:
保持整个构架的断层最新,其中该构架的一些断层是独立的,且该构架的一些断层是非交叉的。
81.如权利要求24所述的计算机程序,其中计算包括一对断层的所述最终模型的步骤包括:
保持整个构架的断层最新,其中该构架的一些断层是独立的,且该构架的一些断层是不交叉的,且该构架的一些断层是交叉的。
CN2007800286609A 2006-05-31 2007-05-31 包括智能检测断层-断层关系的方法的断层建模的交互自动化方法 Expired - Fee Related CN101495971B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US80947106P 2006-05-31 2006-05-31
US60/809,471 2006-05-31
US11/755,572 2007-05-30
US11/755,572 US7756694B2 (en) 2006-05-31 2007-05-30 Method for interactive automation of fault modeling including a method for intelligently sensing fault-fault relationships
PCT/US2007/070117 WO2007140464A2 (en) 2006-05-31 2007-05-31 A method for interactive automation of fault modeling including a method for intelligently sensing fault-fault relationships

Publications (2)

Publication Number Publication Date
CN101495971A true CN101495971A (zh) 2009-07-29
CN101495971B CN101495971B (zh) 2012-09-05

Family

ID=38779481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800286609A Expired - Fee Related CN101495971B (zh) 2006-05-31 2007-05-31 包括智能检测断层-断层关系的方法的断层建模的交互自动化方法

Country Status (8)

Country Link
US (1) US7756694B2 (zh)
CN (1) CN101495971B (zh)
AU (1) AU2007266442B2 (zh)
CA (1) CA2653868C (zh)
GB (1) GB2453076B8 (zh)
NO (1) NO340747B1 (zh)
RU (1) RU2414743C2 (zh)
WO (1) WO2007140464A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106461810A (zh) * 2014-06-05 2017-02-22 雪佛龙美国公司 构建复杂地球模型的系统和方法
CN108735283A (zh) * 2017-04-13 2018-11-02 佳能株式会社 信息处理装置、系统、方法和存储介质
CN111443385A (zh) * 2020-04-28 2020-07-24 南京师范大学 一种断层发育时序的获取方法
CN112987095A (zh) * 2021-02-25 2021-06-18 中国科学院地理科学与资源研究所 一种地质断层探测方法及装置
CN113537520A (zh) * 2021-06-29 2021-10-22 中国石油化工股份有限公司 一种断层位置定位方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007225358B2 (en) * 2006-03-02 2012-11-15 Exxonmobil Upstream Research Company Method for quantifying reservoir connectivity using fluid travel times
AU2009244726B2 (en) * 2008-05-05 2014-04-24 Exxonmobil Upstream Research Company Modeling dynamic systems by visualizing and narrowing a parameter space
CA2743479C (en) 2008-11-14 2016-06-28 Exxonmobil Upstream Research Company Forming a model of a subsurface region
US8793110B2 (en) 2009-03-13 2014-07-29 Exxonmobil Upstream Research Company Method for predicting fluid flow
CA2776764A1 (en) 2009-11-30 2011-06-03 Exxonmobil Upstream Research Company Adaptive newton's method for reservoir simulation
US9062524B2 (en) * 2010-01-27 2015-06-23 Pason Systems Corp. Method and apparatus for correcting data points acquired during well drilling
EP2564309A4 (en) 2010-04-30 2017-12-20 Exxonmobil Upstream Research Company Method and system for finite volume simulation of flow
AU2011283193B2 (en) 2010-07-29 2014-07-17 Exxonmobil Upstream Research Company Methods and systems for machine-learning based simulation of flow
WO2012015517A1 (en) 2010-07-29 2012-02-02 Exxonmobil Upstream Research Company Methods and systems for machine-learning based simulation of flow
CA2803068C (en) 2010-07-29 2016-10-11 Exxonmobil Upstream Research Company Method and system for reservoir modeling
CA2803066A1 (en) 2010-07-29 2012-02-02 Exxonmobil Upstream Research Company Methods and systems for machine-learning based simulation of flow
US8798974B1 (en) 2010-09-15 2014-08-05 Alan Gordon Nunns Method and system for interactive geological interpretation, modeling and restoration
US9058446B2 (en) 2010-09-20 2015-06-16 Exxonmobil Upstream Research Company Flexible and adaptive formulations for complex reservoir simulations
WO2012071090A1 (en) 2010-11-23 2012-05-31 Exxonmobil Upstream Research Company Variable discretization method for flow simulation on complex geological models
US8744830B2 (en) * 2011-08-31 2014-06-03 General Electric Company Systems and methods for electrical fault restoration
US9489176B2 (en) 2011-09-15 2016-11-08 Exxonmobil Upstream Research Company Optimized matrix and vector operations in instruction limited algorithms that perform EOS calculations
CA2883169C (en) 2012-09-28 2021-06-15 Exxonmobil Upstream Research Company Fault removal in geological models
AU2015298233B2 (en) 2014-07-30 2018-02-22 Exxonmobil Upstream Research Company Method for volumetric grid generation in a domain with heterogeneous material properties
US10359523B2 (en) 2014-08-05 2019-07-23 Exxonmobil Upstream Research Company Exploration and extraction method and system for hydrocarbons
US10995592B2 (en) 2014-09-30 2021-05-04 Exxonmobil Upstream Research Company Method and system for analyzing the uncertainty of subsurface model
WO2016070073A1 (en) 2014-10-31 2016-05-06 Exxonmobil Upstream Research Company Managing discontinuities in geologic models
CA2963416A1 (en) 2014-10-31 2016-05-06 Exxonmobil Upstream Research Company Handling domain discontinuity in a subsurface grid model with the help of grid optimization techniques
EP3213125A1 (en) 2014-10-31 2017-09-06 Exxonmobil Upstream Research Company Corp-urc-e2. 4A.296 Methods to handle discontinuity in constructing design space for faulted subsurface model using moving least squares
DE102014224851A1 (de) * 2014-12-04 2016-06-09 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Darstellung von Strukturinformation über ein technisches Objekt
CN104899397B (zh) * 2015-06-19 2018-04-06 国家电网公司 故障仿真结果的处理方法和装置
US10685043B2 (en) 2015-11-10 2020-06-16 International Business Machines Corporation Event analysis in network management event streams
US10295686B2 (en) 2016-06-06 2019-05-21 Saudi Arabian Oil Company Quantifying geologic growth history of subsurface oil field structures based on structural growth indications
WO2018118374A1 (en) 2016-12-23 2018-06-28 Exxonmobil Upstream Research Company Method and system for stable and efficient reservoir simulation using stability proxies
US10467083B2 (en) 2017-06-08 2019-11-05 International Business Machines Corporation Event relationship analysis in fault management
CA3064383C (en) * 2017-08-18 2023-10-03 Landmark Graphics Corporation Hybrid optimization of fault detection and interpretation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229976A (en) * 1991-11-06 1993-07-20 Conoco Inc. Method for creating a numerical model of the physical properties within the earth
US5453958A (en) * 1993-06-11 1995-09-26 Phillips Petroleum Company Method for locating hydrocarbon reservoirs
FR2725794B1 (fr) * 1994-10-18 1997-01-24 Inst Francais Du Petrole Methode pour modeliser la distribution spatiale d'objets geometriques dans un milieu, tels que des failles dans une formation geologique
US6014343A (en) 1996-10-31 2000-01-11 Geoquest Automatic non-artificially extended fault surface based horizon modeling system
US5982707A (en) 1997-01-16 1999-11-09 Geoquest Method and apparatus for determining geologic relationships for intersecting faults

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106461810A (zh) * 2014-06-05 2017-02-22 雪佛龙美国公司 构建复杂地球模型的系统和方法
CN108735283A (zh) * 2017-04-13 2018-11-02 佳能株式会社 信息处理装置、系统、方法和存储介质
CN111443385A (zh) * 2020-04-28 2020-07-24 南京师范大学 一种断层发育时序的获取方法
CN112987095A (zh) * 2021-02-25 2021-06-18 中国科学院地理科学与资源研究所 一种地质断层探测方法及装置
CN112987095B (zh) * 2021-02-25 2021-10-15 中国科学院地理科学与资源研究所 一种地质断层探测方法及装置
CN113537520A (zh) * 2021-06-29 2021-10-22 中国石油化工股份有限公司 一种断层位置定位方法
CN113537520B (zh) * 2021-06-29 2024-05-28 中国石油化工股份有限公司 一种断层位置定位方法

Also Published As

Publication number Publication date
CA2653868C (en) 2016-02-16
AU2007266442B2 (en) 2010-10-21
GB0823612D0 (en) 2009-02-04
GB2453076B8 (en) 2011-12-14
NO340747B1 (no) 2017-06-12
RU2414743C2 (ru) 2011-03-20
WO2007140464A3 (en) 2008-01-31
US20080010047A1 (en) 2008-01-10
CA2653868A1 (en) 2007-12-06
WO2007140464A2 (en) 2007-12-06
GB2453076B (en) 2011-08-31
GB2453076A8 (en) 2011-12-14
RU2008152414A (ru) 2010-07-10
AU2007266442A1 (en) 2007-12-06
NO20085400L (no) 2009-03-02
US7756694B2 (en) 2010-07-13
CN101495971B (zh) 2012-09-05
GB2453076A (en) 2009-03-25

Similar Documents

Publication Publication Date Title
CN101495971B (zh) 包括智能检测断层-断层关系的方法的断层建模的交互自动化方法
RU2462755C2 (ru) Прогнозирование свойств подземной формации
Houlding Practical geostatistics: modeling and spatial analysis. Manual
EP2497900B1 (en) Modeling hydraulic fractures
US7890264B2 (en) Waterflooding analysis in a subterranean formation
US8140310B2 (en) Reservoir fracture simulation
AU2007221158B2 (en) Well planning system and method
US6772066B2 (en) Interactive rock stability display
US20130341093A1 (en) Drilling risk avoidance
US20070061117A1 (en) Reservoir model building methods
CN103348265B (zh) 更新地质单元模型的方法和系统
US20090192712A9 (en) System and method for waterflood performance monitoring
CA2680958C (en) Reservoir management linking
US11530609B2 (en) Well placing using bayesian network expert system
EP4348523A1 (en) Seismic well tie based on machine learning
Schwedersky et al. Facies modeling accounting for the precision and scale of seismic data: Application to Albacora Field, Campos Basin, Brazil
Dubreuil-Boisclair et al. Simulation of Facies Uncertainty in Field Development
Habashy Omeragic et al.(45) Date of Patent: Jul. 16, 2013

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120905

Termination date: 20170531

CF01 Termination of patent right due to non-payment of annual fee