CN101478349A - 基于正交小波包变换的双模式变步长盲均衡方法 - Google Patents

基于正交小波包变换的双模式变步长盲均衡方法 Download PDF

Info

Publication number
CN101478349A
CN101478349A CNA2009100284591A CN200910028459A CN101478349A CN 101478349 A CN101478349 A CN 101478349A CN A2009100284591 A CNA2009100284591 A CN A2009100284591A CN 200910028459 A CN200910028459 A CN 200910028459A CN 101478349 A CN101478349 A CN 101478349A
Authority
CN
China
Prior art keywords
mrow
msup
msub
wavelet packet
wpt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2009100284591A
Other languages
English (en)
Other versions
CN101478349B (zh
Inventor
郭业才
纪娟娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN 200910028459 priority Critical patent/CN101478349B/zh
Publication of CN101478349A publication Critical patent/CN101478349A/zh
Application granted granted Critical
Publication of CN101478349B publication Critical patent/CN101478349B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明公布了一种基于正交小波包变换的双模式变步长盲均衡方法(WPT-VDMA),本发明利用符号判决实现基于正交小波包变换的常数模盲均衡算法(WPT-CMA)与基于正交小波包变换的判决导引盲均衡算法(WPT-DD)间的切换,以减小均方误差,并以输出信号功率为自变量的变步长来加快WPT-CMA的收敛速度,进一步提高WPT-VDMA算法的收敛性能。该发明方法收敛速度快、均方误差小。

Description

基于正交小波包变换的双模式变步长盲均衡方法
技术领域
本发明涉及一种双模式变步长盲均衡算法,尤其涉及一种基于正交小波包变换的双模式变步长盲均衡方法。
背景技术
在水声数字通信中,多径效应和有限带宽会产生严重的码间干扰(inter-symbol interference,ISI),降低了水下数据传输速率和可靠性。因此,必须采用均衡技术来提高通信质量。目前,不需要发射周期性的训练序列的盲均衡技术是水声通信领域的研究热点。而收敛速度、均方误差是影响均衡器性能优劣的主要因素。因此,目前国内外学者在提高收敛速度和减小均方误差方面提出了许多方法。文献[1](CHEN S.Low complexity concurrent constant modulusalgorithm and soft decision-directed scheme for blind equalization[J].IEE Proc.Vis.Image Signal Processing,2003,137(5):312-320.)与[2](LITWIN L R,ZOLTOWSKI M D,ENDERS T J.Blended CMA:smooth,adaptive transfer fromCMA to DD-LMS[A]IEEE Wireless Communications and NetworkingConference[C].1999.797-800.)将判决导引算法(DD,Decision Directed)引入到盲均衡算法中,有效地减小了均方误差,降低了通信的误码率,但该算法没有改变均衡器输入信号的自相关性,这是影响算法收敛性的主要因素之一。文献[2](Cooklev T An Efficient Architecture for Orthogonal Wavelet Transforms[J].IEEESignal Processing Letters(S1070-9980),2006,13(2):77-79.)、[3](HUANG K,LV R.Adaptive equalization algorithm based on wavelet packet transform[J].ActaElectronic Sinica,2003,31(8):1205-1208.)、[4](REN K CH,TU Y Q.A method ofimproving frequency resolution of modified covariance spectrum estimation and itsabilities to adapt noise using multistage wavelet de-composition[J].Journal ofElectronic Measurement and Instrument,2006,20(4):15-21.)、[5](Attallah S.Thewavelet transform-domains LMS adaptive filter with partial subband coefficientupdating[J].IEEE Trans Cricuits and Systems,2006,53(1):8-12.)与[6](S Long P.Dimensional Finite wavelet Filters[J].Journal of Computation Mathernatics,2003,5:595-602.)利用正交小波变换对均衡器输入信号进行变换,再对信号进行能量归一化处理,降低了信号的自相关性,不仅提高了收敛速度,而且算法的复杂度也不高。然而,由于小波变换只对尺度空间作了分解,当信号的高频部分信息较丰富时,由于这种划分把高频都分到了一个频带,因此细节难以分辨。与小波变换相比,小波包变换对信号的高、低频分量均进行分解,能有效分辨信号细节,去相关能力更强,因而效果更好。
发明内容
本发明要解决的技术问题是针对现有技术存在的缺陷提出一种基于正交小波包变换的双模式变步长盲均衡方法。
本发明基于正交小波包变换的双模式变步长盲均衡方法,其特征在于包括如下步骤:
a.)将发射信号a(n)经过脉冲响应信道c(n)得到信道输出向量x(n),其中n为正整数表示时间序列,下同;
b.)将信道噪声w(n)与步骤a所述的信道输出向量x(n)求和得到均衡器的输入向量:y(n)=x(n)+w(n);
c.)将步骤b所述的均衡器的输入向量y(n)先经过正交小波包变换得到正交小波包变换器WPT的输出向量:R(n)=y(n)Q,其中Q为正交小波包变换矩阵;
d.)将步骤c所述的正交小波包变换器WPT的输出向量R(n)经过功率归一化后与常数模误差或判决导引误差更新均衡器权向量f(n)后得到均衡器输出信号z(n)=fH(n)R(n),其中上标H表示对均衡器权向量f(n)取共轭转置;
e.)将步骤d所述的均衡器输出信号z(n)经过判决装置得到判决输出信号
Figure A200910028459D00051
其中步骤d所述的常数模误差和判决导引误差的选择通过以下方法判断:
sign [ | z ( n ) | 2 - R 2 ] = sign [ | z ( n ) | 2 - | a ^ ( n ) | 2 ] , 则将步骤e所述的判决输出信号
Figure A200910028459D00053
与步骤d所述的均衡器输出信号z(n)所构成的误差信号
Figure A200910028459D00054
更新基于正交小波包变换的判决导引盲均衡算法WPT-DD权向量:其中
Figure A200910028459D00056
是功率归一化平均能量构成的对角矩阵,n+1为当前时刻n的后一时刻,下同,R*(n)是R(n)的共轭矩阵,下同,μ1为基于正交小波包变换的判决导引盲均衡算法WPT-DD的迭代步长;
sign [ | z ( n ) | 2 - R 2 ] ≠ sign [ | z ( n ) | 2 - | a ^ ( n ) | 2 ] , 则将步骤d所述的均衡器输出信号z(n)和发射信号a(n)的模R2所构成误差信号|z(n)|2-R2更新基于正交小波包变换的常数模盲均衡算法WPT-CMA权向量:
f ( n + 1 ) = f ( n ) + μ 2 R ^ - 1 ( n ) z ( n ) [ | z ( n ) | 2 - R 2 ] R * ( n ) ;
其中,
Figure A200910028459D00062
是发射信号a(n)的模,E[]为数学期望,sign[]为符号函数,μ2为基于正交小波包变换的常数模盲均衡算法WPT-CMA的迭代步长。
本发明利用符号判决实现基于正交小波包变换的常数模盲均衡算法(WPT-CMA)与基于正交小波包变换的判决导引盲均衡算法(WPT-DD)间的切换,以减小均方误差;并以输出信号功率为自变量的变步长来进一步提高算法的收敛性能,具有收敛速度快、均方误差小的特点。
附图说明
图1:基于正交小波变包变换的盲均衡器结构图;
图2:本发明结构图;
图3:本发明实施例1仿真图:
(a)均方误差曲线图,(b)CMA输出结果图,(c)WPT-CMA输出结果图,
(d)WPT-DMA输出结果图,(e)WPT-VDMA输出结果图;
图4:本发明实施例2仿真图:
(a)均方误差曲线图,(b)CMA输出结果图,(c)WPT-CMA输出结果图,
(d)WPT-DMA输出结果图,(e)WPT-VDMA输出结果图。
具体实施方式
如图1所示。基于正交小波变包变换的盲均衡器结构,图中,n∈Z+(表示时间序列),a(n)是零均值独立同分布发射信号;c(n)是信道脉冲响应;w(n)是加性高斯白噪声;y(n)为均衡器的输入向量;R(n)是y(n)经过正交小波包变换后的信号;f(n)是均衡器权向量且长度为L;ψ(·)是无记忆非线性函数,用来表示无记忆非线性估计器;z(n)是均衡器输出信号;A200910028459D0006085526QIETU.GIF是判决装置对z(n)的判决输出信号。
根据小波包理论,有限冲击响应(FIR)均衡器权向量f(n)可用一簇正交小波包基函数来表示,即
f ( n ) = Σ j = 1 J Σ k = 0 K J Σ m = 0 2 j - 1 r j , k , m ( n ) ψ j , k , m ( n ) ,
式中,rj,k,m(n)=<f(n),ψj,k,m(n)>(表示均衡器f(n)与小波包基ψj,k,m(n)取内积),ψj,k,m(n)=2-j/2ψm(2-jn-k)(表示小波包基函数),n=0,1,…,2N-1(表示时间序列),J为小波包分解的最大尺度,j=1,2,…J(表示分解层数),KJ=2N/2J表示在尺度J下小波函数的最大平移,k表示小波函数的平移,m表示小波函数的尺度,rj,k,m(n)为均衡器的权系数。此时,均衡器的输出为
z ( n ) = &Sigma; l = 0 2 N - 1 f l ( n ) &CenterDot; y ( n - l )
= &Sigma; l = 0 2 N - 1 ( &Sigma; j = 1 J &Sigma; k = 0 K J &Sigma; m = 0 2 j - 1 r j , k , m ( n ) &psi; j , k , m ( l ) ) &CenterDot; y ( n - l )
= &Sigma; j , k , m r j , k , m ( n ) &Sigma; l = 0 2 N - 1 &psi; j , k , m ( l ) &CenterDot; y ( n - l )
= &Sigma; j , k , m r j , k , m ( n ) W j , k , m ( n )
式中, W j , k , m ( n ) = &Sigma; l = 0 L - 1 &psi; j , k , m ( l ) &CenterDot; y ( n - l ) , l表示长为2N的均衡器权向量的第l个抽头,0≤l≤2N-1。该式表明,输入向量y(n)需与每一个尺度上的小波包基函数ψj,k,m(n)作卷积,即相当于对输入y(n)作离散正交小波包变换,Wj,k,m(n)为相应的变换系数。
设N=2J,均衡器的长度为2N,经过推导,可以得到i(1≤i≤J-log22N+1)级小波包分解对应的2J-i+1×2J-i+1矩阵
所以,若令Q为J级小波包分解的2J×2J矩阵,则Q可表示为
Figure A200910028459D00077
式中,Hj和Gj分别为由小波滤波器系数h(n)和尺度滤波器系数g(n)所构成的矩阵。
R ( n ) = [ r 1,0,0 ( n ) , r 1,0,1 ( n ) &CenterDot; &CenterDot; &CenterDot; r 1,0 , k J ( n ) &CenterDot; &CenterDot; &CenterDot; r j , k , m ( n ) &CenterDot; &CenterDot; &CenterDot; r J , k J , 2 N ( n ) ] T f ( n ) = [ d 1,0,0 ( n ) , d 1,0,1 ( n ) , &CenterDot; &CenterDot; &CenterDot; , d 1,0 , k J ( n ) , &CenterDot; &CenterDot; &CenterDot; , d j , k j , m ( n ) , &CenterDot; &CenterDot; &CenterDot; , d J , k J , 2 N ( n ) ] T . 其中
Figure A200910028459D000711
表示第j层分解中的第kj组的第m个信号,
Figure A200910028459D000712
表示与信号相对应的权向量抽头系数。j∈(0,J)表示正交小波包变换的分解层数,J表示最大分解层数;kj∈(0,kj)表示j层分解中第kj组,最大组数是kJ;m∈(1,2N)表示每一组中的第m个信号,2N表示均衡器的长度。
根据最小均方误差准则,可以得到基于正交小波包变换的常数模盲均衡算法(orthogonal Wavelet Packet Transform based CMA,WPT-CMA)为
R(n)=y(n)Q,
z(n)=fH(n)R(n),
e(n)=|z(n)|2-R2
f(n+1)=f(n)+μiR-1(n)e(n)R*(n)z(n),
式中,μ是迭代步长,R2=E{|a(k)|4}/E{|a(k)|2}是一个依赖于信源序列高阶统计量的实常数, R ^ - 1 ( n ) = diag [ &sigma; 1,0,0 2 , ( n ) , &sigma; 1,0,1 2 ( n ) , &CenterDot; &CenterDot; &CenterDot; , &sigma; 1,0 , k j 2 ( n ) &CenterDot; &CenterDot; &CenterDot; &sigma; j , k j , m 2 ( n ) , &CenterDot; &CenterDot; &CenterDot; , &sigma; j , k J , 2 N 2 ( n ) ] , &sigma; j , k , m 2 ( n + 1 ) = &beta; &sigma; j , k , m 2 ( k ) + ( 1 - &beta; ) | r j , k , m ( n ) | 2 , 式中,diag[]表示对角矩阵,0<β<1为遗忘因子,
Figure A200910028459D00083
表示的是对信号rj,k,m(n)的功率估计值。信号经过正交小波包变换后,又对其进行了能量归一化处理,使得收敛速度得到进一步的提高。
如图2所示。本发明基于正交小波包变换的双模式变步长盲均衡方法,其特征在于包括如下步骤:
a.)将发射信号a(n)经过脉冲响应信道c(n)得到信道输出向量x(n),其中n为正整数表示时间序列,下同;
b.)将信道噪声w(n)与步骤a所述的信道输出向量x(n)求和得到均衡器的输入向量:y(n)=x(n)+w(n);
c.)将步骤b所述的均衡器的输入向量y(n)先经过正交小波包变换得到正交小波包变换器WPT的输出向量:R(n)=y(n)Q,其中Q为正交小波包变换矩阵;
d.)将步骤c所述的正交小波包变换器WPT的输出向量R(n)经过功率归一化后与常数模误差或判决导引误差更新均衡器权向量f(n)后得到均衡器输出信号z(n)=fH(n)R(n),其中上标H表示对均衡器权向量f(n)取共轭转置;
e.)将步骤d所述的均衡器输出信号z(n)经过判决装置得到判决输出信号
Figure A200910028459D00084
其中步骤d所述的常数模误差和判决导引误差的选择通过以下方法判断:
sign [ | z ( n ) | 2 - R 2 ] = sign [ | z ( n ) | 2 - | a ^ ( n ) | 2 ] , 则将步骤e所述的判决输出信号
Figure A200910028459D00086
与步骤d所述的均衡器输出信号z(n)所构成的误差信号
Figure A200910028459D00087
更新基于正交小波包变换的判决导引盲均衡算法WPT-DD权向量:
Figure A200910028459D00091
其中
Figure A200910028459D00092
是功率归一化平均能量构成的对角矩阵,n+1为当前时刻n的后一时刻,下同,R*(n)是R(n)的共轭矩阵,下同,μ1为基于正交小波包变换的判决导引盲均衡算法WPT-DD的迭代步长;
sign [ | z ( n ) | 2 - R 2 ] &NotEqual; sign [ | z ( n ) | 2 - | a ^ ( n ) | 2 ] , 则将步骤d所述的均衡器输出信号z(n)和发射信号a(n)的模R2所构成误差信号|z(n)|2-R2更新基于正交小波包变换的常数模盲均衡算法WPT-CMA权向量:
f ( n + 1 ) = f ( n ) + &mu; 2 R ^ - 1 ( n ) z ( n ) [ | z ( n ) | 2 - R 2 ] R * ( n ) ;
其中,
Figure A200910028459D00095
是发射信号a(n)的模,E[]为数学期望,sign[]为符号函数,μ2为基于正交小波包变换的常数模盲均衡算法WPT-CMA的迭代步长。
本发明在迭代初始阶段,由于算法未收敛,sign[|z(n)|2-R2]与不等的概率较大,算法多工作在WPT-CMA模式,同时利用WPT-CMA算法稳定性,保证了算法收敛;而当算法收敛后,sign[|z(n)|2-R2]与
Figure A200910028459D00097
相等的概率增大,则算法多以WPT-DD模式迭代,从而使得算法在收敛后具有较小的均方误差。
对于盲均衡算法中的步长,如果采用大步长,会产生较大的均方误差,但算法收敛速度和跟踪速度快;反之,采用小步长,每次调整权系数的幅度就小,算法收敛速度和跟踪速度慢,但当均衡器权向量接近最优值时,权向量将在最优值附近一个较小的范围内来回抖动,因而均方误差较小。而盲均衡算法收敛的过程就是均衡器输出信号功率逐渐增加,向发送信号功率逐渐逼近的过程。基于此,本发明提出一种以均衡器输出信号功率为自变量的变步长表达式,即
μ(n)=η[1-exp(-α|r(n)|)],
r(n)=E{|z(n)|2},
式中,r(n)表示均衡器输出信号的功率估值,α、η是参数。对μ(n)关于r(n)求导即
dμ(n)/dr(n)=α·ηexp(-α|r(n)|),
因为α、η是大于零的,所以dμ(n)/dr(n)>0,即步长μ(n)随r(n)的增大是单调递增的。
当算法工作在WPT-CMA模式时,采用以均衡器输出信号功率为自变量的变步长,此时算法未收敛,采用逐渐增大步长的办法能够有效的加快收敛速度;当算法工作在WPT-DD模式时,此时算法进入初始收敛阶段,采用较小的固定步长,保证收敛后的均方误差较小,从而使得该方法收敛后具有较快的收敛速度和较小的均方误差。
为了验证基于正交小波包变换的变步长双模式盲均衡方法(WPT-VDMA)的有效性,用水声信道进行仿真实验,并与CMA、WPT-CMA、WPT-DMA(基于正交小波包变换的双模式盲均衡算法)进行比较。
实施例1:复水声信道
如图3所示,信道为c=[e-0.7j0 0 0.3e-1.8j];发射信号为4QAM;均衡器权长为16,信噪比为20dB;其它参数设置如表1,1500次蒙特卡罗仿真结果,如图3所示。
表1  仿真参数值
Figure A200910028459D00101
实施例2:最小相位水声信道
如图4所示,信道为c=[0.9656 0.0906 0.0578 0.2368];发射信号为32QAM;均衡器权长为16,信噪比为20dB;其它参数设置如表2,3000次蒙特卡罗仿真结果,如图4所示。
表2  仿真参数值
Figure A200910028459D00102

Claims (1)

1.一种基于正交小波包变换的双模式变步长盲均衡方法,其特征在于包括如下步骤:
a.)将发射信号a(n)经过脉冲响应信道c(n)得到信道输出向量x(n),其中n为正整数表示时间序列,下同;
b.)将信道噪声w(n)与步骤a所述的信道输出向量x(n)求和得到均衡器的输入向量:y(n)=x(n)+w(n);
c.)将步骤b所述的均衡器的输入向量y(n)先经过正交小波包变换得到正交小波包变换器WPT的输出向量:R(n)=y(n)Q,其中Q为正交小波包变换矩阵;
d.)将步骤c所述的正交小波包变换器WPT的输出向量R(n)经过功率归一化后与常数模误差或判决导引误差更新均衡器权向量f(n)后得到均衡器输出信号z(n)=fH(n)R(n),其中上标H表示对均衡器权向量f(n)取共轭转置;
e.)将步骤d所述的均衡器输出信号z(n)经过判决装置得到判决输出信号
Figure A200910028459C0002132725QIETU
其中步骤d所述的常数模误差和判决导引误差的选择通过以下方法判断:
sign [ | z ( n ) | 2 - R 2 ] = sign [ | z ( n ) | 2 - | a ^ ( n ) | 2 ] ,则将步骤e所述的判决输出信号
Figure A200910028459C00022
与步骤d所述的均衡器输出信号z(n)所构成的误差信号
Figure A200910028459C00023
更新基于正交小波包变换的判决导引盲均衡算法WPT-DD权向量:
Figure A200910028459C00024
其中是功率归一化平均能量构成的对角矩阵,n+1为当前时刻n的后一时刻,下同,R*(n)是R(n)的共轭矩阵,下同,μ1为基于正交小波包变换的判决导引盲均衡算法WPT-DD的迭代步长;
sign [ | z ( n ) | 2 - R 2 ] &NotEqual; sign [ | z ( n ) | 2 - | a ^ ( n ) | 2 ] , 则将步骤d所述的均衡器输出信号z(n)和发射信号a(n)的模R2所构成误差信号|z(n)|2-R2更新基于止交小波包变换的常数模盲均衡算法WPT-CMA权向量:
f ( n + 1 ) = f ( n ) + &mu; 2 R ^ - 1 ( n ) z ( n ) [ | z ( n ) | 2 - R 2 ] R * ( n ) ;
其中,
Figure A200910028459C00028
是发射信号a(n)的模,E[]为数学期望,sign[]为符号函数,μ2为基于正交小波包变换的常数模盲均衡算法WPT-CMA的迭代步长。
CN 200910028459 2009-01-20 2009-01-20 基于正交小波包变换的双模式变步长盲均衡方法 Expired - Fee Related CN101478349B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910028459 CN101478349B (zh) 2009-01-20 2009-01-20 基于正交小波包变换的双模式变步长盲均衡方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910028459 CN101478349B (zh) 2009-01-20 2009-01-20 基于正交小波包变换的双模式变步长盲均衡方法

Publications (2)

Publication Number Publication Date
CN101478349A true CN101478349A (zh) 2009-07-08
CN101478349B CN101478349B (zh) 2013-05-08

Family

ID=40838986

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910028459 Expired - Fee Related CN101478349B (zh) 2009-01-20 2009-01-20 基于正交小波包变换的双模式变步长盲均衡方法

Country Status (1)

Country Link
CN (1) CN101478349B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710884A (zh) * 2009-12-04 2010-05-19 深圳国微技术有限公司 基于信道估计和均衡的qam模式识别的方法
CN101924718A (zh) * 2010-08-30 2010-12-22 南京信息工程大学 模糊神经网络控制的混合小波神经网络盲均衡方法
CN102184455A (zh) * 2011-04-15 2011-09-14 南京信息工程大学 基于自适应免疫克隆的正交小波超指数迭代盲均衡方法
CN102238115A (zh) * 2010-04-28 2011-11-09 株式会社东芝 均衡装置和广播接收装置
CN102361475A (zh) * 2011-06-15 2012-02-22 南京信息工程大学 基于混沌支持向量机优化的小波加权多模盲均衡方法
CN101651643B (zh) * 2009-09-18 2013-01-02 南京信息工程大学 基于空间分集的小波神经网络盲均衡方法
CN101656697B (zh) * 2009-09-18 2013-04-03 南京信息工程大学 基于t/2分数间隔的频域盲均衡方法
CN106850035A (zh) * 2016-12-15 2017-06-13 四川九洲电器集团有限责任公司 一种多通道幅相失真校正的方法
CN111800356A (zh) * 2020-06-16 2020-10-20 北京银河信通科技有限公司 并行变步长cma均衡算法、装置、电子设备及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023842A1 (en) * 2000-09-11 2002-03-21 Fox Digital Apparatus and method for using adaptive algorithms to exploit sparsity in target weight vectors in an adaptive channel equalizer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651643B (zh) * 2009-09-18 2013-01-02 南京信息工程大学 基于空间分集的小波神经网络盲均衡方法
CN101656697B (zh) * 2009-09-18 2013-04-03 南京信息工程大学 基于t/2分数间隔的频域盲均衡方法
CN101710884B (zh) * 2009-12-04 2013-07-10 深圳国微技术有限公司 基于信道估计和均衡的qam模式识别的方法
CN101710884A (zh) * 2009-12-04 2010-05-19 深圳国微技术有限公司 基于信道估计和均衡的qam模式识别的方法
CN102238115A (zh) * 2010-04-28 2011-11-09 株式会社东芝 均衡装置和广播接收装置
CN101924718B (zh) * 2010-08-30 2013-07-03 南京信息工程大学 模糊神经网络控制的混合小波神经网络盲均衡方法
CN101924718A (zh) * 2010-08-30 2010-12-22 南京信息工程大学 模糊神经网络控制的混合小波神经网络盲均衡方法
CN102184455A (zh) * 2011-04-15 2011-09-14 南京信息工程大学 基于自适应免疫克隆的正交小波超指数迭代盲均衡方法
CN102184455B (zh) * 2011-04-15 2013-12-04 南京信息工程大学 基于自适应免疫克隆的正交小波超指数迭代盲均衡方法
CN102361475A (zh) * 2011-06-15 2012-02-22 南京信息工程大学 基于混沌支持向量机优化的小波加权多模盲均衡方法
CN102361475B (zh) * 2011-06-15 2014-07-16 南京信息工程大学 基于混沌支持向量机优化的小波加权多模盲均衡方法
CN106850035A (zh) * 2016-12-15 2017-06-13 四川九洲电器集团有限责任公司 一种多通道幅相失真校正的方法
CN111800356A (zh) * 2020-06-16 2020-10-20 北京银河信通科技有限公司 并行变步长cma均衡算法、装置、电子设备及存储介质
CN111800356B (zh) * 2020-06-16 2023-01-31 北京银河信通科技有限公司 并行变步长cma均衡算法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN101478349B (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
CN101478349B (zh) 基于正交小波包变换的双模式变步长盲均衡方法
Choi et al. Adaptive linear turbo equalization over doubly selective channels
Ng et al. Turbo frequency domain equalization for single-carrier broadband wireless systems
JP4854094B2 (ja) 無線受信機、無線通信システムおよび無線受信方法
US7773683B2 (en) Method and apparatus for ICI cancellation in communication systems
CN108712353B (zh) 软迭代信道估计方法
CN101404631A (zh) 一种单载波系统的自适应均衡方法
CN101478350A (zh) 基于正交小波变换的超指数迭代联合盲均衡方法
CN107294616A (zh) 基于基扩展模型的双扩展水声信道多普勒分集通信方法
CN103368885B (zh) 一种频域双向迭代均衡的融合方法
Tian et al. A time-reversal based digital cancelation scheme for in-band full-duplex underwater acoustic systems
CN101895492A (zh) 一种单载波频域均衡技术的过采样接收方法
US20050157802A1 (en) Apparatus and method for receiving signals in an OFDM communication system
Song et al. Generalized equalization for underwater acoustic communications
CN105119856A (zh) 基于子块分析的单载波频域均衡方法
Sirvi et al. Wavelet based OFDM system over flat fading channel using NLMS equalization
CN106508107B (zh) 一种基于fft和自适应滤波的单音估计和消除方法
WO2008026835A1 (en) Adaptive frequency domain equalizer and adaptive frequency domain equalization method
Li et al. Frequency domain adaptive detectors for SC-FDE in multiuser DS-UWB systems based on structured channel estimation and direct adaptation
Gao et al. Underwater acoustic channel estimation based on sparsity-aware deep neural networks
Li et al. Passive time reversal based hybrid time-frequency domain equalizer for underwater acoustic communication
Wang et al. Two-Step Interfrequency Interference Cancelation for Single-Carrier Underwater Acoustic Communications in Time-Varying Channels
Duan et al. Block iterative FDE for MIMO underwater acoustic communications
Chen et al. Frequency domain turbo equalization with iterative channel estimation for single carrier MIMO underwater acoustic communications
Hao et al. Research on high speed parallel blind equalization algorithm

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130508

Termination date: 20170120

CF01 Termination of patent right due to non-payment of annual fee