CN101478326A - 一种应用于超宽带3~11GHz的频率综合器 - Google Patents

一种应用于超宽带3~11GHz的频率综合器 Download PDF

Info

Publication number
CN101478326A
CN101478326A CNA2009100454978A CN200910045497A CN101478326A CN 101478326 A CN101478326 A CN 101478326A CN A2009100454978 A CNA2009100454978 A CN A2009100454978A CN 200910045497 A CN200910045497 A CN 200910045497A CN 101478326 A CN101478326 A CN 101478326A
Authority
CN
China
Prior art keywords
frequency
dividers
phase
frequency synthesizer
locked loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2009100454978A
Other languages
English (en)
Inventor
任俊彦
陈丹凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CNA2009100454978A priority Critical patent/CN101478326A/zh
Publication of CN101478326A publication Critical patent/CN101478326A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

本发明属短距离高速无线通信技术领域,具体涉及一种频率综合器。本发明所提供的频率综合器以8448MHz为锁相环的工作频率,由它的除法链路得到的频率能够很大程度地被直接利用,只需要一个单边带混频器、一个频率选通器和一个除2除法器就能产生所有需要的辅助频率,只需要一个锁相环、两级单边带混频器和两个频率选通器就能产生所有需要的频率,频谱规划清晰,频率综合器架构简洁。

Description

一种应用于超宽带3~11GHz的频率综合器
技术领域
本发明属短距离高速无线通信技术领域,具体涉及一种频率综合器,特别是一种应用于超宽带全频段的频率综合器。
背景技术
短距离高速无线通信技术是当前学术界和工业界的研究热点。频率综合器作为超宽带(UWB)技术中的关键模块,受到广泛关注。频率综合器在整个UWB物理层芯片中的位置如图1所示。频率综合器为接收机中的单边带下变频混频器(SSB Mixer)提供本振信号,从而将从天线接收到的射频信号经过低噪声放大器(LNA)后搬移到中频段再进行模拟基带(Analog Baseband)处理。频率综合器也为发射机中的单边带上变频混频器提供本振信号,从而将经过模拟基带处理后的中频信号搬移到射频段再经过天线发射出去。在基于正交频分复用(OFDM)的超宽带物理层芯片中,频率综合器需要提供正交两路信号,即IQ(In-phaseQuadrature)信号,如图1中所示。
在基于WiMedia的UWB物理信道划分中,将3.1GHz~10.6GHz的7.5GHz的频段划分成14个子带,每个子带占528MHz带宽。这14个子带被分成5组,前4组每组包括3个子带,第5组包括2个子带,其频谱划分如图2所示。超宽带中的频率综合器就是要根据需要产生这些子带的中心频率,也即:3432MHz、3960MHz、4488MHz、5016MHz、5544MHz、6072MHz、6600MHz、7128MHz、7656MHz、8184MHz、8712MHz、9240MHz、9768MHz、10296MHz这14个频率点。当前,对于UWB低频段3GHz~5GHz的频率综合器的研究已经很成熟,也即只产生3432MHz、3960MHz、4488MHz这三个频率,而对于更进一步的全频带的应用,依然有待研究。
根据超宽带的特殊要求,频率综合器从一个频率转到另一个频率的跳频时间必须小于9.5ns,这是基于传统锁相环(PLL)的频率综合器难以实现的。因为锁相环是一个负反馈系统,它一般要经过几百个参考时钟周期的自我调节后才能稳定,因而若要使得稳定时间小于9.5ns,那么参考时钟频率就要大于10GHz,这是不现实的。
由于跳频时间小于9.5ns的特殊要求,传统的基于锁相环的频率综合器已经难以满足,为此产生了各种特殊的频率综合方案。一种比较简单的方式是,由n个PLL来产生所有需要的n个频率,然后根据需要在所产生的频率间进行切换,如此产生的输出信号没有太严重的杂散问题。对于低频段3-5GHz只要产生3432MHz、3960MHz、4488MHz三个频点,所以只需要3个独立的PLL。而若对全频段要产生14个频点,则需要14个PLL,这在功耗和面积上都是不能接受的。
另一种方案是,采用两个PLL,其中一个输出当前所需要的频率,另一个产生下一跳变后所需要的频率,两个PLL彼此交替工作。但是这种方案对于PLL的建立时间依然有要求。由于设定超宽带的符号长度为312.5ns,除去选通器的建立时间,那么PLL必须在311ns内稳定。此外,每个PLL必须能够覆盖到所有需要的频率点,即近7.5GHz的频率覆盖范围,这点很难实现。此外,为了实现311ns内稳定,则需要300MHz或者更高频率的参考时钟,现有的晶振很难提供,除非再有一个低频的PLL为它产生参考信号,如此又增加了复杂度,并且所能提供的参考时钟性能并不一定好。
第三种方法,也是被采用得最多的一种方法,就是利用PLL和单边带混频器(SSB Mixer),由PLL产生一个固定的频率,通过SSB Mixer实现加法或减法,得到所需要的频率,频率切换由数字电路控制。从而PLL一旦稳定后不需要再次调整,频率切换时间小于9.5ns的苛刻要求转移到了选通器和SSB Mixer上来,而这是很容易实现的。但是PLL稳定在哪个频率,辅助频率怎样产生,则会很大程度地影响频率综合器的复杂度和最终性能。
综上,针对超宽带全频段物理芯片的特殊应用,研究如何进行合理的频谱规划并且得到既结构简单又性能优越的频率综合器,是非常有意义的。
发明内容
本发明的目的是提供一种应用于超宽带3~11GHz的频率综合器,它以PLL和SSB Mixer为基本构件,以8448MHz和4224MHz为中心,分别与±264MHz、±792MHz、±1320MHz、±1848MHz混频,得到所需要的14个频率点。
本发明的目的通过下述方法和步骤实现:
本发明所述的频率综合器中只包含一个锁相环,该锁相环只需要提供一个固定频率8448MHz,因而压控振荡器(VCO)工作在8448MHz。在锁相环的除法器链路上包括了一系列能产生正交输出的除2除法器,VCO的输出经过所述的一系列除2除法器后,能产生正交的4224MHz、2112MHz、1056MHz、528MHz、264MHz,其中4224MHz即为另一个中心频率。由于SSB Mixer的输入必须是正交信号,所以与8448MHz和4224MHz混频的几个辅助频率264MHz、792MHz、1320MHz、1848MHz必须是正交的,本发明中由除2除法器而不是正交单边带混频器(QSSB Mixer)来产生这些辅助频率的正交信号。而所述的辅助频率的2倍频分别为528MHz、1584MHz、2640MHz、3696MHz,它们可以由锁相环的除法链路直接产生,或者由锁相环的除法链路上得到的频率再做一次加减法产生。
本发明的有益效果在于,本发明所提供的频率综合器以8448MHz为锁相环的工作频率,由它的除法链路得到的频率能够很大程度地被直接利用。只需要一个单边带混频器、一个频率选通器和一个除2除法器就能产生所有需要的辅助频率;只需要一个锁相环、两级单边带混频器和两个频率选通器就能产生所有需要的频率。频谱规划清晰,频率综合器架构简洁。
此外,本发明利用除2除法器来产生所述的辅助频率的正交信号,如此得到的正交匹配性将比用QSSB Mixer的好得多。更重要的是,本发明揭示了除2除法器能够有效抑制频率杂散,输入端的单边带频率杂散经过所述的除2除法器后在输出端将产生两个与中心频率之间的频间距保持不变的频率杂散,但是杂散抑制程度将提高12dBc。因而所述的除2除法器不仅能够提供较为精准的正交信号来抑制后一级SSB Mixer的镜像杂散,还能够抑制其前级SSB Mixer所产生的频率杂散。因而本发明所提供的频率综合器能够提供较为优越的性能。
附图说明
图1为本发明频率综合器在超宽带物理层芯片中的应用示意图。
图2为本发明频率综合器的频谱规划示意图。
图3为本发明频率综合器的结构示意图。
图4为本发明频率综合器中的单边带混频器的电路示意图。
图5为非理想情况下的单边带混频器的结构示意图。
图6为非理想情况下的单边带混频器的镜像信号抑制比与输入信号的幅度误差和相位误差之间的关系图。
图7为本发明频率综合器中的除2除法器的结构示意图。
图8为除2除法器的输入输出波形示意图。
图9为除2除法器的输入信号在频域的分解示意图。
图10为基于SCL结构的除2除法器的电路图。
图11为除2除法器的仿真输入频谱图。
图12为除2除法器的仿真输出频谱图。
具体实施方案
以下结合具体的实施例,对本发明做进一步的阐述。实施例仅用于对本发明做说明而不是对本发明的限制。
实施例1:
本实施例是本发明的优选实施方式,图2为本发明所采用的频谱规划图,也就是如何得到所有14个频率点的示意图。根据上述分析,这里采用基于锁相环和单边带混频器的方案,所以确定锁相环工作在哪个频率并且如何最大程度地利用锁相环的除法链路上所得到的频率是关键。如图2中所示,将14个子带分成两大组,一组以8448MHz为中心,两边对称地各有4个子带;另一组以4224MHz为中心,右侧有4个子带,左侧有两个子带(另两个对称的频率在带外)。因而这里分别以8448MHz和4224MHz为基准做加减法,得到所有14个频率点。如此规划,其优点在于:(1)以8448MHz为中心向两边辐射得到的8个频率点中心对称,因而只需要4个辅助频率:264MHz、792MHz、1320MHz、1848MHz,改变它们的相位即可选择是上边带还是下边带;(2)以4224MHz为中心向两边辐射得到的8个频率点中心对称(其中两个低频点不作要求),因而只需要4个辅助频率:264MHz、792MHz、1320MHz、1848MHz,改变它们的相位即可选择是上边带还是下边带;(3)8448MHz与4224MHz是2倍频关系;(4)以8448MHz为中心向两边辐射与以4224MHz为中心向两边辐射所需要的辅助频率相同,都是264MHz、792MHz、1320MHz、1848MHz;(5)8448MHz经过几次2分频后能够得到的频率是4224MHz→2112MHz→1056MHz→528MHz→264MHz;(6)虽然除法链路上只直接产生一个辅助频率264MHz,但是其它三个辅助频率792MHz、1320MHz、1848MHz能够通过除法链路上得到的频率间的一次加减法得到;(7)只需要一级单边带混频器就可以得到所需要的4个辅助频率(8)除法链路上只用到除2除法器,实现简单,并且能够提供IQ正交信号。
对于间接产生的三个频率:792MHz、1320MHz、1848MHz,可以利用以下关系式得到:
792 = 1056 - 264 1320 = 1056 + 264 1848 = 2112 - 264 - - - ( 1 )
所有频率点的产生关系如表1中所列,以8448MHz为中心做加减法得到高频段的8个频点,以4224MHz为中心做加减法得到低频段的6个频点。锁相环的除法链路上的各频率点如表2中所列。所有辅助频率可以由除法链路产生,或者再通过加减法产生,如表3中所列。图3为依照上述思路所得到的频率综合器架构。但是此处,792MHz、1320MHz、1848MHz这三个辅助频率将利用式2得到,参见表4。
792 = ( 2112 - 528 ) / 2 1320 = ( 2112 + 528 ) / 2 1848 = ( 4224 - 528 ) / 2 - - - ( 2 )
表1各频率点的产生关系(单位:MHz)
Figure A200910045497D00073
表2 锁相环除法链路上的各频率点(单位:MHz)
 
f /2 /2 /2 /2 /2 /2 /2
8448 4224 2112 1056 528 264 132 66
表3 混频所需要的各辅助频率点(单位:MHz)
 
264 792 1320 1848
1056-264 1056+264 2112-264
表4 混频所需要的各辅助频率点的2倍频(单位:MHz)
 
528 1584 2640 3696
2112-528 2112+528 4224-528
本发明的频率综合器具体实施方式的结构示意图如图3所示。它由两部分组成,分别是上半部分的电荷泵型锁相环(CP-PLL),和下半部分的基于混频器的频率合成部分。其中在电荷泵锁相环部分,鉴频鉴相器(PFD)用于比较两个信号——参考频率和反馈频率——之间的频率和相位,然后输出标志频率大小和相位差的一定宽度的脉冲信号;该脉冲信号经过电荷泵(CP)后转换为电流信号,然后由环路滤波器(LF)进行低通滤波,将脉冲信号转换为平滑的电压信号;该电压信号控制压控振荡器(VCO)使其输出相应的频率信号,此频率信号同时也是整个锁相环的输出频率;除法器用于将VCO的输出频率分频后再输入给PFD进行比较,从而实现负反馈的环路。整个环路处于稳定工作状态时,VCO的输出频率是参考频率和除法器分频值的乘积,且其相位和参考频率的相位相对应。这里,环路滤波器是由无源二阶低通滤波器构成;除法链路由一系列除2除法器和最后一级的除n数字除法器构成;VCO振荡在8448MHz,n则视所选择的参考时钟频率而定,若参考频率为66MHz,则n=8,若参考频率为33MHz,则n=16,同样可以由一系列除2除法器构成。
在频率合成部分,由一个频率选通器(MUX1)从2112MHz和4224MHz或DC中选择一个频率,与528MHz混频,产生所要的528MHz/1584MHz/2640MHz/3696MHz(SSB Mixer1)。它经过除2除法器之后,得到正交的264MHz/792MHz/1320MHz/1848MHz,所得频率再与4224MHz或者8448MHz混频(SSB Mixer2或者SSB Mixer3),得到最后所需要的频率。当SSB Mixer2工作时,SSB Mixer3可以不工作;同样,当SSB Mixer3工作时,SSB Mixer2可以不工作,从而来节省功耗。
在频率合成部分,SSB Mixer是最关键的模块。混频器通过对两个信号相乘进行频率变换,单边带混频器的工作原理可以从数学上进行理解:
sin ω 1 t cos ω 2 t + cos ω 1 t sin ω 2 t = sin ( ω 1 + ω 2 ) t cos ω 1 t cos ω 2 t - sin ω 1 t sin ω 2 t = cos ( ω 1 + ω 2 ) t sin ω 1 t cos ω 2 t - cos ω 1 t sin ω 2 t = sin ( ω 1 - ω 2 ) t cos ω 1 t cos ω 2 t + sin ω 1 t sin ω 2 t = cos ( ω 1 - ω 2 ) t - - - ( 3 )
通过对频率ω2进行反相,可以选择上边带或者下边带混频,即做频率的加法还是减法。由式(3)可知,为了实现单边带混频的功能,输入给单边带混频器的两个频率必须各自提供IQ信号,即sin和cos正交两路信号,这也是利用除2除法器具有IQ输出的缘由。此外,图3中所示的VCO的输出也需要提供给SSB Mixer3,因而此处的VCO也需要提供正交输出信号。但是SSB Mixer的输出是差分信号,并非正交信号。所以如果SSB Mixer输出的信号要再提供给下一级的SSB Mixer,如图3中的SSB Mixer1的情形,那么就需要两个SSB Mixer分别产生I路和Q路的差分输出,即所谓的QSSB Mixer。如图4所示是一种基于Gilbert单元的正交下变频混频器,图4(a)或图4(b)单独都是下混频SSB Mixer,它们各自提供差分输出,但是只有将图4(a)和图4(b)合起来,2个SSB Mixer构成一个QSSB Mixer才能提供正交输出。
SSB Mixer作为频率合成部分中最关键的模块,其性能将会直接影响频率综合器的最终输出。对于SSB Mixer来说,两个输入频率经过混频后在输出端会产生各种机制引起的频率杂散,主要有:低频输入信号泄漏、跨导管的三阶非线性、跨导管的二阶非线性、高频输入信号泄漏、开关管的二阶非线性、开关管的三阶非线性、输入IQ信号不匹配等。若将频率较低的作为开关管输入,频率较高的作为跨导管输入,则开关管的三阶和二阶非线性引起的频率杂散常常离输出中心频率较远,通过简单的滤波方式可以滤除。跨导管的二阶非线性由于使用了差分结构也被很大程度地抑制。较为严重的跨导管的三阶非线性,则可以牺牲增益为代价,在跨导管的源极串联一电阻,通过提供本地负反馈来提高线性度。而若SSB Mixer的两个输入信号的IQ信号不匹配,它所引起的镜像信号可以非常严重,占所有频率杂散机制的主导地位。若令两个输入信号的IQ两路的总幅度偏差为ΔA,两个输入信号的IQ两路的相位偏差分别为φ1和φ2,非理想情况下的SSB Mixer的示意图如图5所示。容易得到输入信号IQ两路的幅度和相位失配所引起的镜像信号的边带抑制比(SBRR)为
SBRR = 10 log ( 1 + ( 1 + ΔA ) 2 + 2 ( 1 + ΔA ) cos ( φ 1 - φ 2 ) 1 + ( 1 + ΔA ) 2 - 2 ( 1 + ΔA ) cos ( φ 1 + φ 2 ) ) - - - ( 4 )
根据式(4),由Matlab绘制得到镜像边带的抑制程度与相位偏差和幅度偏差的关系如图6所示。这里,spur的单位为dBc,fi的单位为度,且fi=φ12。对于幅度偏差2.5%的情况下,为了达到—30dBc的镜像抑制,则fi<±3.5°。
如果为了产生正交输出,图3中所示的SSB Mixer1是QSSB Mixer,那么信号将经过两个独立的SSB Mixer路径,在实际的电路中,连线、MOS管寄生等非理想因素不可忽略,它们将会使得经过两个SSB Mixer之后的正交输出信号间存在不小的相位和幅度误差,若将此用作第二级SSB Mixer(SSB Mixer2和SSBMixer3)的输入,最终的输出频谱杂散特性必会很差。
为了使得第二级SSB Mixer有较精准的IQ输入信号,本发明中利用除2除法器而不是QSSB Mixer来产生正交信号。基于D触发器(DFF)的除2除法器基本框图如图7所示。两个D触发器都是由上升沿触发,其中DFF1由CLK的上升沿触发,DFF2由CLK的上升沿触发,而下降沿到来时,两个触发器分别保持之前的采样结果。这样的除2除法器的时序图如图8所示,其中Q1和Q1为DFF1的输出,Q2和Q2为DFF2的输出。DFF1和DFF2分别输出差分信号,但是DFF1和DFF2的输出信号之间相位隔了90°,是正交关系。这里,除2除法器输出IQ信号间的相位误差取决于它的输入端的差分信号CLK和CLK之间的对称性。图3中将SSB Mixer1的输出提供给除2除法器来得到IQ信号,而SSB Mixer输出差分信号对称性比QSSB Mixer的输出正交匹配容易控制得多。
本发明中采用SSB Mixer加除2除法器来产生所需要的辅助频率,不仅因为除2除法器能够产生较为精准的IQ信号,而更在于除2除法器对于单边频率杂散(spur)有特别的抑制作用:经过除2除法器之后,spur将比原来输入时降低12dBc,并且spur与中心频率之间的距离保持不变,因而也更加容易被滤除。具体的推导如下:
在除2除法器输入端加上ω1,ω2两个频率,其中ω1是所需要的频率,幅度为1,ω2是相对幅度为ε的spur,如图9(a)所示。利用线性叠加原理,可以等效为图9(b)中的幅度(AM)调制边带和相位(PM)调制边带,数学上可以写成:
sin &omega; 1 t + &epsiv; &CenterDot; sin ( &omega; 1 + &Delta;&omega; ) t
Figure A200910045497D00112
式(5)中,AM所包括的两项对应于图9(b)中的红色部分,PM所包括的两项对应于图9(b)中的蓝色部分。之所以说它们分别是AM调制和PM调制是因为:
&epsiv; 2 sin ( &omega; 1 + &Delta;&omega; ) t + &epsiv; 2 sin ( &omega; 1 - &Delta;&omega; ) t = &epsiv; 2 cos &Delta;&omega; t sin &omega; 1 t - - - ( 6 )
sin &omega; 1 t + &epsiv; 2 sin ( &omega; 1 + &Delta;&omega; ) t - &epsiv; 2 sin ( &omega; 1 - &Delta;&omega; ) t = sin &omega; 1 t + &epsiv; 2 sin &Delta;&omega; t cos &omega; 1 t
                         &ap; sin ( &omega; 1 t + &epsiv; 2 sin &Delta;&omega;t ) - - - ( 7 )
以sinω1t为载波,则式(6)是改变它的幅度,ε/2·cosΔωt是其幅度调制信号,而式(7)是改变它的相位,ε/2·sinΔωt是其相位调制信号。
如图8所示,除2除法器在正常工作时只对输入上升沿(下降沿)或者是高低电平翻转阈值电压敏感,而对输入幅度的扰动不敏感。因而,除2除法器只是对相位做除法。由式(7)得除2除法器输入端的相位为
&phi; = &omega; 1 t + &epsiv; 2 sin &Delta;&omega;t - - - ( 8 )
因而经过/2除法器后,其输出端的相位为
&phi; &prime; = &omega; 1 t 2 + &epsiv; 4 sin &Delta;&omega;t - - - ( 9 )
由式(9)可知,经过除2除法器之后,中心频率变为原来的一半为ω1/2,相位调制信号变成了ε/4·sinΔωt,因而spur与中心频率之间的频偏还是Δω,但是经过除2除法器之后,将产生与中心频率间距Δω的上下两个边带,每个边带的幅度降为原来的1/4,也即spur下降了12dBc。如果除2除法器之后再加一级除2除法器,那么spur将进一步下降6dBc,因为第二级除2除法器的输入就有中心频率两边对称的两个边带了。
上述的理论推导可以很容易地通过电路来论证。图10是一种普通的基于SCL结构的除2除法器的具体电路图。左右两边是两个相同的触发-锁存单元,左侧在CLK为高电平时采样,在CLK为高电平时锁存;右侧在CLK为高电平时采样,在CLK为高电平时锁存。虽然它输出的不是方波信号,但是其基本原理与图7和图8所阐述的一致。图11为其输入信号,中心频率为3696MHz,在偏离528MHz处即4224MHz处加上一个-20dBc的spur。仿真得到图12所示的输出信号,此时经过了除2除法器后,其中心频率为1848MHz,但是在偏离它528MHz左右两侧都存在spur,分别是1320MHz处的-33.71dBc和2376MHz处的-30.6dBc。它们与输入相比,下降了接近12dBc,该结果与上文理论推倒的结果一致,输出波形不对称会引入些偏差。

Claims (7)

1、一种应用于超宽带3~11GHz的频率综合器,以锁相环和单边带混频器为基本构件,其特征在于其中只包含一个锁相环,所述锁相环只需要提供一个固定频率8448MHz。
2、根据权利要求1所述的频率综合器,其特征在于所述锁相环的除法器链路上包括一系列能产生正交信号的除2除法器,压控振荡器工作在8448MHz,经过一系列除2除法器后,能产生正交的4224MHz、2112MHz、1056MHz、528MHz、264MHz。
3、根据权利要求1所述的频率综合器,其特征在于是以8448MHz和4224MHz为中心,分别与±264MHz、±792MHz、±1320MHz、±1848MHz混频,得到所需要的14个频率点。
4、根据权利要求3所述的频率综合器,其特征在于所述的264MHz、792MHz、1320MHz、1848MHz必须是正交信号以提供给下一级的单边带混频器,正交信号由除2除法器来产生。
5、根据权利要求3所述的频率综合器,其特征在于所述的264MHz、792MHz、1320MHz、1848MHz的2倍频为528MHz、1584MHz、2640MHz、3696MHz,它们可以由锁相环的除法链路直接产生,或者由除法链路上得到的频率再做一次加减法产生。
6、根据权利要求3所述的频率综合器,其特征在于输出信号只需要经过两级单边带混频器。
7、根据权利要求2所述的频率综合器,其特征在于,所述的除2除法器能够抑制频率杂散,输入端的单边带频率杂散经过除2除法器后在输出端将产生两个与中心频率之间的频间距保持不变的频率杂散,杂散抑制程度将提高12dBc。
CNA2009100454978A 2009-01-16 2009-01-16 一种应用于超宽带3~11GHz的频率综合器 Pending CN101478326A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2009100454978A CN101478326A (zh) 2009-01-16 2009-01-16 一种应用于超宽带3~11GHz的频率综合器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2009100454978A CN101478326A (zh) 2009-01-16 2009-01-16 一种应用于超宽带3~11GHz的频率综合器

Publications (1)

Publication Number Publication Date
CN101478326A true CN101478326A (zh) 2009-07-08

Family

ID=40838964

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2009100454978A Pending CN101478326A (zh) 2009-01-16 2009-01-16 一种应用于超宽带3~11GHz的频率综合器

Country Status (1)

Country Link
CN (1) CN101478326A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611477A (zh) * 2010-12-01 2012-07-25 英特尔移动通信有限公司 包括多个lo接收机的通信设备
CN103281073A (zh) * 2012-12-23 2013-09-04 杭州宏睿通信技术有限公司 一种应用于对讲机的双锁相环装置
CN109738869A (zh) * 2018-12-29 2019-05-10 深圳市华讯方舟微电子科技有限公司 一种超宽带微波信号的制备方法及制备装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611477A (zh) * 2010-12-01 2012-07-25 英特尔移动通信有限公司 包括多个lo接收机的通信设备
CN103281073A (zh) * 2012-12-23 2013-09-04 杭州宏睿通信技术有限公司 一种应用于对讲机的双锁相环装置
CN109738869A (zh) * 2018-12-29 2019-05-10 深圳市华讯方舟微电子科技有限公司 一种超宽带微波信号的制备方法及制备装置

Similar Documents

Publication Publication Date Title
US7756487B2 (en) Local oscillator with non-harmonic ratio between oscillator and RF frequencies using pulse generation and selection
US7809338B2 (en) Local oscillator with non-harmonic ratio between oscillator and RF frequencies using wideband modulation spectral replicas
US8121214B2 (en) Local oscillator with non-harmonic ratio between oscillator and RF frequencies using XOR operation
US7778610B2 (en) Local oscillator with non-harmonic ratio between oscillator and RF frequencies using XOR operation with jitter estimation and correction
US7805122B2 (en) Local oscillator with non-harmonic ratio between oscillator and RF frequencies using digital mixing and weighting functions
CN104320137B (zh) 一种锁相环频率合成器
CN101098142A (zh) 多边带正交频分复用超宽带系统射频收发机的频率综合器
CN105406864A (zh) 一种宽带高速跳频频率合成器及其工作方法
CN103975531A (zh) 频率合成装置和方法
CN101547008A (zh) 一种覆盖超宽带4~5GHz和6~9GHz频点的频率综合器
CN205320060U (zh) 一种宽带高速跳频频率合成器
CN101478326A (zh) 一种应用于超宽带3~11GHz的频率综合器
CN207184459U (zh) 一种宽带捷变频频率源
CN204103898U (zh) 一种频率合成器
CN204376873U (zh) 用于无线电的频率合成器
WO2009032736A1 (en) Frequency multiplier device
CN105577182A (zh) W波段低相噪锁相源及其使用方法
CN101316112A (zh) 应用于跳频系统的频率合成器
CN104242827A (zh) 一种方向回溯天线的相位共轭电路设计方法
CN104617951B (zh) 一种应用于变频收发机中的频率综合器
CN110011673B (zh) 基于数字偏移频率产生器的射频发射器
Jalalifar et al. An energy-efficient multi-level RF-interconnect for global network-on-chip communication
TWI508429B (zh) 本地振盪源產生器與相關通訊系統及本地振盪源產生方法
CN106330240A (zh) 一种实现多射频的高低本振产生电路及其装置
Shanthi et al. FPGA based frequency synthesizer for 14-band MB-OFDM UWB transceivers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20090708