CN106461810A - 构建复杂地球模型的系统和方法 - Google Patents

构建复杂地球模型的系统和方法 Download PDF

Info

Publication number
CN106461810A
CN106461810A CN201580028406.3A CN201580028406A CN106461810A CN 106461810 A CN106461810 A CN 106461810A CN 201580028406 A CN201580028406 A CN 201580028406A CN 106461810 A CN106461810 A CN 106461810A
Authority
CN
China
Prior art keywords
model
layer
grid
fault
geologic medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580028406.3A
Other languages
English (en)
Other versions
CN106461810B (zh
Inventor
卓磊
J·P·斯特凡尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron USA Inc filed Critical Chevron USA Inc
Publication of CN106461810A publication Critical patent/CN106461810A/zh
Application granted granted Critical
Publication of CN106461810B publication Critical patent/CN106461810B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • G01V20/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/64Geostructures, e.g. in 3D data cubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/66Subsurface modeling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/48Analogue computers for specific processes, systems or devices, e.g. simulators

Abstract

描述了一种方法,包括对于地质介质访问:层位模型,其包括所述地质介质中的多个层位;断层模型,其包括所述地质介质中的多个断层;以及岩石性质模型,其包括在对应于所述地质介质的第一栅格上的多个空间位置处的一个或多个物理岩石性质。该方法还包括通过将所述层位模型与所述断层模型相关来确定地层与断层之间的交叉,以及根据层位与断层之间的交叉计算用于所述地质介质的断层结构模型。该方法还包括通过根据岩石性质模型将所述一个或多个物理岩石性质分配给所述断层结构模型来生成用于地震正演建模的地球模型。

Description

构建复杂地球模型的系统和方法
技术领域
所公开的实施例一般涉及用于使用地球物理数据(例如,地震数据和/或测井数据)来构建解释层位、断层和岩石性质的复杂地球模型的技术。
背景技术
地震勘探涉及为了烃沉积物而对地下地质介质进行勘测。一些勘测被称为“海洋”勘测,因为它们是在海洋环境中进行的。然而,“海洋”勘测不仅可以在盐水环境中进行,而且还可以在淡水和微咸水中进行。在被称为“拖曳阵列”勘测的一种类型的海洋勘测中,包含地震传感器的拖缆和源的阵列被拖曳在勘测船后面。
勘测通常涉及在预定位置处部署地震源(一个或多个)和地震传感器(一个或多个)。源产生地震波,该地震波传播到地质介质中,产生压力变化和振动。地质介质的物理性质的变化改变地震波的性质,诸如它们的传播方向和其它性质。地震波的部分到达地震传感器。一些地震传感器对压力变化敏感(水听器),其它对质点运动敏感(例如,地震检波器),并且工业勘测可以仅部署一种类型的传感器或两者。响应于检测到的地震波,传感器生成相应的电信号并将它们作为地震数据记录在存储介质中。
测井数据还可以用于更好地理解地质介质。通过在已经或正在钻探的井中放置传感器(例如,电传感器、孔隙度传感器、伽马射线传感器、核磁共振(NMR)传感器和/或其它传感器),以及使用传感器沿着井的路径测量各种性质来获得测井数据。
地震勘探的一个目标是使用从该区域收集的地震数据和表示相同区域的地质力学状态的地球模型来创建地下地质结构的精确图像。但是,目前的地球模型缺乏现代烃勘探所需程度的细节、分辨率和复杂性。
发明内容
因此,需要包括关于更复杂的地质介质结构的信息的地球模型。这样的地球模型将给出地质介质的更详细描述,帮助产生更准确的地震图像,并且为勘探和烃采收提供更好的见解。
根据一些实施例,在具有一个或多个处理器和存储器的计算机系统处执行方法。该方法包括对于地质介质访问:层位模型,其包括所述地质介质中的多个层位;断层模型,其包括所述地质介质中的多个断层;以及岩石性质模型,其包括在对应于所述地质介质的第一栅格上的多个空间位置处的一个或多个物理岩石性质。该方法还包括通过将层位模型与断层模型相关来确定所述层位模型的相应层位与所述断层模型的相应断层之间的一个或多个交叉。该方法还包括根据所述层位模型的相应层位与所述断层模型的相应断层之间的一个或多个确定的交叉来计算用于地质介质的断层结构模型。该方法还包括通过根据岩石性质模型将所述一个或多个物理岩石性质分配给所述断层结构模型来生成用于地震正演建模的地球模型。
在本发明的另一方面中,为了解决上述问题,一些实施例提供了一种存储一个或多个程序的非暂时性计算机可读存储介质。一个或多个程序包括指令,该指令当由具有一个或多个处理器和存储器的计算机系统执行时,使得计算机系统执行本文提供的方法中的任一项。
在本发明的另一方面中,为了解决上述问题,一些实施例提供一种计算机系统。该计算机系统包括一个或多个处理器、存储器以及一个或多个程序。一个或多个程序被存储在存储器中并且被配置为由一个或多个处理器执行。一个或多个程序包括操作系统和指令,该指令当由一个或多个处理器执行时,使得所述计算机系统执行本文提供的方法中的任一项。
附图说明
图1是根据一些实施例的海洋地质勘探环境的示意图。
图2是根据一些实施例的被建模以产生地球模型的地质介质的露头的示例图像。
图3A-3D例示了根据一些实施例的构建复杂地球模型的方法的图形示例。
图4A-4B例示了根据一些实施例的第一栅格或网格到第二栅格或网格上的翘曲。
图5A-5B是根据一些实施例的构建复杂地球模型的方法的示意性流程图。
图6是例示根据一些实施例的地震建模系统的框图。
相同的附图标记贯穿附图指相应的部分。
具体实施方式
下面描述提供构建复杂地球模型的方式的方法、系统和计算机可读存储介质。在某些情况下,这些地球模型用于地震正演建模或地震成像。地球模型是用于地质介质的模型,其在地质介质内的数值栅格(有时称为“网格”)上的每个点处指定地质介质的一个或多个物理性质中的每一个的值,包括:密度、孔隙度、各种波传播速度(例如,s波和p波速度)和/或其它岩石性质。正演建模是地震波(例如,合成源数据)数值地传播通过地质介质并由接收器位置阵列捕获的过程(例如,模拟)。使用地球模型的正演建模由于多种原因是有用的。作为一个示例,合成源数据可以经由正演建模传播到接收器位置以产生合成地震数据。可以将合成地震数据与测量的地震数据进行比较,作为用于进一步细化地球模型的迭代过程的一部分,从而使地球模型更准确。作为另一个示例,一旦已经获得满意的地球模型,正演建模就可以用于通过被称为逆时偏移(RTM)的过程来增加地震剖面(例如,地质介质的“图像”)的分辨率。
传统的地球模型通常具有解释地质介质中的断层的挑战。这意味着传统地球模型中的层位是无缝的。如本文所使用的,术语“层位”用于表示相邻石印(lithographic)地层(或者,可选择地,特定石印地层的相应表面)之间的边界,并且术语“断层”用于表示横跨其存在可观察到位移的岩体的断裂。因此,断层也将表示由断层横切(例如,交叉)的任何层位中的断裂或“接缝”。常规地球模型不能解释断层的一个原因是,虽然地震数据在空间上扩展,但地震数据的反演通常产生“平滑”地球模型,其中断层与褶皱相同。(地震数据的反演是从(例如,如在参考图1所描述的海洋地球物理勘探环境中获得的)测量的地震数据生成地球模型的过程。)与断层不同,褶皱是当岩石由于弯曲而不是断裂而变形时形成的波状地质结构(参见图2的描述),因此褶皱的层位根据定义是无缝的。褶皱的类型包括背斜(弓形结构)、向斜(U形结构)或单斜(阶梯形结构)。测井数据通常也不能帮助生成三维断层模型,因为测井数据被定位到获得它的井中。
然而,可以通过解释地球物理数据,特别是地震数据来生成地质介质的断层模型。在各种情况下,断层建模包括使地质学家从反演的地震数据中手动拾取断层平面或断层平面上的至少某些位置。在一些实施例中,计算机系统使用地质学家的拾取来生成(例如,插值)断层模型的其余部分。可选择地,可以使用完全计算机化的断层平面拾取方法,例如通过对反演的地震数据进行附加分析。通常,断层建模和层位建模(例如,创建地质介质内的岩层的模型的过程)的细节落在本公开的焦点之外,但是例如在Sheriff,Robert E.,Geldart,Lloyd P.,Exploration Seismology,Second Edition,Cambridge:CambridgeUniversity Press,1995中被更详细地描述,通过引用将其全部内容并入本文。
由于许多原因,断层是重要的。断层可以构成烃圈闭机制,意味着某些断层结构为钻井位置提供了候选。作为它们的重要性的另一个示例,一些断层结构负责所谓的“高速”岩石和所谓的“低速”岩石之间的急剧转变。两种不同岩石类型之间的这种急剧转变可能是潜在的钻井危险。此外,当地球模型用于正演建模时,正演建模数据中的不希望的效应(例如,物理上不准确的效应)从被错误地表示为无缝的层位产生。在一些情况下,例如,这些效应是由于传播的地震数据从错误无缝层位折射而引起的。当用于偏移(例如,如上所述的RTM)时,这种效应妨碍地震剖面的分辨率,并且阻碍用于进一步细化地球模型(也在上面讨论)的迭代算法。
本文描述的复杂地球模型通过确定层位模型的相应层位与断层模型的相应断层之间的一个或多个交叉,来为地质介质组合层位模型、断层模型和岩石性质模型。这些模型可以是2D或3D模型。在一些实施例中,确定包括将层位模型与断层模型相关以产生断层结构模型,并且然后通过根据岩石性质模型向断层结构模型分配一个或多个物理岩石性质来生成用于地震正演建模的地球模型。岩石性质模型包括在对应于地质介质的栅格(有时称为“网格”)上的多个空间位置处的一个或多个物理岩石性质(例如,岩石密度、s波速度、p波速度或孔隙度)。根据各种各样的实施例,以任意数量的方式确定栅格上的空间位置的物理岩石性质,包括例如通过地震数据反演(例如,反演地震数据以产生p波速度),通过结合反演的地震数据使用物理原理(例如,使用加德纳关系(Gardner’s relation)在p波速度和岩石密度之间进行转换),通过使用测井数据和/或其组合。在一些实施例中,地球模型用于正演建模(例如,使用RTM产生高分辨率地震剖面)。在一些实施例中,地球模型与储层模型组合,使得例如可以计算烃沉积物上的上覆压力。
现在将详细参考各种实施例,其示例在附图中例示。在以下的具体实施方式中,阐述了许多具体细节以便提供对本公开和本文所描述的实施例的全面理解。然而,本文所描述的实施例可以在没有这些具体细节的情况下实现。在其它情况下,没有详细描述公知的方法、过程、组件和机械装置,以免不必要地模糊实施例的方面。
图1是根据一些实施例的海洋地球物理勘探环境100的示意图。在海洋地球物理勘探环境100中,勘测船102将一个或多个地震拖缆(图1中描绘了一个示例性拖缆104)拖曳在船102后面。地震拖缆104可以是几千米长,并且可以包含各种支撑线缆(未示出),以及可以用于支持沿着拖缆104的通信的布线和/或电路系统(未示出)。通常,拖缆104包括地震传感器106(例如,地震传感器106-a、106-b、106-c直到地震传感器106-n)安装在其上的记录地震信号的主线缆。总的来说,所记录的地震信号构成地震数据。
在一些实施例中,地震传感器106是压力传感器或是多分量地震传感器。对于多分量地震传感器的情况,每个传感器能够检测压力值和与接近多分量地震传感器的声信号相关联的质点运动的至少一个分量。质点运动的示例包括质点位移的一个或多个分量(例如,例如如在轴108中所示的横轴(x)、交叉轴(y)和/或垂直轴(z)分量中的一个或多个)、质点速度的一个或多个分量、以及质点加速度的一个或多个分量。
在一些实施例中,多分量地震传感器可以包括一个或多个水听器、地震检波器、质点位移传感器、质点速度传感器、加速度计、压力梯度传感器或其组合。
例如,在一些实施例中,特定的多分量地震传感器包括用于测量压力的水听器和用以测量地震传感器附近的质点速度和/或加速度的三个相应的正交分量的三个正交对准的加速度计。注意,多分量地震传感器可以被实现为单个设备或者可以被实现为多个设备。特定的多分量地震传感器还可以包括一个或多个压力梯度传感器,其构成另一类型的质点运动传感器。每个压力梯度传感器测量特定点处的压力波场相对于特定方向的变化。例如,压力梯度传感器中的一个可以采集指示在特定点处压力波场相对于交叉轴方向的偏导数的地震数据,并且压力梯度传感器中的另一个可以采集指示在特定点处相对于横轴方向的压力数据的地震数据。
海洋地球物理勘探环境100包括一个或多个地震源阵列110。源阵列110又包括一个或多个地震源(诸如气枪)(例如,地震源112-a、112-b、112-c直到地震源112-m)串。在一些实施例中,地震源112可以耦接到勘测船102或由勘测船102拖曳。可选择地,地震源112可以独立于勘测船102操作,因为源元件112可以耦接到例如其它船或浮标。
当地震拖缆104被拖曳在勘测船102后面时,声信号114(有时称为“激发”)由地震源112产生,并且向下通过水柱116引导至水底表面120下方的石印地层118(例如,石印地层118-a、118-b和118-c各自表示地质介质的相应层或地层(stratus))。反射声信号122从诸如层位199(例如,层位199-a表示石印地层118-a和石印地层118-b之间的界面)的各种地下地质特征反射。
入射声信号114产生由地震传感器106感测的对应的反射声信号或压力波。注意,由地震传感器106接收和感测的压力波包括“上行”压力波,以及通过压力波从气-水边界126的反射产生的“下行”压力波。
地震传感器126生成称为“迹线”的信号(例如数字信号),其指示所采集的压力波场和质点运动的测量(如果传感器是质点运动传感器),例如作为时间的函数。迹线被记录,并且在一些实施例中,至少部分地由部署在勘测船102上的信号处理单元128处理。
测井数据是在某些情况下可以用于帮助理解地质介质的另一个数据源。在示例场景中,从井架194钻探钻孔196。测井传感器获得沿着钻孔196的路径的测井数据。存在许多不同类型的测井传感器,每个能够测量地质介质沿着钻孔196的路径的不同的物理性质。这些包括:
·电阻率测井传感器,其通过测量沿着钻孔196的路径的电阻率来表征钻孔196周围的岩石或沉积物;
·声阻抗传感器,其测量声阻抗以创建沿着钻孔196的路径的图像;
·孔隙度传感器,其使用声学或核技术(例如,中子或伽马射线传感器)来测量沿着钻孔196的路径的岩石中的分数孔隙体积或百分比孔隙体积;
·密度传感器,其通过在用放射源轰击岩石之后测量所得到的伽马射线来推断沿着钻孔196的路径的岩石密度;以及
·核磁共振(NMR)传感器,其用于推断例如沿着钻孔196的路径的孔隙度和渗透率值。
可以采用许多其它类型的测井传感器和/或传感器类型的组合。例如,一些类型的测井数据需要沿着钻孔196的选定位置处的岩心去除,随后在实验室环境中对所述岩心进行分析。此外,根据各种实施例,测井可以在随钻测井(LWD)配置中执行或者可以在钻探钻孔196之后执行。为了简洁起见,这些实施例不被详细描述,但是仍然旨在落在随附权利要求的范围内。
地球物理勘探的目标是为了识别地下地质特征(例如,烃沉积物/储层)的目的而构建勘测区域的图像。为此,中间目标是开发和精确的地球模型。这里描述的地球模型是通过组合几个子模型(包括断层模型、层位模型和岩石性质模型)来创建的。特别地,当断层198横切层位199时,在层位199中创建接缝。这里描述的地球模型将这样的接缝捕获(例如,并入)到地球模型中,并相应地分配(例如,映射)岩石性质模型描述的岩石性质。使用地球模型的后续分析(例如,通过逆时偏移的正演建模)可以揭示烃沉积物在地质介质中的可能位置。
在一些实施例中,地球物理数据(例如,地震或测井数据)的一些分析可以诸如通过信号处理单元128在地震勘测船102上执行。在一些实施例中,地球物理数据至少部分地由可以例如位于陆地上或船102上的地震建模系统(诸如图6中所描绘并且在下面进一步描述的示例性地震建模系统600)处理。因此,许多变化是可能的并且在随附权利要求的范围内。
本领域普通技术人员将理解,上述海洋地球物理勘探环境100仅仅是可以使用的许多不同类型的地震数据采集环境中的一个的示例。例如,在一些实施例中,地球物理勘探环境可以使用设置在海床上的固定传感器线缆。作为另一示例,在一些实施例中,地球物理勘探环境可以是其中传感器线缆被埋在地球中的基于陆地的环境。因此,许多变化被预期并且在随附权利要求的范围内。
图2是地质介质的露头的示例图像。虽然为了理解的目的在本文档的剩余部分中使用简单示例描述了本文提供的方法、计算机系统和非暂时性计算机可读存储介质,但是图2的目的是示出地质介质在一些情况下,是相当复杂的。为此,图2所示的地质介质是使用本文描述的实施例建模的地质介质的示例(例如,在一些情况下,使用本文所述的实施例来为通过露头暴露的地质介质或类似的地质介质生成地球模型)。然而,应当理解,感兴趣的地质介质(例如,潜在的含烃地质介质)通常完全是地下的,因此这种露头不存在。此外,本公开的一些实施例用于生成三维模型,在这种情况下,图2所示的复杂性潜在地延伸遍及三维体积。
为了例示在构建解释断层、层位和岩石性质的地球模型中的复杂性的具体示例,考虑图2中所示的地质介质包括多个断层602(例如,断层602-a、断层602-b和断层602-c)和多个层位604(例如,层位604-a和层位604-b)。层位604被褶皱使得它们与断层602几乎平行。许多其它断层和层位存在于地质介质中,但是为了清楚而未标记。在相应断层602横切相应层位604的情况下,创建接缝606。使用传统方法,难以在例如层位604中的陡峭褶皱和由陡峭正断层602产生的接缝606之间进行区分。但是根据一些实施例,通过组合无缝层位模型与单独生成的断层模型以产生地质介质的断层结构模型(例如,具有由断层产生的接缝的层位模型),以及然后根据断层结构模型将岩石性质分配给数值栅格或网格,用于复杂地质介质的传统三维地球模型的不精确性得到缓解。
图3A-3D例示了根据一些实施例的构建复杂地球模型的方法的图形示例。尽管通常而言,本文描述的方法用于构建其中存在多个层位的地球模型,但是为了说明的目的,仅示出了单个层位(例如,来自图1所示的地质介质的层位199-a)。图3A-3D还包括先前在图1中示出的轴108,其指示横轴(x)、交叉轴(y)和垂直轴(z)方向。
图3A例示了包括单个层位199-a的层位模型。层位199-a在三维中指定(通常,层位的形状将在所有三个方向(例如,横向方向和垂直方向)上变化)。在一些实施例中,相对于第一栅格或网格指定层位199-a(例如,图3A中的层位199-a的阴影中的圆点各自表示栅格上属于层位199-a的点)。层位199-a最初是无缝的(例如,简单连接的),意味着其中没有孔。
图3B例示了包括两个断层的断层模型:断层198-a和断层198-b。在一些实施例中,还相对于第一栅格指定断层198。作为参考,仍然示出层位199-a;然而,为了清楚起见,与图3A相比,阴影已经被修改为更浅。断层198横切层位199-a,意味着在物理地质介质中,由断层198表示的物理断层在由层位199-a表示的层位中产生接缝(例如,断裂或位移)。这是本方法在为地质介质生成地球模型时捕获的那些接缝。
图3C例示了确定断层198(图3B)在哪里与层位199-a交叉的操作。为了清楚起见,从图3C中省略了断层198,并且层位199-a已经返回到其在图3A中呈现的原始阴影。区域302(例如,区域302-a和区域302-b)是交叉区域,这意味着已经做出相应断层198在区域302内的每个点处与层位199-a重合的确定。在一些实施例中,在层位199-a在断层198的预定义距离容差内的规格上的点被确定为在交叉区域302内。在一些实施例中,通过确定层位199-a规格上的哪些点位于断层198的预定义距离容差内来生成标称交叉区域。在一些实施例中,对标称交叉区域执行附加平滑操作以生成区域302,并且确保区域302被简单连接(例如,在其中没有孔)。
图3D例示了地质介质的断层结构模型。在断层结构模型中,层位199-a的规格已经被修改以解释断层198(例如,区域302已被移除)。在一些实施例中,也通过将规格从第一数值栅格或网格映射到第二数值栅格或网格来修改层位199-a的规格,所述第二数值栅格或网格允许考虑到断层结构模型的断层结构而对地震信号进行更精确和准确的正演建模。
图4A-4B例示了第一栅格或网格(例如,数值栅格或网格)到第二栅格或网格上的翘曲。在一些实施例中,图4A中所示的第一栅格包括多个均匀间隔开的第一空间(例如,栅格)位置402(为了视觉清楚,干扰附图标记和/或箭头的指示空间位置的某些点已被省略)。例如,在一些实施例中,第一栅格包括地质介质中的,三维体积中以预定义距离(例如,1厘米、10厘米、1米或10米)均匀间隔的多个第一空间位置。在一些实施例中,第一栅格是有限元栅格,
并且第一空间(例如,栅格)位置表示有限元体积的顶点。可选择地,第一栅格是有限差分栅格,并且第一空间位置表示计算位置。
如图4B所示,在一些实施例中,第一栅格被重新映射到第二栅格上(连同断层、层位和岩石性质规格),该第二栅格包括与和相应层位交叉的相应断层对准的一个或多个第二空间位置和/线。例如,
由空心圆表示的第二空间位置404已被重新映射(例如,翘曲或移动)到断层198-a和198-b上。
图5A-5B是根据一些实施例的构建复杂地球模型的方法500的示意性流程图。方法500可选地由存储在计算机存储器或非暂时性计算机可读存储介质(例如,图6中的存储器606)中,并由包括但不限于信号处理单元128(图1)和/或系统600(图6)的一个或多个计算机系统的一个或多个处理器(例如,处理器602(一个或多个))执行的指令控制。计算机可读存储介质可以包括磁盘或光盘存储设备,诸如闪存的固态存储设备或其它非易失性存储器设备(一个或多个)。存储在计算机可读存储介质上的计算机可读指令可以包括以下各项中的一个或多个:源代码、汇编语言代码、目标代码或由一个或多个处理器解释的另一指令格式。在各种实施例中,每种方法中的一些操作可以被组合和/或一些操作的顺序可以从图中所示的顺序改变。为了便于解释,方法500被描述为由计算机系统执行,但是在一些实施例中,方法500的各种操作跨单独的计算机系统分布。
对于地质介质,计算机访问(502):层位模型,包括地质介质中的多个层位(层位模型中的示例层位在图3A中示出);断层模型,包括地质介质中的多个断层(断层模型中的断层的两个示例在图3B中示出);以及岩石性质模型,包括在对应于所述地质介质的第一栅格上的多个空间位置处的一个或多个物理岩石性质。在一些实施例中,计算机系统接收并存储层位模型、断层模型和岩石性质模型。
在一些实施例中,层位模型中的层位表示相邻石印地层之间的边界,或者可选择地(等效地在一些情况中),层位表示相应石印地层的相应表面(例如,顶表面或底表面)。例如,如图1所示,层位199-a可以被描述为石印地层118-a和石印地层118-b之间的边界。可选择地,层位199-a可以被描述为石印地层118-b的顶表面或石印地层118-a的底表面。不同地,石印地层可选地包括岩石层、沉积物层和/或流体层(例如,表示海洋)。层位模型可选地包括在一些情况下(例如,当石印相对于海底倾斜时)将横切一个或多个非自由层位的一个或多个自由层位(例如,表示海底、海平面和/或地面)。在一些实施例中,多个层位中的每个层位相对于第一栅格或网格(例如,有限元或有限差分栅格或网格)在二维或三维中来指定。在一些实施例中,层位模型表示层位的当前状态或结构(例如,与当石印地层沉积时先前地质时间处的地层的状态或结构相比,当前地质时间中的状态)。为此,层位模型中的层位在一些情况下被褶皱和/或倾斜。然而,如下所述,在一些实施例中,层位模型中的层位是无缝的,意味着每个层位由连续表面表示(例如,每个层位由简单连接的表面表示)。在一些实施例中,在访问层位模型之前,通过地震数据的反演和/或地震数据的地质解释来生成层位模型。
在一些实施例中,断层模型中的断层表示石印地层中的断裂,其中石印地层在每个断层的一侧上相对于另一侧存在位移。断层可以主要被分类为正断层(即压缩或拉伸断层)或走滑断层(例如,剪切断层);然而,通常断层包括多于一种类型的特征(例如,压缩分量和剪切分量)。在一些实施例中,相对于第一栅格(例如,与层位模型中的层位被指定的相同栅格)指定断层模型中的每个断层。在各种实施例中,根据第一栅格的维度,在二维(2D)或三维(3D)中指定断层。在各种实施例中,在访问断层模型之前,通过解释地震数据、解释反演的地震数据、解释地震剖面和/或使用其它方法和前述方法的组合来生成断层模型中的断层。在一些实施例中,在断层模型中生成断层包括相对于第一栅格指定断层。在各种实施例中,通过使地质学家手动拾取特定断层位置并且使计算机在所述断层位置之间插值(例如,使用地震数据)或通过全自动计算机方法来实现该规格。
在一些实施例中,对于第一栅格上的每个点,岩石性质模型中的物理岩石性质包括以下中的一个或多个的值:p波速度Vp,s波速度Vs,Thomsen参数δ和ε,密度ρ和/或衰减因子Q(例如,当岩石性质模型包括衰减模型时)。在一些情况下,地质介质是各向异性的,并且对于第一栅格上的每个点,岩石性质模型为p波速度指定两个或更多个值(例如,Vpx、Vpy和Vpz)。以类似的方式,在一些实施例中,也针对第一栅格上的每个点为其它岩石性质指定两个或更多个值。在一些实施例中,通过将从低频地震数据获得的值与高频测井数据组合来确定岩石性质模型的值。例如,在一些实施例中,岩石模型包括(504):低频子模型(例如,有时被称为DC模型,其中DC代表类似于电信号处理的“直流”),其指示根据外推到第一栅格上的地震数据确定的一个或多个物理岩石性质的深度趋势;以及高频子模型,其指示根据外推到第一栅格上的测井数据确定的一个或多个物理岩石性质的波动。例如,在一些实施例中,在沿着地质介质内的钻孔的多个深度处测量孔隙度,产生深度趋势。在一些实施例中,高频子模型用于解释(例如,计算)远离深度趋势的横向波动(例如,横向上的扰动,也称为“精细结构”)。在一些实施例中,使用优化算法(例程)完成计算,一旦已经考虑了深度趋势,所述优化算法就试图最小化残差数据(例如,残差行进时间数据或残差幅度数据)。在一些实施例中,深度趋势描述一维岩石性质趋势。
在一些实施例中,由方法500构建(例如,生成)的复杂地球模型包括两个体积:表示地质介质的第一体积和表示非物理边界区域的第二体积。非物理边界体积的目的是为了避免当地球模型用于模拟有限体积中的地震波的传播时产生的伪造的伪像(例如,由非物理边界条件引起的伪造的伪像)。为此,在一些实施例中,第二体积包括衰减(Q)曲线和速度曲线,其被设计(例如,构造、创造)为避免当所述地震能量到达第一体积的边缘时,将模拟地震能量反射和/或折射回第一体积中。
在一些实施例中,层位模型、断层模型和岩石性质模型由诸如由研发的(SKUA代表地下知识统一方法(Subsurface Knowledge UnifiedApproach),并且是用于对地质介质进行建模的计算环境和软件套件)的软件平台访问。在一些实施例中,层位模型、断层模型和岩石性质模型由软件平台的模块生成并且由软件平台的不同模块访问(例如,接收)。
对于方法500,计算机系统通过将层位模型与断层模型相关来确定(506)层位模型的相应层位与断层模型的相应断层之间的一个或多个交叉(例如,交叉区域)(图3C示出了两个交叉区域的示例,每个在层位和相应的断层之间)。在一些实施例中,确定断层与相应层位之间的交叉包括对于相应层位上的每个点(例如,如相对于第一栅格所指定的)确定该点是否落入断层的预定义的距离容差(例如,10厘米、1米、2米或5米)内。然后考虑(例如,确定)在断层的预定义距离容差内的那些点在交叉区域内。在一些实施例中,确定断层与相应层位之间的交叉包括确定交叉路径(例如,在三维体积中指定的一维路径),以及确定断层的偏移幅值和偏移方向。
计算机系统根据层位模型的相应层位与断层模型(图3B中所示的断层结构模型的简单示例)的相应断层之间的一个或多个确定的交叉计算(508)用于地质介质的断层结构模型。在一些实施例中,所访问的断层模型中的多个层位中的层位是(510)无缝层位(例如,由平滑或简单连接的表面表示)。计算结构模型包括修改多个层位的相应层位以包括对应于断层与相应层位的相应交叉的接缝或多个接缝(例如,通过去除层位的部分)。例如,在一些实施例中,在操作504中确定的交叉区域从相应层位去除。可选择地,在一些实施例中,根据交叉路径和交叉断层的偏移幅值和偏移方向去除相应层位的部分。因此,原始看起来像图3A中所示的层位的层位被修改为看起来像图3D中所示的层位。
在一些实施例中,如上所述,相对于第一栅格指定(512)层位模型的相应层位。计算结构模型包括将相应层位重新映射到不同于第一栅格的第二栅格,第二栅格包括多个第二空间位置,所述第二空间位置中的一个或多个与和相应层位交叉的相应断层对准。在一些实施例中,第一栅格和第二栅格是有限差分栅格,并且第二栅格包括沿着相应断层对准的多个栅格位置(例如,通过栅格线连接)(例如,构造第二栅格以便捕获由断层产生的岩石性质的急剧变化)。在一些实施例中,第一栅格和第二栅格是有限元栅格,并且第二栅格包括具有与相应断层对准的边缘的多个有限元体积。以这种方式,层位模型中的层位和/或断层模型中的断层从第一栅格重新映射到与它们的交叉一致的第二栅格。
计算机系统通过根据岩石性质模型将一个或多个物理岩石性质分配给断层结构模型来生成(514)用于地震正演建模的地球模型。例如,在一些实施例中,计算机系统还将岩石模型重新映射(516)到第二栅格上。在一些实施例中,计算机系统将岩石性质翘曲到第二栅格(或如果不采用第二栅格,则是第一栅格)上。在一些实施例中,这通过将相对于第一栅格指定的岩石性质的值插值到第二栅格上的位置(例如,不在第一栅格上)来实现。可选择地,使用其中岩石性质在相应的石印地层内被建立为恒定的“层饼”模型来对地质介质进行建模。在这种情况下,通过定义对应于相应石印地层的区域(例如,根据层位和断层),并基于对应于每个第二栅格位置的地层分配岩石性质来实现将岩石模型性质重新映射到第二栅格上。在一些实施例中,地球模型是(518)三维模型。为此,在各种实施例中,在三维中指定层位模型、断层模型和岩石性质模型中的一个、两个或所有三个,使得所生成的地球模型也在三维中指定。
在一些实施例中,计算机系统使用地球模型计算(520)用于地质介质的速度模型。在一些实施例中,生成的地球模型(参见操作514)指定第二栅格上的每个位置处的密度。在一些实施例中,计算机系统生成包括计算栅格上的每个点处的拉梅(Lamé)参数λ和μ的值的模型。计算机系统使用数学关系来计算速度模型。一种这样的关系是加德纳关系,如下给出:
其中ρ是地质介质中某一位置处的密度,Vp是地质介质中该位置处的p波速度,A和B是具有典型值A=0.23和B=0.25的常数。
可选择地,可以使用以下关系从拉梅参数λ和μ计算p波速度:
更一般地,在一些实施例中,计算机系统在操作514中生成描述计算栅格上的每个位置处的一个或多个第一岩石性质的地球模型,并且然后计算机系统在操作520中计算针对计算网格上的每个位置的一个或多个第二岩石性质的不同集合(即,意味着第二岩石性质中的至少一个不同于或不在第一岩石性质中)的模型。
在一些实施例中,计算机系统根据速度模型将一个或多个地震信号传播(522)通过地质介质。在一些实施例中,将一个或多个地震信号传播通过地质介质包括(524)一个或多个地震信号的正演建模。传播(例如,时间步进或正演建模)一个或多个地震信号的操作可以被视为为计算栅格(例如,第一栅格或第二栅格)上的每个位置,以及在多个时间或时间顺序中的每一个时间,计算从所述地震信号产生的至少一个地震波场的操作。地震波场是地质介质中的地震波的状态的表示(例如,波场表示计算栅格上的每个位置处的位移幅值和方向)。波场传播的两个重要方面是上面已经描述的地球模型和一个或多个传播方程的控制系统。在一些实施例中,用于传播一个或多个地震信号的一个或多个传播方程的控制系统包括近似全弹性波动方程的方程系统。此外,在一些实施例中,使用衰减(Q)模型来模拟地质介质中的非弹性损失。
在一些实施例中,合成(例如,近似)源信号(例如,小波)传播通过地质介质到接收器位置,以便模拟所接收的地震数据。然后将模拟的所接收的地震数据与测量的地震数据(例如,在接收器位置处测量的)进行比较,以便迭代地细化地球模型。在一些实施例中,正演建模包括(526)逆时偏移(RTM),并且用于增加在地球物理勘探场景(参见图1)期间产生的地震剖面的分辨率。
图6是例示根据一些实施例的地震建模系统600的框图。尽管例示了某些特定特征,但是本领域技术人员从本公开将认识到,为了简洁并且为了不模糊本文公开的实施例的更相关方面,没有例示各种其它特征。
为此,地震建模系统600包括一个或多个处理单元(CPU)602、一个或多个网络或其它通信接口608、存储器606以及用于将这些和各种其它组件互连的一个或多个通信总线604。地震建模系统600还可选地包括一个或多个地震传感器106(例如,地震检波器和/或水听器),并且可选地包括一个或多个地震源112(例如,气枪)。通信总线604可以包括互连和控制系统组件之间的通信的电路系统(有时称为芯片组)。存储器606包括高速随机存取存储器,诸如DRAM、SRAM、DDR RAM或其它随机存取固态存储器设备;并且可以包括非易失性存储器,诸如一个或多个磁盘存储设备、光盘存储设备、闪存设备或其它非易失性固态存储设备。存储器606可以可选地包括远离CPU 602(一个或多个)定位的一个或多个存储设备。在存储器606内包括非易失性和易失性存储器设备(一个或多个)的存储器606包括非暂时性计算机可读存储介质。
在一些实施例中,存储器606或存储器606的非暂时性计算机可读存储介质存储以下程序、模块和数据结构或其子集,包括操作系统616、网络通信模块618和地震建模模块620。
操作系统616包括用于处理各种基本系统服务和用于执行依赖于硬件的任务的过程。
网络通信模块618经由通信网络接口608(有线或无线)以及一个或多个通信网络(诸如因特网,其它广域网、局域网、城域网等)促进与其它设备的通信(例如,如果不包括在系统600中则促进与地震源112和/或地震传感器106的通信,或促进与其它基于陆地的组件的通信)(例如,在一些实施例中,地震建模系统600远离地震源112和/或地震传感器106定位)。
在一些实施例中,地震建模模块620被配置为针对地质介质访问(例如,以及在数据子模块626中存储):层位模型626-1,包括地质介质中的多个层位;断层模型626-2,包括地质介质中的多个断层;以及岩石性质模型626-3,包括在对应于地质介质的第一栅格上的多个空间位置处的一个或多个物理岩石性质。地震建模模块620包括合并三个模型的模型配准子模块624(其包括一组指令624-1以及可选地包括元数据和参数624-2)。例如,模型配准子模块624将层位模型626-1与断层模型626-2相关,以便确定层位模型的相应层位与断层模型的相应断层之间的一个或多个交叉。模型配准子模块624然后根据层位模型的相应层位与断层模型的相应断层之间的一个或多个确定的交叉计算用于地质介质的断层结构模型,并且通过根据岩石性质模型626-3将一个或多个物理岩石性质分配给断层结构模型来生成用于地震正演建模的地球模型。
在一些实施例中,地震建模模块620使用传播子模块622(其包括一组指令622-1以及可选地包括元数据和参数622-2)传播一个或多个地震波场(例如,传播一个或多个地震信号)。参考图5的方法500更详细地描述地震信号的传播。
虽然上面描述了特定实施例,但是将理解的是,其并不旨在将本发明限制于这些特定实施例。相反,本发明包括在随附权利要求的精神和范围内的替代、修改和等同物。阐述了许多具体细节以便提供对本文所呈现的主题的透彻理解。但是对本领域普通技术人员来说明显的是,可以在没有这些具体细节的情况下实现本主题。在其它实例中,没有详细描述公知的方法、过程、组件和电路,以免不必要地模糊实施例的方面。
本文在发明的说明书中使用的术语仅是为了描述特定实施例的目的,而不意在限制本发明。如在本发明的说明书和随附权利要求中所使用的,除非上下文另有明确说明,否则单数形式“一”,“一个”和“该”也意在包括复数形式。还将理解的是,如本文所使用的术语“和/或”是指并且包括相关联的所列项目中的一个或多个的任何和所有可能的组合。还将理解的是,当在本说明书中使用时,术语“包括”和/或“包含”指定所述特征、操作、元件和/或组件的存在,但是并不排除一个或多个其它特征、操作、元件、组件和/或其组合的存在或添加。
如本文所使用的,取决于上下文,术语“如果”可以被解释为意指“当……时”或“在……时”或“响应于确定”或“根据确定”或“响应于检测”,所述先决条件是真的。类似地,取决于上下文,短语“如果确定[所述先决条件是真实的]”或“如果[所述先决条件是真实的]”或“当[所述先决条件是真的]时”可以被解释为“在确定……时”或“响应于确定”或“根据确定”或“在检测到……时”或“响应于检测到”,所述先决条件为真。
尽管各种附图中的一些以特定顺序示出了多个逻辑阶段,但是不是顺序依赖的阶段可以被重新排序,并且其它阶段可以被组合或分解。虽然具体提及了一些重新排序或其它分组,但是其它对于本领域普通技术人员也将是显而易见的,因此不提供替代的详尽列表。此外,应当认识到,这些阶段可以在硬件、固件、软件或其任意组合中实现。
出于解释的目的,已经参考特定实施例描述了前述描述。然而,上面的说明性讨论并不旨在穷举或将本发明限制为所公开的精确形式。考虑到上述教导,许多修改和变化是可能的。选择和描述实施例是为了最好地解释本发明的原理及其实际应用,从而使得本领域的其它技术人员能够最佳地利用本发明以及具有适合于预期的特定用途的各种修改的各种实施例。

Claims (21)

1.一种构建地球模型的计算机实现的方法,包括:
对于地质介质,访问:
层位模型,包括所述地质介质中的多个层位;
断层模型,包括所述地质介质中的多个断层;以及
岩石性质模型,包括对应于所述地质介质的第一栅格上的多个第一空间位置处的一个或多个物理岩石性质;
通过将所述层位模型与所述断层模型相关来确定所述层位模型的相应层位与所述断层模型的相应断层之间的一个或多个交叉;
根据所述层位模型的相应层位与所述断层模型的相应断层之间的一个或多个确定的交叉来计算用于所述地质介质的断层结构模型;以及
通过根据所述岩石性质模型将所述一个或多个物理岩石性质分配给所述断层结构模型来生成用于地震正演建模的地球模型。
2.根据权利要求1所述的方法,其中所访问的层位模型中的层位是无缝层位;以及
计算所述断层结构模型包括修改所述多个层位中的相应层位以包括对应于断层与相应层位的相应交叉的接缝。
3.根据权利要求1所述的方法,其中相对于所述第一栅格指定所述层位模型的相应层位;以及
计算结构模型包括将所述相应层位重新映射到不同于所述第一栅格的第二栅格,所述第二栅格包括多个第二空间位置,所述第二空间位置中的一个或多个与和相应层位交叉的相应断层对准。
4.根据权利要求3所述的方法,还包括将岩石模型重新映射到所述第二栅格上。
5.根据权利要求1所述的方法,其中岩石模型包括:
低频子模型,指示根据外推到所述第一栅格上的地震数据确定的所述一个或多个物理岩石性质的深度趋势;以及
高频子模型,指示根据外推到所述第一栅格上的测井数据确定的所述一个或多个物理岩石性质的波动。
6.根据权利要求1所述的方法,还包括将所述地球模型与储层模型组合。
7.根据权利要求1所述的方法,还包括:
使用所述地球模型来计算用于所述地质介质的速度模型;以及
根据所述速度模型将一个或多个地震信号传播通过所述地质介质。
8.根据权利要求7所述的方法,其中将所述一个或多个地震信号传播通过所述地质介质包括所述一个或多个地震信号的正演建模。
9.根据权利要求8所述的方法,其中所述正演建模包括逆时偏移(RTM)。
10.根据权利要求1所述的方法,其中所述地球模型是三维的(3D)。
11.一种计算机系统,包括:
一个或多个处理器;
存储器;以及
一个或多个程序,其中所述一个或多个程序被存储在所述存储器中并且被配置为由所述一个或多个处理器执行,所述一个或多个程序包括指令,所述指令当由所述一个或多个处理器执行时使得所述设备:
对于地质介质,访问:
层位模型,包括所述地质介质中的多个层位;
断层模型,包括所述地质介质中的多个断层;以及
岩石性质模型,包括对应于所述地质介质的第一栅格上的多个空间位置处的一个或多个物理岩石性质;
通过将所述层位模型与所述断层模型相关来确定所述层位模型的相应层位与所述断层模型的相应断层之间的一个或多个交叉;
根据所述层位模型的相应层位与所述断层模型的相应断层之间的一个或多个确定的交叉来计算用于所述地质介质的断层结构模型;以及
通过根据所述岩石性质模型将所述一个或多个物理岩石性质分配给所述断层结构模型来生成用于地震正演建模的地球模型。
12.根据权利要求11所述的计算机系统,其中所访问的层位模型中的层位是无缝层位;以及
计算所述断层结构模型包括修改所述多个层位中的相应层位以包括对应于断层与相应层位的相应交叉的接缝。
13.根据权利要求11所述的计算机系统,其中相对于所述第一栅格指定所述层位模型的相应层位;以及
计算结构模型包括将所述相应层位重新映射到不同于所述第一栅格的第二栅格,所述第二栅格包括多个第二空间位置,所述第二空间位置中的一个或多个与和相应层位交叉的相应断层对准。
14.根据权利要求11所述的计算机系统,其中所述指令还使所述一个或多个处理器将岩石模型重新映射到所述第二栅格上。
15.根据权利要求11所述的计算机系统,其中岩石模型包括:
低频子模型,指示根据外推到所述第一栅格上的地震数据确定的所述一个或多个物理岩石性质的深度趋势;以及
高频子模型,指示根据外推到所述第一栅格上的测井数据确定的所述一个或多个物理岩石性质的波动。
16.根据权利要求11所述的计算机系统,其中所述指令还使所述一个或多个处理器将所述地球模型与储层模型组合。
17.根据权利要求11所述的计算机系统,其中所述指令还使所述一个或多个处理器:
使用所述地球模型来计算用于所述地质介质的速度模型;以及
根据所述速度模型将一个或多个地震信号传播通过所述地质介质。
18.根据权利要求17所述的计算机系统,其中将所述一个或多个地震信号传播通过所述地质介质包括所述一个或多个地震信号的正演建模。
19.根据权利要求18所述的计算机系统,其中所述正演建模包括逆时偏移(RTM)。
20.根据权利要求11所述的计算机系统,其中所述地球模型是三维的(3D)。
21.一种存储一个或多个程序的非暂时性计算机可读存储介质,所述一个或多个程序包括指令,所述指令当由具有一个或多个处理器和存储器的电子设备执行时,使所述设备:
对于地质介质,访问:
层位模型,包括所述地质介质中的多个层位;
断层模型,包括所述地质介质中的多个断层;以及
岩石性质模型,包括对应于所述地质介质的第一栅格上的多个空间位置处的一个或多个物理岩石性质;
通过将所述层位模型与所述断层模型相关来确定所述层位模型的相应层位与所述断层模型的相应断层之间的一个或多个交叉;
根据所述层位模型的相应层位与所述断层模型的相应断层之间的一个或多个确定的交叉来计算用于所述地质介质的断层结构模型;以及
通过根据所述岩石性质模型将一个或多个物理岩石性质分配给所述断层结构模型来生成用于地震正演建模的地球模型。
CN201580028406.3A 2014-06-05 2015-02-06 构建复杂地球模型的系统和方法 Expired - Fee Related CN106461810B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/296,539 2014-06-05
US14/296,539 US9720131B2 (en) 2014-06-05 2014-06-05 System and method of building complex earth models
PCT/US2015/014732 WO2015187208A1 (en) 2014-06-05 2015-02-06 System and method of building complex earth models

Publications (2)

Publication Number Publication Date
CN106461810A true CN106461810A (zh) 2017-02-22
CN106461810B CN106461810B (zh) 2019-02-15

Family

ID=52589773

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580028406.3A Expired - Fee Related CN106461810B (zh) 2014-06-05 2015-02-06 构建复杂地球模型的系统和方法

Country Status (6)

Country Link
US (1) US9720131B2 (zh)
EP (1) EP3152601A1 (zh)
CN (1) CN106461810B (zh)
AU (1) AU2015268879B2 (zh)
CA (1) CA2946711A1 (zh)
WO (1) WO2015187208A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108254779A (zh) * 2018-01-02 2018-07-06 中国石油大学(华东) 三维构造建模方法
CN111971586A (zh) * 2018-03-30 2020-11-20 Bp北美公司 地震速度衍生的烃指示
CN113689564A (zh) * 2021-09-10 2021-11-23 济南轨道交通集团有限公司 城市区域三维地球物理场构建方法及系统
WO2024087002A1 (en) * 2022-10-25 2024-05-02 Saudi Arabian Oil Company Methods and systems for determining attenuated traveltime using parallel processing

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10247822B2 (en) 2013-03-14 2019-04-02 Navico Holding As Sonar transducer assembly
US11209543B2 (en) 2015-01-15 2021-12-28 Navico Holding As Sonar transducer having electromagnetic shielding
US10597130B2 (en) 2015-01-15 2020-03-24 Navico Holding As Trolling motor with a transducer array
US9945971B2 (en) * 2015-02-10 2018-04-17 The United States Of America, As Represented By The Secretary Of The Navy Method of using a parabolic equation model for range-dependent seismo-acoustic problems
US9784832B2 (en) 2015-03-05 2017-10-10 Navico Holding As Systems and associated methods for producing a 3D sonar image
DE112016005364T5 (de) 2016-02-16 2018-08-02 Halliburton Energy Services, Inc. Verfahren zum Auswählen eines Erdmodells von einer Vielzahl von Erdmodellen
US10719077B2 (en) 2016-10-13 2020-07-21 Navico Holding As Castable sonar devices and operations in a marine environment
WO2018134635A1 (en) * 2017-01-19 2018-07-26 Total Sa Designing a geological simulation grid
US10830033B2 (en) 2017-08-10 2020-11-10 Motive Drilling Technologies, Inc. Apparatus and methods for uninterrupted drilling
AU2018313280B8 (en) 2017-08-10 2023-09-21 Motive Drilling Technologies, Inc. Apparatus and methods for automated slide drilling
EP3531172B1 (en) * 2018-02-23 2022-08-17 Services Pétroliers Schlumberger Meshless and mesh-based technique for modeling subterranean volumes
CN109164485A (zh) * 2018-08-31 2019-01-08 中国石油化工股份有限公司 一种影响低序级断层识别精度的定量分析方法
US11079508B2 (en) 2018-10-18 2021-08-03 Chevron U.S.A. Inc. System and method for marine seismic modeling
CA3121861A1 (en) 2019-02-05 2020-08-13 Motive Drilling Technologies, Inc. Downhole display
US11466556B2 (en) 2019-05-17 2022-10-11 Helmerich & Payne, Inc. Stall detection and recovery for mud motors
CN113252430B (zh) * 2020-02-12 2022-12-02 中国石油天然气股份有限公司 三维物理模型制作方法及系统
US11885212B2 (en) 2021-07-16 2024-01-30 Helmerich & Payne Technologies, Llc Apparatus and methods for controlling drilling
CN114325845B (zh) * 2021-10-26 2024-03-15 重庆科技学院 一种基于数字岩心技术的非常规储层多尺度融合方法
US11953636B2 (en) 2022-03-04 2024-04-09 Fleet Space Technologies Pty Ltd Satellite-enabled node for ambient noise tomography
CN117034722B (zh) * 2023-10-09 2023-12-08 华夏天信物联科技有限公司 一种基于网格剖分定量计算区域地质构造复杂度的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101495971A (zh) * 2006-05-31 2009-07-29 普拉德研究及开发有限公司 包括智能检测断层-断层关系的方法的断层建模的交互自动化方法
CN102353986A (zh) * 2011-06-01 2012-02-15 中国石油集团川庆钻探工程有限公司地球物理勘探公司 含逆断层的复杂地质构造的全三维联动地震解释方法
CN102353990A (zh) * 2011-06-01 2012-02-15 中国石油集团川庆钻探工程有限公司地球物理勘探公司 含逆掩断层的地震切片制作的方法
CN102903149A (zh) * 2012-10-22 2013-01-30 中国石油集团川庆钻探工程有限公司地球物理勘探公司 地质模型的成块成体方法以及装置
CN103180548A (zh) * 2010-09-13 2013-06-26 雪佛龙美国公司 描绘地下储层中烃类产气带的特征的系统和方法
US20130218539A1 (en) * 2012-02-22 2013-08-22 Schlumberger Technology Corporation Building faulted grids for a sedimentary basin including structural and stratigraphic interfaces

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6014343A (en) 1996-10-31 2000-01-11 Geoquest Automatic non-artificially extended fault surface based horizon modeling system
US7953587B2 (en) 2006-06-15 2011-05-31 Schlumberger Technology Corp Method for designing and optimizing drilling and completion operations in hydrocarbon reservoirs
US9223041B2 (en) 2008-01-23 2015-12-29 Schlubmerger Technology Corporation Three-dimensional mechanical earth modeling
US8577660B2 (en) 2008-01-23 2013-11-05 Schlumberger Technology Corporation Three-dimensional mechanical earth modeling
PL400383A1 (pl) 2009-12-15 2013-01-21 Schlumberger Technology B.V. Sposób modelowania basenu zbiornikowego
US9747393B2 (en) 2011-02-09 2017-08-29 Exxonmobil Upstream Research Company Methods and systems for upscaling mechanical properties of geomaterials
US10114134B2 (en) 2012-03-02 2018-10-30 Emerson Paradigm Holding Llc Systems and methods for generating a geological model honoring horizons and faults

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101495971A (zh) * 2006-05-31 2009-07-29 普拉德研究及开发有限公司 包括智能检测断层-断层关系的方法的断层建模的交互自动化方法
CN103180548A (zh) * 2010-09-13 2013-06-26 雪佛龙美国公司 描绘地下储层中烃类产气带的特征的系统和方法
CN102353986A (zh) * 2011-06-01 2012-02-15 中国石油集团川庆钻探工程有限公司地球物理勘探公司 含逆断层的复杂地质构造的全三维联动地震解释方法
CN102353990A (zh) * 2011-06-01 2012-02-15 中国石油集团川庆钻探工程有限公司地球物理勘探公司 含逆掩断层的地震切片制作的方法
US20130218539A1 (en) * 2012-02-22 2013-08-22 Schlumberger Technology Corporation Building faulted grids for a sedimentary basin including structural and stratigraphic interfaces
CN102903149A (zh) * 2012-10-22 2013-01-30 中国石油集团川庆钻探工程有限公司地球物理勘探公司 地质模型的成块成体方法以及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PEDRO A. CHIRA-OLIVA 等: "3-D modeling of complex geological structures", 《ELEVENTH INTERNATIONAL CONGRESS OF THE BRAZILIAN GEOPHYSICAL SOCIETY》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108254779A (zh) * 2018-01-02 2018-07-06 中国石油大学(华东) 三维构造建模方法
CN111971586A (zh) * 2018-03-30 2020-11-20 Bp北美公司 地震速度衍生的烃指示
CN113689564A (zh) * 2021-09-10 2021-11-23 济南轨道交通集团有限公司 城市区域三维地球物理场构建方法及系统
CN113689564B (zh) * 2021-09-10 2022-07-19 济南轨道交通集团有限公司 城市区域三维地球物理场构建方法及系统
WO2024087002A1 (en) * 2022-10-25 2024-05-02 Saudi Arabian Oil Company Methods and systems for determining attenuated traveltime using parallel processing

Also Published As

Publication number Publication date
AU2015268879B2 (en) 2019-08-29
CN106461810B (zh) 2019-02-15
US20150355373A1 (en) 2015-12-10
US9720131B2 (en) 2017-08-01
AU2015268879A1 (en) 2016-11-03
EP3152601A1 (en) 2017-04-12
WO2015187208A1 (en) 2015-12-10
CA2946711A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
CN106461810B (zh) 构建复杂地球模型的系统和方法
CN103245969B (zh) 用于在震源虚反射去除之后确定源特征波形的方法和系统
EP2422221B1 (en) Separating seismic signals produced by interfering seismic sources
US9229123B2 (en) Method for handling rough sea and irregular recording conditions in multi-sensor towed streamer data
WO2016076917A1 (en) Creating a high-resolution earth model using seismic tomography and impedance inversion
US20100142316A1 (en) Using waveform inversion to determine properties of a subsurface medium
US9541659B2 (en) Noise removal from 3D seismic representation
CA2964893C (en) Structure tensor constrained tomographic velocity analysis
US8451687B2 (en) Imaging with vector measurements
EP3710867B1 (en) Noise attenuation of multiple source seismic data
US10215869B2 (en) System and method of estimating anisotropy properties of geological formations using a self-adjoint pseudoacoustic wave propagator
EP2491430A2 (en) Methods to process seismic data contaminated by coherent energy radiated from more than one source
CN106461804B (zh) 波场重建
US10288751B2 (en) Migration velocity analysis using seismic data
BR112016025812B1 (pt) Medição e compensação de onda p/s
CN103123397A (zh) 处理多分量地震数据
US11079508B2 (en) System and method for marine seismic modeling
US11385373B2 (en) Method for determining sensor depths and quality control of sensor depths for seismic data processing
US20190146108A1 (en) System and method for assessing the presence of hydrocarbons in a subterranean reservoir based on seismic data
US20180095185A1 (en) System and method for identifying artifacts in seismic images
AU2017295827B2 (en) Method for determining sensor depths and quality control of sensor depths for seismic data processing
WO2019145746A1 (en) Method for generating a reconstructed seismic signal
EA043815B1 (ru) Проектирование низкочастотной сейсмической съемки

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190215

Termination date: 20220206

CF01 Termination of patent right due to non-payment of annual fee