CN101476932A - 对待检信号相位无敏感性的同频Duffing振子及构建方法 - Google Patents

对待检信号相位无敏感性的同频Duffing振子及构建方法 Download PDF

Info

Publication number
CN101476932A
CN101476932A CNA2008102097364A CN200810209736A CN101476932A CN 101476932 A CN101476932 A CN 101476932A CN A2008102097364 A CNA2008102097364 A CN A2008102097364A CN 200810209736 A CN200810209736 A CN 200810209736A CN 101476932 A CN101476932 A CN 101476932A
Authority
CN
China
Prior art keywords
signal
duffing
frequency
oscillator
checked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008102097364A
Other languages
English (en)
Other versions
CN101476932B (zh
Inventor
付永庆
张�林
吴冬梅
赵武生
张芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN2008102097364A priority Critical patent/CN101476932B/zh
Publication of CN101476932A publication Critical patent/CN101476932A/zh
Application granted granted Critical
Publication of CN101476932B publication Critical patent/CN101476932B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明提供的是一种对待检信号相位无敏感性的同频Duffing振子及构建方法。包括差分放大单元、摸-数转换单元、后置配置单元、智能处理单元和时钟源;差分放大单元把输入信号x(t)转换为差分信号;摸-数转换单元把x(t)转换为14位的二进制数字信号,转换时钟由智能处理单元提供,频率根据待检信号确定;后置配置单元为智能处理单元提供后置配置,软件下载使用JTAG方式;智能处理单元为FPGA或SOPC芯片,实现同频Duffing振子,算法采用VHDL语言和μ/COSII嵌入式汇编语言实现;时钟源为智能处理单元提供系统时钟。本发明提供一种具有与现有混沌振子皆然不同性质的新型同频Duffing振子,其构建该同频Duffing振子的思想对发展和丰富混沌振子构建理论将会起到积极的推动作用。

Description

对待检信号相位无敏感性的同频Duffing振子及构建方法
(一)技术领域
本发明涉及一种可用于非相干信号检测的混沌振子构建技术,特别是涉及一种通过相位空间分割和混沌振子内部驱动力初相移动来构建对待检信号相位无敏感性的同频Duffing振子的技术。
(二)背景技术
用混沌振子检测信号是近年来发展起来的一项新技术,该技术以分析混沌振子的相变状态来实现信号检测,即以观测混沌振子是否呈现大尺度周期轨道现象(或间歇混沌现象)或混沌现象来判定待检信号的有无(Guangyu Wang,DajunChen,Jianya Lin and Xing Chen,“The Application of Chaotic Oscillatorto Weak Signal Detection,”IEEE Transaction on Industrial Electronics,vol.46,no.2,pp.440-444,1999.)。
尽管理论和实验都已证明,在微弱信号检测方面混沌振子信号检测技术比现有技术都更为有效(李月,杨宝俊.混沌振子检测引论.北京:电子工业出版社,2004.;李月,杨宝俊,石要武.色噪声背景下微弱正弦信号的混沌检测[J].物理学报,52(3):526-530,2003.;Xiyi Zhang,Hongxia Guo,Binghe Wang,andPengyi Zhang,“A New Method for Detecting Line Spectrum of Ship-RadiatedNoise Using Duffing Oscillator,”Chinese Science Bulletin,vol.52,no.14,pp.1906-1912,2007.),但这种信号检测还不能在混沌振子内部驱动力与待检信号不取得一定的相位关联的条件下达成(李香莲,机械振动微弱慢频变信号的混沌振子检测,中国机械工程,2006年17卷1期:12-16)。因为混沌振子信号检测技术本质上是一种相干检测技术,它要求待检信号的相位必须落在混沌振子的信号接收窗内(以Duffing振子为例,大约为180°左右)。由理论研究表明,任何单一混沌振子的信号接收窗都不能覆盖360°全相位空间,因此,就目前人们所掌握的理论和技术而言,用混沌振子无法实现对信号进行非相干检测。
显然,解决上述问题的关键是能否找出一种有效的方法来构建出只敏感待检信号幅度而不敏感待检信号相位的混沌振子,即:对待检信号相位无敏感性的混沌振子或具有360°全相位信号接收窗的混沌振子。如果我们能够找到这样的任一混沌振子,那么用混沌振子进行非相关信号检测的“大门”将被“撬开”。因此,把混沌振子用于非相关信号检测的普适性方法的到来也就将离我们不远。
(三)发明内容
本发明的目的在于提供一种构建只敏感待检信号幅度而不敏感其相位的对待检信号相位无敏感性的同频Duffing振子及构建方法。
本发明的目的是这样实现的:
本发明的对待检信号相位无敏感性的同频Duffing振子的构成为:
包括差分放大单元U1、摸-数转换单元U2、后置配置单元U3、智能处理单元U4和时钟源U5;差分放大单元U1把输入信号x(t)转换为差分信号;摸-数转换单元U2把x(t)转换为14位的二进制数字信号,转换时钟由智能处理单元U4提供,频率根据待检信号确定;后置配置单元U3为智能处理单元U4提供后置配置,软件下载使用JTAG方式;智能处理单元U4为FPGA或SOPC芯片,实现同频Duffing振子,算法采用VHDL语言和μ/COSII嵌入式汇编语言实现;时钟源U5为智能处理单元U4提供系统时钟。
本发明的对待检信号相位无敏感性的同频Duffing振子的构建方法为:
1.取M个频率归一化的基本Duffing振子,M≥3;
2.对M个基本Duffing振子的频率归一化,归一化方程为:
d 2 y ( t ) dt 2 + δ dy ( t ) dt - y ( t ) + y ( t ) 3 = γ cos ( t ) + ax ( t )
d 2 y ( t ) dt 2 + δ dy ( t ) dt - y ( t ) 3 + [ 1 + ax ( t ) ] y ( t ) 5 = γ cos ( t )
其中:x(t)=s(t)+n(t)为外部信号、s(t)是频率为ω的待检信号、n(t)是噪声、
a为外部信号注入强度因子、γcos(t)代表内部驱动力;
3.对M个基本Duffing振子内部驱动力的初始相位进行调整,调整方程为:
Figure A200810209736D00053
Figure A200810209736D00061
式中,k=0,1,…,M-1;
4.利用t=ωτ把第3步所述的基本Duffing振子转换为如下可检测频率为ω的待检信号的Duffing振子:
Figure A200810209736D00063
式中,k=0,1,…,M-1;
5.把时间尺度由τ改变到t,并用状态方程表示这些Duffing振子为:
Figure A200810209736D00064
Figure A200810209736D00065
式中,k=0,1,…,M-1;
6.把M个以状态方程形式描述的Duffing振子接成为一个整体,其连接方法为:把输入信号以并联的形式连接到每一个Duffing振子作为共同享有的外部信号x(t),把以状态方程形式描述的M个Duffing振子的输出y1和y2作为一个整体对外输出,即构成一个完整的同频Duffing振子。
M的最佳取值范围为:4≤M≤5。
下面列举一个利用本发明的同频Duffing振子进行非相干信号检测的实例,以此来表明本发明的作用。
1、按照模-数转换器连接同频Duffing振子,同频Duffing振子的输出连接相轨迹分析单元的顺序组成硬件系统;其中,相轨迹分析单元为包含M个显示窗口的相轨迹图示装置。
2、以待检信号s(t)的4~10分之一周期作为模-数转换器的数据转换周期和同频Duffing振子的解算步长。
3、对同频Duffing振子中的每一个以状态方程形式描述的Duffing振子均采用四阶龙格-库塔算法解算。
本发明的关键特征是:同频Duffing振子由M个同频、初相位依次互差
Figure A200810209736D00071
以状态方程形式描述的Duffing振子所构成;具有只敏感待检信号幅度而不敏感待检信号相位的性质;当任一非相干待检信号出现时,同频Duffing振子中至少会有一个以状态方程形式描述的Duffing振子将呈现大尺度周期轨道现象。
本发明的实质是:利用基本Duffing振子具有窄信号接收窗(约180°相角宽度)的特性,先用相位分割技术把待检信号相位可能出现的360°全相位空间分割为M个均等的子相位空间,然后再以初始相位依次移动
Figure A200810209736D00072
的一组M个以状态方程形式描述的Duffing振子来构造能覆盖这360°全相位空间的同频Duffing振子。因此,当任一非相干待检信号出现时,同频Duffing振子中至少会有一个以状态方程形式描述的Duffing振子的内部驱动力将与待检信号取得一定的相位关联的条件,故可实现对非相干信号检测的目的。
本发明的具体工作过程和原理是:
第一步,幅值不超过±0.25V的含噪信号x(t)经由模-数转换器转化为数字量,转换速率为待检信号频率的4~10倍;
第二步,把数字化的x(t)作为外部信号送入以四阶龙格-库塔算法进行解算的同频Duffing振子中,送入方式由式
或式
Figure A200810209736D00074
确定,解算步长与ADC的转换时钟周期相同,运算结果以相轨迹横、纵坐标分量的形式实时地送给相轨迹图示装置;
第三步,根据相轨迹图示装置显示的M条轨迹中是否出现大尺度周期轨道现象判决待检信号有无。判决规则是,只要有一条或多于一条轨迹出现大尺度周期轨道现象,即判定待检信号存在,否则判定待检信号不存在。
本发明的有益效果在于:
1.提供一种具有与现有混沌振子皆然不同性质的新型同频Duffing振子,其构建该同频Duffing振子的思想对发展和丰富混沌振子构建理论将会起到积极的推动作用。
2.从理论和技术两方面都展示了仅敏感待检信号幅度但不敏感其相位的混沌振子的可构建性,这为未来找到无相位敏感性的普适性混沌振子的构建方法具有重要的指导意义。
3.为非相干信号的混沌振子检测提供了一种既有效又可行的新方法和技术解决方案。同频Duffing振子只敏感待检信号幅度而不敏感待检信号相位的性质特别适用于检测相位未知信号的场合。图3可对上述情况提供进一步地说明。
(四)附图说明
图1是本发明的同频Duffing振子的连接结构图;
图2是本发明的应用实例的硬件互连原理框图;
图3a-图3e是在不同待检信号初相下同频Duffing振子(M=4)的输出相迹图,其中:图3-a待检信号s(t)=Asin(ωt+0°)、图3-b待检信号s(t)=Asin(ωt+90°)、图3-c待检信号s(t)=Asin(ωt+180°)、图3-d待检信号s(t)=Asin(ωt+270°)、图3-e待检信号s(t)=Asin(ωt+45°)。
图4是对待检信号相位无敏感性的同频Duffing振子构建方法的一个实施例的电原理图。
(五)具体实施方式
下面结合附图举例对本发明做更详细地描述:
结合图4,对待检信号相位无敏感性的同频Duffing振子的构成由差分放大单元U1、模-数转换单元U2、后置配置单元U3、智能处理单元U4和时钟源U5共同组成。外部信号x(t)接入差分放大单元U1的反相输入端,差分放大单元U1的差分输出端接入模-数转换单元U2的差分输入端,模-数转换单元U2的输出端和控制线连接到智能处理单元U4的I/O输入端。时钟源U5的输出端与智能处理单元U4的另外一根I/O输入端连接。后置配置单元U3的配置总线口与智能处理单元U4的配置总线口相互对应连接。JTAG_插座第1脚和5脚分别接后置配置单元U3和智能处理单元U4的TCK和TMS端。JTAG_插座第9脚接后置配置单元U3的TDI端、后置配置单元U3的TDO端接智能处理单元U4的TDI端、智能处理单元U4的TDO端接JTAG_插座第3脚。
U1负责把输入信号x(t)转换为差分信号;U2负责把x(t)转换为14位的二进制数字信号,转换时钟由U4提供,频率根据待检信号确定;U3负责为智能处理单元U4提供后置配置,软件下载使用JTAG方式;U4为FPGA或SOPC芯片,负责实现同频Duffing振子,算法采用VHDL语言和μ/COSII嵌入式汇编语言实现;U5负责为U4提供系统时钟。
本实施例采用的具体参数是:
1.x(t)为包含待检信号和噪声的外部信号,幅度峰-峰值不大于±0.25V。
2.A/D转换时钟为360.5MHz。
3.待检信号频率为36.05MHz。
4.同频Duffing振子模型为
Figure A200810209736D00091
式中,M=4;k=0,1,…,4。
5.同频Duffing振子的解算采用四阶龙格-库塔法。
以上描述为本发明的一种实施例,根据本发明的技术方案可以进行相应变化。
本发明的实现步骤是:
1.选取M个频率归一化的基本Duffing振子来构造对待检信号相位无敏感性的同频Duffing振子,根据我们的经验,一般须M≥3,但4≤M≤5具有最佳性能。
2.所选的M个基本Duffing振子的频率归一化方程必须同时具有下列特征:
d 2 y ( t ) dt 2 + δ dy ( t ) dt - y ( t ) + y ( t ) 3 = γ cos ( t ) + ax ( t ) - - - ( 1 )
d 2 y ( t ) dt 2 + δ dy ( t ) dt - y ( t ) 3 + [ 1 + ax ( t ) ] y ( t ) 5 = γ cos ( t ) - - - ( 2 )
式中,x(t)=s(t)+n(t)为外部信号,s(t)是频率为ω的待检信号,n(t)是噪声,a为外部信号注入强度因子;γcos(t)代表内部驱动力。
3.为覆盖360°全相位空间,对所选的M个基本Duffing振子内部驱动力的初始相位调整如下:
Figure A200810209736D00102
Figure A200810209736D00103
式中,k=0,1,…,M-1。
4.利用t=ωτ把由方程(3)或(4)描述的基本Duffing振子转换为可检测频率为ω的待检信号的Duffing振子如下:
Figure A200810209736D00105
式中,k=0,1,…,M-1。
5.把时间尺度由τ改变到t,并用状态方程表示这些Duffing振子为:
Figure A200810209736D00107
式中,k=0,1,…,M-1。
6.把M个以状态方程形式描述的Duffing振子按图1所示的方式连接成为一个整体,即构成一个完整的同频Duffing振子。图中,y1和y2分别为以状态方程形式描述的各Duffing振子的输出。
7.用同频Duffing振子进行非相干信号检测的硬件系统可参考图2。图中,相轨迹分析单元为包含M个显示窗口的相轨迹图示装置。
8.以待检信号s(t)的4~10分之一周期作为模-数转换器的数据转换周期和同频Duffing振子的解算步长。
9.对同频Duffing振子中的每一个以状态方程形式描述的Duffing振子均采用四阶龙格-库塔算法解算。

Claims (3)

1、一种对待检信号相位无敏感性的同频Duffing振子,其特征是:包括差分放大单元(U1)、摸-数转换单元(U2)、后置配置单元(U3)、智能处理单元(U4)和时钟源(U5);差分放大单元(U1)把输入信号x(t)转换为差分信号;摸-数转换单元(U2)把x(t)转换为14位的二进制数字信号,转换时钟由智能处理单元(U4)提供,频率根据待检信号确定;后置配置单元(U3)为智能处理单元(U4)提供后置配置,软件下载使用JTAG方式;智能处理单元(U4)为FPGA或SOPC芯片,实现同频Duffing振子,算法采用VHDL语言和μ/COSII嵌入式汇编语言实现;时钟源(U5)为智能处理单元(U4)提供系统时钟。
2、一种对待检信号相位无敏感性的同频Duffing振子的构建方法,其特征是:
(1)取M个频率归一化的基本Duffing振子,M≥3;
(2)对M个基本Duffing振子的频率归一化,归一化方程为:
d 2 y ( t ) dt 2 + δ dy ( t ) dt - y ( t ) + y ( t ) 3 = γ cos ( t ) + ax ( t )
其中:x(t)=s(t)+n(t)为外部信号、s(t)是频率为ω的待检信号、n(t)是噪声、α为外部信号注入强度因子、γcos(t)代表内部驱动力;
(3)对M个基本Duffing振子内部驱动力的初始相位进行调整,调整方程为:
Figure A200810209736C00024
式中,k=0,1,…,M-1;
(4)利用t=ωτ把第3步所述的基本Duffing振子转换为如下可检测频率为ω的待检信号的Duffing振子:
Figure A200810209736C00031
Figure A200810209736C00032
式中,k=0,1,…,M-1;
(5)把时间尺度由τ改变到t,并用状态方程表示这些Duffing振子为:
Figure A200810209736C00033
式中,k=0,1,…,M-1;
(6)把M个以状态方程形式描述的Duffing振子接成为一个整体,其连接方法为:把输入信号以并联的形式连接到每一个Duffing振子作为共同享有的外部信号x(t),把以状态方程形式描述的M个Duffing振子的输出y1和y2作为一个整体对外输出,即构成一个完整的同频Duffing振子。
3、根据权利要求2所述的对待检信号相位无敏感性的同频Duffing振子的构建方法,其特征是:M的最佳取值范围为:4≤M≤5。
CN2008102097364A 2008-12-19 2008-12-19 对待检信号相位无敏感性的同频Duffing振子及构建方法 Expired - Fee Related CN101476932B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008102097364A CN101476932B (zh) 2008-12-19 2008-12-19 对待检信号相位无敏感性的同频Duffing振子及构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008102097364A CN101476932B (zh) 2008-12-19 2008-12-19 对待检信号相位无敏感性的同频Duffing振子及构建方法

Publications (2)

Publication Number Publication Date
CN101476932A true CN101476932A (zh) 2009-07-08
CN101476932B CN101476932B (zh) 2011-03-16

Family

ID=40837677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008102097364A Expired - Fee Related CN101476932B (zh) 2008-12-19 2008-12-19 对待检信号相位无敏感性的同频Duffing振子及构建方法

Country Status (1)

Country Link
CN (1) CN101476932B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185816A (zh) * 2011-03-29 2011-09-14 哈尔滨工程大学 非相干dpsk通信信号混沌振子检测器及构建方法
CN103884421A (zh) * 2014-03-24 2014-06-25 重庆邮电大学 基于联合去噪和伪哈密顿量的Duffing振子弱信号检测方法
CN103905358A (zh) * 2014-03-10 2014-07-02 重庆邮电大学 一种改进型差分混沌键控dcsk保密通信方法
CN104573342A (zh) * 2014-12-26 2015-04-29 燕山大学 一种基于Duffing-Chen混沌系统的弱信号并联通信的方法
CN108169578A (zh) * 2017-12-26 2018-06-15 南京信息职业技术学院 基于双扩展型Duffing振子的脉冲信号检测方法
CN108613731A (zh) * 2018-04-08 2018-10-02 西安邮电大学 一种水声信号的Duffing振子检测方法
CN111553370A (zh) * 2020-01-10 2020-08-18 长江大学 一种基于混沌智能图像识别的弱信号检测方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1609630A (zh) * 2004-10-21 2005-04-27 上海交通大学 提取混沌干扰下的谐波信号的方法
CN100487465C (zh) * 2007-03-16 2009-05-13 哈尔滨工程大学 Duffing振子相图图案域分割检测方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185816A (zh) * 2011-03-29 2011-09-14 哈尔滨工程大学 非相干dpsk通信信号混沌振子检测器及构建方法
CN102185816B (zh) * 2011-03-29 2013-06-05 哈尔滨工程大学 非相干dpsk通信信号混沌振子检测器及构建方法
CN103905358A (zh) * 2014-03-10 2014-07-02 重庆邮电大学 一种改进型差分混沌键控dcsk保密通信方法
CN103884421A (zh) * 2014-03-24 2014-06-25 重庆邮电大学 基于联合去噪和伪哈密顿量的Duffing振子弱信号检测方法
CN103884421B (zh) * 2014-03-24 2015-12-09 重庆邮电大学 基于联合去噪和伪哈密顿量的Duffing振子弱信号检测方法
CN104573342A (zh) * 2014-12-26 2015-04-29 燕山大学 一种基于Duffing-Chen混沌系统的弱信号并联通信的方法
CN104573342B (zh) * 2014-12-26 2017-08-29 燕山大学 一种基于Duffing‑Chen混沌系统的弱信号并联通信的方法
CN108169578A (zh) * 2017-12-26 2018-06-15 南京信息职业技术学院 基于双扩展型Duffing振子的脉冲信号检测方法
CN108613731A (zh) * 2018-04-08 2018-10-02 西安邮电大学 一种水声信号的Duffing振子检测方法
CN111553370A (zh) * 2020-01-10 2020-08-18 长江大学 一种基于混沌智能图像识别的弱信号检测方法及装置

Also Published As

Publication number Publication date
CN101476932B (zh) 2011-03-16

Similar Documents

Publication Publication Date Title
CN101476932B (zh) 对待检信号相位无敏感性的同频Duffing振子及构建方法
Kamaretsos et al. Is black-hole ringdown a memory of its progenitor?
CN101923113B (zh) 时间限定的频率掩模触发
CN105182069B (zh) 一种异频架构下的高分辨群量子化相位处理方法
CN103197145A (zh) 一种超高分辨率相位差测量的方法及系统
CN105319389A (zh) 一种高精度宽范围超声波测风系统及方法
CN104199276A (zh) 基于fpga的信号时差测量方法及时间数字转换器
Muttaki et al. Ftc: A universal sensor for fault injection attack detection
Yu et al. A distributed phase measurement method of frequency-domain electromagnetic detection
CN102104384B (zh) 差分延时链单元及包括其的时间数字转换器
Wagdy Effect of ADC quantization errors on some periodic signal measurements
RU2006124053A (ru) Двухпороговый обнаружитель сигналов панорамного приемника последовательного анализа
CN106646422A (zh) 增强相干测风雷达多普勒频移信号信噪比的预处理系统
RU2482517C1 (ru) Трассопоисковый приемник
US4057778A (en) Built-in test equipment for sonobuoy
CN102944885A (zh) 一种卫星导航信号模拟多通道一致性方法及装置
RU2225012C2 (ru) Фазометр с гетеродинным преобразованием частоты
US5633609A (en) Clock system with internal monitor circuitry for secure testing
KR100980168B1 (ko) 위상차 검출 장치 및 회전 위치 검출 장치
CN103529687A (zh) 脉冲时间间隔测量装置
Somappa et al. Software Reconfigurable Frequency Readouts with Coarse Voltage Quantizers for Sensor Applications
Mu et al. A weak signal detection technology based on stochastic resonance system
RU95412U1 (ru) Нелинейная радиолокационная станция для обнаружения радиоэлектронных устройств управления взрывом
RU2463701C2 (ru) Цифровые способ и устройство определения мгновенной фазы принятой реализации гармонического или квазигармонического сигнала
RU53452U1 (ru) Цифровой измеритель координат

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110316

Termination date: 20171219