CN101473225A - 电流型传感器及其制造方法 - Google Patents

电流型传感器及其制造方法 Download PDF

Info

Publication number
CN101473225A
CN101473225A CNA2007800227013A CN200780022701A CN101473225A CN 101473225 A CN101473225 A CN 101473225A CN A2007800227013 A CNA2007800227013 A CN A2007800227013A CN 200780022701 A CN200780022701 A CN 200780022701A CN 101473225 A CN101473225 A CN 101473225A
Authority
CN
China
Prior art keywords
sensor
sensing layer
layer
enzyme
analyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800227013A
Other languages
English (en)
Other versions
CN101473225B (zh
Inventor
A·施泰布
R·米施勒
M·哈恩泽克
H·巴克
W·杰尼根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of CN101473225A publication Critical patent/CN101473225A/zh
Application granted granted Critical
Publication of CN101473225B publication Critical patent/CN101473225B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • A61B5/14865Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Emergency Medicine (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

本发明涉及被构造用于植入到人或动物活体内测量体液中分析物浓度的电流型传感器(1),所述传感器(1)包括反电极(2)和工作电极(3),所述工作电极(3)包括水可透过并靠近接触垫(7)布置在支撑构件(5)上的传感层(9),所述传感层(9)包括能在分析物存在时起催化作用以引起电信号的固定化酶,传感层(9)具有面向体液的上表面和背离体液的下表面。根据本发明,固定化酶被分布在传感层(9)中使得上和下表面之中间的酶浓度与传感层(9)上表面上至少一样高。

Description

电流型传感器及其制造方法
本发明涉及被构造用于植入到人或动物活体内测量体液中分析物浓度的电流型传感器,所述传感器包括反电极和工作电极,所述工作电极包括水可透过并布置在接触垫上的传感层,所述传感层包括能在分析物存在时起催化作用以引起电信号的固定化酶,传感层具有面向接触垫的下表面和背离接触垫的上表面。从EP 0247850 B1中了解到这类传感器。
用于医学上重要分析物如葡萄糖或乳酸盐的体内测量的可植入传感器基于分析物的电化学酶检测。最常见的方法是使用氧化酶氧化分析物如葡萄糖,随后还原氧气成过氧化氢,并用传感器的工作电极电流型检测过氧化氢。体内传感领域的另一种方法是通过利用合成氧化还原介体无氧气地进行葡萄糖转化而回避使用氧气/过氧化物作为介体对。在该情况下,合成的氧化还原介体被嵌在传感元件内。这种方法的例子利用聚(联咪唑基(biimidizyl))锇络合物作为与酶结合的氧化还原介体,如Feldmann等在Diabetes Technology and Therapeutics,5,769(2003)中所述。
尽管存在广泛研究和开发努力,但目前仍没有能在长时间内可靠地测量医学上重要分析物如葡萄糖的可植入传感器。
本发明的目的是提供提高用于体液中分析物浓度体内测量的电流型传感器(amperometric sensor)的可靠性和寿命的方法。
根据本发明,该目的通过被构造用于植入到人或动物活体内测量体液中分析物浓度的电流型传感器来达到,所述传感器包括反电极和工作电极,所述工作电极包括水可透过并靠近接触垫布置在支撑构件上的传感层,所述传感层包括能在分析物存在时起催化作用以引起电信号的固定化酶,传感层具有面向体液的上表面和背离体液的下表面,特征在于固定化酶被分布在传感层中使得传感层上和下表面之中间部分中的酶浓度与传感层上表面上至少一样高。
在平面构造中,接触垫可被直接放置在传感层下面(或传感层被布置在接触垫上),两者具有相同表面面积。在另一种实施方案中,可使接触垫小于或大于传感层。在又一种实施方案中,接触垫可从传感层覆盖的区域被部分移置,从而只有传感层的一部分直接接触垫。对于其它布置,接触垫可被放置在传感层侧面的一个上。所有这些可选方案都用术语“传感层靠近接触垫”来概述。应认识到,对于其它电极也同样如此。
发现植入的电流型传感器的测量经常受包围传感器的皮下组织中低氧气浓度负面影响。这个问题似乎在依靠氧化酶例如葡萄糖氧化酶作为传感层中固定化酶的酶传感器情况下尤其显著,因为这类传感器通过氧化分析物而导致电测量信号。原则上,由这类传感器引起的测量信号强度取决于存在的酶、分析物和氧气的数量。如果氧气浓度足够高,则具有规定酶加载量的给定传感器的响应反映传感器附近分析物的浓度,在理想情况下,与其成比例。但是,如果氧气浓度太低,较少的分析物分子被氧化,因此,与在氧气饱和条件下工作的传感器相比,产生较弱的电信号。
降低传感器的酶加载量降低达到饱和的临界氧气浓度,但也降低了信噪比,因为形成较小的测量信号。因此,降低酶加载量不足以解决问题。
根据本发明的电流型传感器利用包括分布在传感层中的固定化酶使得上和下表面之中间的酶浓度与传感层上表面上至少一样高的传感层解决皮下组织中低氧气浓度的问题。
因此,传感层中包含的酶分子只有相对小一部分在传感层的上表面上是活跃的。因此,相对低的氧气浓度足以使传感层表面被氧气饱和。传感层的结构允许分析物分子扩散到传感层内部并与远离表面被它们自身的氧气分子池包围的酶分子相互作用。因此,根据本发明的传感器的电信号不仅在小的表面层内而且在降低实现传感器饱和的氧气密度(氧气浓度)的扩大体积内形成。因此,可在较低氧气浓度下实现氧气对酶的饱和而不会降低传感器测量信号的信噪比。
EP 0247850 B1中已描述了具有多孔传感层的电流型传感器。但是,只是在已经制备多孔层后才将酶供应到已知的传感器上。因此,EP0247850 B1中描述的传感器的酶浓度在传感层的上表面上最高并随离表面的距离增加而急剧降低。因此,这类传感器的电信号的大部分形成在传感层的该表面上,即在相对小的体积内,从而为了精确测量需要相应更高的氧气浓度。
根据本发明酶在整个传感层上的分布尤其是均匀浓度可非常容易地通过混合酶到糊内优选是包括碳颗粒和粘合剂的糊内并施加这种混合物到接触垫上以提供工作电极的传感层来实现。在一些情况下,使用表面活性剂如清洁剂或亲水聚合物辅助酶在糊内的分散是有利的。按照这种方式,可实现酶分子在整个传感层中的均等分布。本发明的目的因此还通过制造被构造用于植入到人或动物活体内以测量体液中分析物浓度的电流型传感器的方法来达到,所述方法包括以下步骤:混合碳颗粒、酶和聚合物粘合剂形成糊;靠近接触垫施加该糊到支撑构件上和将该糊硬化成多孔传感层。
根据参考附图的示例性实施方案在下文中描述本发明的更多细节和优点。本文描述的特征可单独或组合用于限制本发明。在图中:
图1以横截面图显示了根据本发明的传感器的第一种示例性实施方案。
图2显示了来自体外测量的根据图1的传感器的功能特性。
图3显示了根据图1的传感器在生物基质中测量的测量数据。
图4显示了传感器电流对覆盖传感器F到J而不是传感器A到E的传感层的扩散阻挡层的依赖性。
图5以横截面图显示了根据本发明的传感器的第二种示例性实施方案。
图1示意地显示了被构造用于植入到人或动物活体内以测量人或动物体液中分析物浓度的电流型传感器1的第一种实施方案。为了更好说明某些细节,图1未按比例绘制。
传感器1包括布置在由塑料材料尤其是聚酰亚胺制成的支撑构件5上的反电极2、工作电极3和参比电极4。每个电极2、3、4都包括作为导电膜提供的接触垫6、7、8,例如金属膜,尤其是金膜,厚度优选50nm到150nm。还可以由其它金属尤其是钯或以不同金属的多层膜的形式制造接触垫6、7、8。例如,覆盖支撑构件5的小于20nm的钛薄膜可被厚度为50-130nm的第二金膜覆盖,从而形成接触垫6、7、8。或者,接触垫6、7、8可形成为导电聚合物膜形式,例如由导电聚合物糊通过例如丝网印刷或通过导致较厚接触垫6、7、8的分配来形成。还可使用组合的反/参比电极代替独立的反和参比电极3、4。合适的反/参比电极的一个例子是银/氯化银电极。由于这类反和/或参比电极是常用的,因此不需要进一步描述。
工作电极3还包括水可透过并靠近工作电极3的接触垫7布置的传感层9。传感层9包括能在分析物存在下起催化作用引起电信号的固定化酶。在本例子中,使用氧化酶尤其是葡萄糖氧化酶作为测量人体液如组织液或血液中作为分析物的葡萄糖的酶。
传感层9以糊的形式被施加到支撑构件5上覆盖工作电极2的接触垫7。通过混合碳颗粒、酶和聚合物粘合剂制备糊。按照这种方式,固定化酶被均等地分布在整个传感层9中。整个传感层9中的均匀酶分布是有利的。因此,酶浓度在传感层9的上表面和下表面之间应差别小于20%,尤其小于10%。由于分析物可扩散到多孔传感层9内部,因此不仅在背离接触垫7的传感层9上表面中而且在扩展体积内产生电测量信号。因此,相当低的氧气浓度足以使传感器1被氧气饱和并使精确测量成为可能。
在优选实施方案中,传感层9是平的。优选传感层9导电,其中传感层9的电导率为至少1Ω-1cm-1。借此实现以下优点,即发生分析物的酶反应的传感层9中的每个位置都用作微小电极,酶反应的产物可在该微小电极处直接被还原或氧化。按照这种方式,这些位置用作阴极或阳极,具体取决于施加的电位信号。因此多孔结构中的传感层9包括大量微小阴极或阳极。结果,不需要酶反应的产物前进通过传感层9的整体,这种通过会导致信号高度损失。传感层9的导电实施方案因此具有增加的信号高度。
所示例子的传感层9具有30μm的厚度。通常,传感层9应具有至少5μm的厚度,优选至少10μm,以便为电测量信号形成提供足够大的容积。超过100μm的传感层9的厚度不能提供附加益处。20μm-70μm的厚度是优选的。传感层9被布置在支撑构件5的凹陷中。按照这种方式,其一定程度上被支撑构件5侧壁保护免受植入过程中的损坏。此外,传感层9的侧表面可被连接到支撑构件5上并因此确保分析物分子可仅仅通过传感层9上表面扩散到传感层9内。当然,也可通过不同手段使侧表面不透水。传感层9可具有不透体液的侧表面。
按照类似方式,反电极2和参比电极4的接触垫6、8被也以糊形式施加的透水层12、14覆盖。当然,反电极2和参比电极4的层12、14不包含酶。象传感层9一样,层12和14也可包括碳颗粒和聚合物粘合剂。尽管孔隙率增强颗粒13如碳纳米管已被加入到针对传感层9和层12的糊中,但这类孔隙率增强颗粒13对参比电极4的强导电层14不提供益处,因此不用加入。
由于酶被分布在整个传感层9中,即使在传感层9的上表面处存在比对已知传感器而言可行的高得多的分析物浓度,也能保持氧气饱和。根据现有技术的传感器的传感层通常被扩散阻挡层覆盖,扩散阻挡层阻碍分析物扩散达到上表面处的分析物浓度典型是包围传感器的体液中分析物浓度的约100分之一的程度。
本发明实施方案的传感器1的传感层9被扩散阻挡层覆盖,该扩散阻挡层阻碍分析物分子的扩散只到这样的程度,即在植入到人或动物活体内后,传感层9上表面处的分析物浓度是包围植入的传感器1的体液中的至少十分之一,尤其至少五分之一,优选至少三分之一。在所示例子中,扩散阻挡层包括有助于扩散阻挡层对分析物分子扩散的扩散阻力的多个不同层10、11。
扩散阻挡层允许分析物透过并阻止酶泄漏出传感层9。在所示例子中,扩散阻挡层包括导电无酶层10作为第一层,其包括碳颗粒和聚合物粘合剂并具有小于传感层9厚度三分之一的厚度。通常它为约1μm到3μm厚。同传感层9一样,无酶层10以糊的形式被施加。该糊与传感层9的糊不同仅仅在于不向其中添加酶。
扩散阻挡层还包括防止大分子阻塞传感层9的孔的层11。层9可为以纤维素和/或聚合物材料制成的膜件形式提供的渗析层。这类渗析层也为无酶层并可被直接施加在传感层9上面,或如图1所示,施加在导电无酶层10的上面。如果这类渗析层尽可能小地阻碍分析物扩散,则是有利的。优选地,层11具有是分析物在水中的扩散系数D的至少十分之一的分析物有效扩散系数Deff,尤其是分析物在水中的扩散系数D的至少五分之一。渗析层可作为固体膜被施加或作为原位硬化成渗析膜件的聚合物溶液被施加。
渗析膜通常特征在于它们的分子量截断(MWCO),其取决于孔尺寸。MWCO描述了在夜间(17-小时)渗析后保留90%的化合物的分子量。所示例子的渗析层具有小于10kD(kDalton)的MWCO,优选小于7kD,尤其小于5kD。必须认识到,针对渗析层指明的MWCO仅仅严格适用于球状分子如大多数蛋白质。较线形的分子可以通过渗析层的孔,即使它们的分子量超过指明的MWCO。
代替渗析膜件或除了渗析膜件外,扩散阻挡层还可以包括由具有两性离子结构的聚合物制成的聚合物层以保护传感层9和任何多孔层10免于蛋白质进入。两性离子结构使得能快速吸收极性质子溶剂尤其是水和比如内部溶解的葡萄糖这类分析物。因此,具有连接到聚合物骨架上的两性离子结构的聚合物不能透过蛋白质,但非常轻微阻碍分析物如葡萄糖的扩散。这类聚合物的众所周知的例子为聚(2-甲基丙烯酰基氧基乙基磷酸胆碱-共-甲基丙烯酸正丁基酯)(简写为MPC)。MPC聚合物层11以包括乙醇或蒸馏水和至少5wt% MPC、尤其至少10wt% MPC的聚合物溶液的形式被施加。
扩散阻挡层和尤其是它包括的聚合物层11保护传感器1在植入过程中免受机械损害,阻止酶泄漏出传感层9进入周围组织(酶在这里可能是有害的),和防止大分子阻塞传感层9的孔。可以混合具有两性离子结构的聚合物如MPC和另一种聚合物例如聚氨酯或上述渗析膜件的典型成分以便调节聚合物层11的物理性质。
如果层11包含具有不同亲水性的成分的共聚物,则还可以通过改变共聚物中每种成分的相对含量调节层11的物理性质,如对分析物的渗透性。在MPC情况下,可以增加2-甲基丙烯酰基氧基乙基磷酸胆碱对丁基甲基丙烯酸酯的相对数量从30:70%到50:50%,产生对极性质子溶剂或葡萄糖有更高渗透性的共聚物。增加对极性质子溶剂或葡萄糖的渗透性的另一种方法是将共聚物的疏水性骨架改变成较亲水的实体。这也适用于其它水溶性分析物。
图1中所示例子的传感层9包括多孔颗粒13以增加其孔隙率并因此使分析物分子易于扩散到传感层9内。在这个方面中多孔颗粒13为具有吸附水分子的空隙的颗粒。这些多孔颗粒13被加入到形成传感层9的糊中并造成分析物分子和水可通过的空隙。通过聚合物粘合剂使多孔颗粒13与糊的其它颗粒结合。碳纳米管是提高传感层孔隙率的尤其有用的添加剂,因为它们往往形成线团,其仅仅被碳颗粒和粘合剂部分填充,并还增加传感层的电导率。还可使用二氧化硅颗粒作为多孔颗粒13增加传感层9的孔隙率。
如果使用二氧化硅或类似的多孔颗粒13,使用粒度分布使得最大粒度小于传感层9厚度的材料是有利的。为了最有效,多孔颗粒13应有至少1μm的尺寸,尤其至少5μm。考虑传感层9厚度为大约20μm到50μm,来自Degussa的二氧化硅FK 320提供至多15μm的足够粒度。典型地,少于10%的这种材料被混合到糊内,优选少于5%。
重要的是在整个传感层9中提供导电性,从而在于其中由酶反应产生产物分子的多孔基质每个点处,通过施加合适电压直接氧化或还原这种分子,不需要这种分子扩展扩散到远的位置。在这些情况下,多孔的可渗透传感层9能在基本整个层上电解分析物。
不管使用何种增加孔隙率的手段,酶与糊的混合都将导致部分酶分子可访问分析物,或者在传感层9的上表面上,或在传感层9内添加剂颗粒附近的通道处。通过工作电极3中的吸附和夹带使酶固定。夹带不仅取决于传感层9而且取决于扩散阻挡层即层11的性质和任选的无酶层10的性质。应认识到,为了保持酶在工作电极内的理想分布,与溶剂(水)的接触应不会导致酶大量脱离基质并随后酶分子迁移。可通过交联增强传感层9中的酶固定。尤其有利的是作为链被交联的酶分子。如果这些链过长,则酶不太有效。因此优选平均3到10个尤其是4到8个酶分子被连接到一起。5到7个酶分子的链长度似乎最有利。
可以在干燥前向糊中添加交联剂如戊二醛溶液。但是,优选混合已经交联的酶到糊内。使用与亲水伴侣形成络合物的酶是有利的。在混入到不太亲水或甚至疏水的糊内后,如可通过混合碳颗粒与合适的粘合剂实现的,交联的酶位于有助于其稳定性的局部亲水环境中。交联的酶与亲水伴侣的附加优点在于它增强了水合分析物分子向酶迁移。因此加速了传感层9的润湿,这缩短了传感器在植入后的润湿时间。具体例如,已发现与来自Roche Diagnostics(Penzberg,Germany,Ident-No.1485938001)的葡聚糖交联的葡萄糖氧化酶具有可保持足够活性(20-40U/mg冷冻干燥物)的这种酶含量(大约16%)。由于络合物中亲水葡聚糖的高程度,可利用上述优点。
通过混合已经交联的酶与包含碳纳米管的传感层糊,碳纳米管缠绕并形成线团的特点得到更大的酶-葡聚糖链支持,尤其被它们的聚集支持,其中线团用作大孔笼结构。因此,交联酶将有助于传感层9的多孔结构的形成。
所示例子的传感层9包括平均尺寸小于1μm的碳颗粒、聚合物粘合剂、酶和作为多孔颗粒13的碳纳米管。多孔颗粒13最有效地增加传感层9的孔隙率,如果它们明显大于碳颗粒的话。在所示例子中,多孔颗粒13平均有至少1μm的尺寸,尤其至少5μm。典型地,传感层9包括50wt%至70wt%的聚合物粘合剂、20wt%至40wt%的碳颗粒和不超过约20wt%、优选1wt%到10wt%的多孔颗粒13如碳纳米管或二氧化硅。碳纳米管是尤其有利的添加剂,因为它们既提高传感层9的孔隙率又提高传感层9的电导率。在图1中示意显示的实施方案中,使用NanoLab,Newton,MA的多壁碳纳米管(研究级,纯度>95%),其具有5μm到20μm的长度和25nm到35nm的平均外径。粘合剂为热塑性树脂,例如基于环氧树脂或基于聚氯乙烯(PVC)/聚乙烯醇(PVA)。还可使用基于氟碳树脂尤其是聚四氟乙烯或基于聚苯乙烯的树脂作为粘合剂。在PVC/PVA粘合剂的情况下,使用添加剂如硅油可有助于调节糊的粘度。
按照这种方法,图1中所示传感器1的传感层9经适应和设置使得在植入后的操作中,传感层9中的分析物浓度在上表面处最高,并随离上表面的距离增加而降低,在作为离含分析物体液的最远点并接触接触垫7的下表面处为零。应相对于传感层9的孔隙率和透水性来选择传感层9的酶加载量,即其中固定的酶的数量。
这个方面中的重要参数是传感层9的有效扩散系数Deff。有效扩散系数Deff表征了分析物在传感层9中的扩散并取决于传感层9的孔容积ε和曲率τ。通常,有效扩散系数Deff可被描述为Deff=D·ε/τ,其中D为分析物在水中的扩散系数。商τ/ε还称为阻碍H。在所示例子中,H在10和1000之间,尤其在50和500之间。
这个方面中的另一个重要参数是酶加载量参数α,其可被描述为α=(Vmax·d)/(KM·D),其中Vmax为确定分析物转化最大速度的酶活性密度,KM为酶的Michaelis Menten常数,d为传感层的厚度,D为分析物在水中的扩散系数。优选传感层9中的有效扩散系数Deff对酶加载量参数α的比在10-200的范围内。
图2显示了上述传感器的功能特性。通过在电极上分配MPC在乙醇/水中的10%溶液由MPC(Lipidure CM 5206,NOF Corp,日本)制造层11。用nA表示的测量电流I对用mg/dl表示的葡萄糖浓度g绘制曲线。图2中显示的数据是在葡萄糖水溶液中体外测量得到。可看出,在较高葡萄糖浓度下没有观察到饱和。
图3显示用于比较的以nA表示的测量电流IA和IB,电流IA在体外测量,电流IB用传感器在生物基质中测量,两者都在T=35℃温度下在传感器已在各自介质中平衡12小时后进行测量。显示的每个数据点因此都属于在相同葡萄糖浓度的生物基质测量和葡萄糖水溶液测量。使用的生物基质由稳定的血浆组成,向其中加入葡萄糖以得到所需的葡萄糖浓度。在生物基质中测量的传感器电流和在葡萄糖水溶液中测量的传感器电流显示出优异的一致性。
结果尤其值得关注,并证实了起因于本发明实施方案的传感器布置的显著效果。通常,预料到传感器1到生物基质的暴露确保了蛋白质、肽或纤维蛋白沉积在传感器表面上。这个过程影响外层如层11的分析物或水的渗透性。在常规传感器布置中,这个层限制分析物到传感层的扩散,从而渗透性降低导致较弱的测量信号。
但是,所述传感器1的信号高度不受到生物基质的暴露影响,如图3中所示,这是因为分析物通过层11的扩散在信号产生中不是速率限制性步骤。因此,任何渗透性改变都对上述传感器1的信号有极小影响。
本发明的这种优点不限于催化反应中使用氧气作为共底物的酶。酶也可为脱氢酶。例如,不使用氧气作为共底物的葡萄糖脱氢酶可被分布在传感层9内。已知的脱氢酶包括某些分子作为葡萄糖氧化的辅因子,例如吡咯并喹啉醌(PQQ)或黄素腺嘌呤二核苷酸(FAD)或烟酰胺腺嘌呤二核苷酸(NAD),参见EP1661516 A1。可在传感层9中使用这些脱氢酶的任何代替氧化酶。
图4显示了以nA表示的传感器电流I,其用传感器A到J在不同浓度的磷酸盐缓冲的葡萄糖水溶液中测量。在360mg/dl葡萄糖浓度测量的传感器电流用三角形(▲)描绘。在180mg/dl葡萄糖浓度测量的传感器电流用正方形(■)描绘。在零葡萄糖浓度的传感器电流用钻石形(◆)描绘。
传感器A到J仅仅在施加在传感层9上面的扩散阻挡层方面存在不同。在传感器A到E,缺少扩散阻挡层,即传感层9直接接触要被测量的葡萄糖水溶液。传感器F到J包括覆盖传感层9的扩散阻挡层。传感器F到J的扩散阻挡层以图1中的由MPC制成的聚合物层状的层11的形式来提供。可看出,传感器F到J的传感器电流只稍微低于传感器A到E的传感器电流。因此,MPC聚合物层11提供的扩散阻挡层阻碍分析物分子的扩散只到很小程度。由于传感器F到J的传感器电流比传感器A到E的传感器电流低约20%,因此可得出结论,传感器F到J的扩散阻挡层导致传感层9上表面上的分析物浓度仅仅比传感器周围葡萄糖溶液中低约20%。
如前面结合图1描述的实施方案中一样,传感器A到J的传感层9包括交联的酶,即可从Roche Diagnostics,Penzberg,Germany购买的ident-No.14859389001的葡聚糖化葡萄糖氧化酶。葡聚糖化葡萄糖氧化酶被溶解在磷酸盐缓冲的溶液中并混入到包括碳颗粒、碳纳米管和聚合物粘合剂的糊内。在传感器基底5上的工作电极3的接触垫7上分配传感层9,点尺寸为约0.05mm2到0.1mm2,例如300μm直径的圆形点。传感层9的厚度为20μm。还提供具有相同尺寸的Ag/AgCl参比电极4。反电极2具有矩形形状(400μm乘以900μm),具有20μm厚的包含碳纳米管的碳糊层。
从图4中看到,传感器电流几乎不受MPC制的膜件的存在影响。
从这个发现可得出结论,通过具体选择两性离子膜件结构,发现了对溶剂化葡萄糖高度可透的涂层。对于传感器1的构造,在传感层9中存在扩散限制时(见图1),膜件的这种高渗透性是重要的。反之亦然,分析物通过MPC层11提供的扩散阻挡层的扩散应尽可能小地被阻碍,理想地,在具有涂层的传感层9处的分析物浓度(即信号)应不小于没有涂层时所得值的一半。
应注意到,任选的无酶层10也应对分析物扩散几乎没有阻挡,因此,它的层厚度应比传感层9的层厚度薄很多。
如上所述,亲水交联酶的混入可在长时间内产生非常稳定的功能,因为传感层的润湿快速并且酶分布保持不变。这由测量葡萄糖水溶液中6天内上述传感器时得到的漂移值(drift value)反映出来。对于没有涂层的传感器,漂移范围为-0.62%每天到0.78%每天,而有涂层的那些覆盖-0.5%到1.5%每天的范围。这些小的漂移值在37℃测量得到。
测量稳定性即低信号漂移的具体优点不限于在使用氧气作为共底物的传感层9中具有酶的传感器1。事实上,通过使用在催化反应中不需要氧气作为共底物的交联脱氢酶可得到相同的交联益处。例如,葡聚糖化葡萄糖脱氢酶或加入聚乙二醇的脱氢酶(PEG:聚乙二醇)可被引入到传感层9内。
在图1所示的传感器1中,传感层9被布置在接触垫7上。另外,传感层9具有面向接触垫7的下表面和背离接触垫7的上表面,或更一般地,传感层9具有面向支撑构件5的下表面和背离支撑构件5朝向含分析物体液的上表面。因此,层12、14被排列到接触垫6、8。图5显示了图1的传感器1的修改实施方案。图5的实施方案对应于图1的实施方案,差别在于电极的接触垫6、7、8被放在透水层9、12和14一侧上,与图1相反。还可以将接触垫6、7、8放在各个层9、12、14的两侧上,如为反电极2的透水层12的接触垫6所示。还可形成这种接触垫6使得它从所有侧面包围层12。在接触垫6、7、8位于渗透层9、12、14侧上的所有情况下,背离含分析物体液的层9、12、14的表面直接接触支撑构件5。
附图标记列表
1         传感器
2         反电极
3         工作电极
4         参比电极
5         支撑构件
6         2的接触垫
7         3的接触垫
8         4的接触垫
9         传感层
10        无酶层
11        层(渗析层,聚合物层,MPC层)
12        2的透水层
13        孔隙率增强性颗粒(多孔颗粒)
14        4的透水层

Claims (29)

1.一种被构造用于植入到人或动物活体内以测量体液中分析物浓度的电流型传感器(1),所述传感器(1)包括
反电极(2)和
工作电极(3),
所述工作电极(3)包括水可透过并靠近接触垫(7)布置在支撑构件(5)上的传感层(9),所述传感层(9)包括能在所述分析物存在时起催化作用以引起电信号的固定化酶,
传感层(9)具有面向体液的上表面和背离体液的下表面,
特征在于
所述固定化酶被分布在传感层(9)中使得上和下表面之中间的酶浓度与传感层(9)上表面上至少一样高。
2.根据权利要求1的传感器(1),其中工作电极(3)的接触垫(7)为导电膜。
3.根据权利要求1或2的传感器(1),其中工作电极(3)的接触垫(7)为金属膜或导电聚合物膜。
4.根据前面权利要求中任何一个的传感器(1),其中工作电极(3)被布置在支撑构件(5)上,尤其是塑料材料制的支撑构件(5)上。
5.根据前面权利要求中任何一个的传感器(1),其中传感层(9)具有至少5μm、尤其至少10μm的厚度。
6.根据前面权利要求中任何一个的传感器(1),其中传感层(9)包含碳颗粒和聚合物粘合剂。
7.根据前面权利要求中任何一个的传感器(1),其中传感层(9)包含多孔颗粒(13),尤其是二氧化硅和/或碳纳米管。
8.根据权利要求7的传感器(1),其中多孔颗粒(13)有平均至少1μm、尤其至少5μm的尺寸。
9.根据前面权利要求中任何一个的传感器(1),其中传感层(9)被扩散阻挡层覆盖,该扩散阻挡层阻碍分析物分子的扩散到这样的程度,即在植入到人或动物活体内后,传感层(9)上表面处的分析物浓度是包围植入传感器(1)的体液中的至少1/10,尤其至少1/5。
10.根据权利要求9的传感器(1),其中扩散阻挡层包括包含碳颗粒和聚合物粘合剂的导电无酶层(10)。
11.根据权利要求9或10的传感器(1),其中扩散阻挡层包括渗析层(11)。
12.根据权利要求9-11中任何一个的传感器(1),其中扩散阻挡层包括由具有两性离子结构的聚合物制成的聚合物层(11)。
13.根据前面权利要求中任何一个的传感器(1),其中传感层(9)为平的。
14.根据前面权利要求中任何一个的传感器(1),其中传感层(9)具有不透体液的侧表面。
15.根据前面权利要求中任何一个的传感器(1),其中传感层(9)为导电的。
16.根据权利要求15的传感器(1),其中传感层(9)具有至少1Ω-1cm-1的电导率。
17.根据前面权利要求中任何一个的传感器(1),其中传感层(9)经适应和布置使得在植入后的操作中,传感层(9)中的分析物浓度在上表面处最高,并随离上表面的距离增加而降低,在作为离含分析物体液的最远点的下表面处为零。
18.根据前面权利要求中任何一个的传感器(1),其中所述酶为氧化酶,尤其是葡萄糖氧化酶。
19.根据前面权利要求中任何一个的传感器(1),其中所述酶为脱氢酶,尤其是葡萄糖脱氢酶。
20.根据前面权利要求中任何一个的传感器(1),其中所述酶为交联的酶。
21.根据权利要求20的传感器(1),其中所述交联的酶具有3到10、尤其是4到8个酶分子的平均链长度。
22.根据前面权利要求中任何一个的传感器(1),其中所述酶被均等地分布在整个传感层(9)内。
23.根据前面权利要求中任何一个的传感器(1),其中传感层(9)具有有效扩散系数Deff,其表征分析物在传感层(9)中的扩散并且是分析物在水中的扩散系数D的1/10~1/1000。
24.根据权利要求23的传感器(1),其中传感层(9)具有是有效扩散系数Deff的1/10~1/200的酶加载量参数α。
25.根据前面权利要求中任何一个的传感器(1),其中所述传感层(9)被布置在接触垫(7)上,并且传感层(9)具有面向接触垫(7)的下表面和背离接触垫(7)的上表面。
26.制造被构造用于植入到人或动物活体内以测量体液中分析物浓度的电流型传感器(1)的方法,所述方法包括以下步骤:
- 混合碳颗粒、酶和聚合物粘合剂以形成糊;
- 靠近接触垫(7)施加该糊到支撑构件(5)上,
- 将该糊硬化成多孔传感层(9)。
27.根据权利要求26的方法,其中使交联的酶与碳颗粒和聚合物粘合剂混合。
28.根据权利要求26或27的方法,其中制造传感层(9)使得它具有有效扩散系数Deff,其表征分析物在传感层(9)中的扩散并且是分析物在水中的扩散系数D的1/10~1/1000。
29.根据权利要求26至28中任何一个的方法,其中制造传感层(9)使得它导电。
CN200780022701.3A 2006-06-19 2007-05-24 电流型传感器及其制造方法 Expired - Fee Related CN101473225B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US80515106P 2006-06-19 2006-06-19
US60/805,151 2006-06-19
PCT/EP2007/004606 WO2007147475A1 (en) 2006-06-19 2007-05-24 Amperometric sensor and method for its manufacturing

Publications (2)

Publication Number Publication Date
CN101473225A true CN101473225A (zh) 2009-07-01
CN101473225B CN101473225B (zh) 2016-05-11

Family

ID=38325464

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780022701.3A Expired - Fee Related CN101473225B (zh) 2006-06-19 2007-05-24 电流型传感器及其制造方法

Country Status (7)

Country Link
US (1) US8527024B2 (zh)
EP (1) EP2030012A1 (zh)
JP (1) JP2009540889A (zh)
CN (1) CN101473225B (zh)
CA (1) CA2654220A1 (zh)
HK (1) HK1130088A1 (zh)
WO (1) WO2007147475A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175872A (zh) * 2011-12-23 2013-06-26 长沙中生众捷生物技术有限公司 便携式电化学检测试纸条及其制备方法
CN104684477A (zh) * 2012-09-28 2015-06-03 德克斯康公司 用于连续传感器的两性离子表面修饰
CN106645353A (zh) * 2017-03-09 2017-05-10 扬州大学 一种酚传感器的生物电极的制备方法
CN108939253A (zh) * 2018-04-23 2018-12-07 中山大学 具有生物相容性涂层的胰岛素泵注射导管及其制备方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101878428B (zh) * 2007-12-10 2014-07-09 拜尔健康护理有限责任公司 用于生物传感器的多孔颗粒试剂组合物、装置和方法
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
EP2163190A1 (de) * 2008-09-11 2010-03-17 Roche Diagnostics GmbH Elektrodensystem für Messung einer Analytkonzentration in-vivo
US8560039B2 (en) * 2008-09-19 2013-10-15 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US8313443B2 (en) * 2009-03-09 2012-11-20 Tom Michael D Tensiometer utilizing elastic conductors
KR20130122696A (ko) 2011-03-28 2013-11-07 에프. 호프만-라 로슈 아게 효소 생체내 센서에 대한 개선된 확산층
US8703022B2 (en) * 2011-06-08 2014-04-22 Cfd Research Corporation Electrically conductive ink and uses thereof
US8685286B2 (en) * 2011-06-08 2014-04-01 Cfd Research Corporation Electrically conductive ink and uses thereof
WO2013112767A1 (en) * 2012-01-25 2013-08-01 Senova Systems, Inc. Analyte sensor
EP2831263B1 (en) 2012-03-27 2017-06-28 F. Hoffmann-La Roche AG Improved spacer membrane for an enzymatic in-vivo sensor
CN104334740B (zh) * 2012-03-27 2017-05-24 霍夫曼-拉罗奇有限公司 用于酶体内传感器的改进的隔离膜
HUE065048T2 (hu) * 2012-06-29 2024-04-28 Hoffmann La Roche Érzékelõelem analit kimutatására testfolyadékban
US9737250B2 (en) 2013-03-15 2017-08-22 Dexcom, Inc. Membrane for continuous analyte sensors
US10780222B2 (en) 2015-06-03 2020-09-22 Pacific Diabetes Technologies Inc Measurement of glucose in an insulin delivery catheter by minimizing the adverse effects of insulin preservatives
CN105403604B (zh) * 2015-12-17 2018-04-10 河南省科学院能源研究所有限公司 基于金属纳米颗粒/纳米纤维素复合物的无酶葡萄糖电化学传感器
EP4253536A3 (en) * 2015-12-30 2023-12-20 DexCom, Inc. Diffusion resistance layer for analyte sensors
EP3551760A1 (en) 2016-12-08 2019-10-16 Roche Diabetes Care GmbH Sensor device for determining the concentration of an analyte underin-vivo
CN111655147A (zh) 2018-01-29 2020-09-11 普和希控股公司 生物传感器探针用保护膜材料
US20210000393A1 (en) 2018-03-13 2021-01-07 Phc Holdings Corporation Protective film material for biosensor probe
EP3787509B1 (en) 2018-05-04 2022-06-22 F. Hoffmann-La Roche AG Improved diffusion layer for an enzymatic in-vivo sensor
EP3735903A1 (en) 2019-05-06 2020-11-11 Roche Diabetes Care GmbH Method for an analyte sensor cover-membrane preparation
JP7324871B2 (ja) * 2019-05-20 2023-08-10 ソガン ユニバーシティ リサーチ ビジネス ディベロプメント ファウンデーション 電気化学的バイオセンサ用センシング膜、電気化学的バイオセンサ
TW202203850A (zh) 2020-03-13 2022-02-01 瑞士商赫孚孟拉羅股份公司 製備工作電極的方法
CA3196173A1 (en) 2020-11-20 2022-05-27 Alexander Steck Flux-limiting polymer membrane
TW202227812A (zh) 2020-11-23 2022-07-16 瑞士商赫孚孟拉羅股份公司 製備工作電極之方法
EP4000517A1 (en) 2020-11-23 2022-05-25 Roche Diabetes Care GmbH Working electrode for an analyte sensor
CN116472453A (zh) 2020-11-24 2023-07-21 豪夫迈·罗氏有限公司 用于制备对/参比电极的方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US885476A (en) * 1907-01-14 1908-04-21 Niles Bement Pond Co Motor-controlling system.
JPS584982B2 (ja) * 1978-10-31 1983-01-28 松下電器産業株式会社 酵素電極
GB8612861D0 (en) 1986-05-27 1986-07-02 Cambridge Life Sciences Immobilised enzyme biosensors
GB8817997D0 (en) * 1988-07-28 1988-09-01 Cambridge Life Sciences Enzyme electrodes & improvements in manufacture thereof
US5593852A (en) * 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
AT397513B (de) 1992-12-15 1994-04-25 Avl Verbrennungskraft Messtech Amperometrische enzymelektrode
US5494562A (en) * 1994-06-27 1996-02-27 Ciba Corning Diagnostics Corp. Electrochemical sensors
CH687894A5 (de) 1994-10-24 1997-03-14 Avl Medical Instr Ag Verfahren und Schichtstruktur zur Bestimmung einer Substanz.
US5882494A (en) * 1995-03-27 1999-03-16 Minimed, Inc. Polyurethane/polyurea compositions containing silicone for biosensor membranes
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
KR100349000B1 (ko) * 1998-07-09 2003-03-26 주식회사 아이센스 친수성폴리우레탄을사용한바이오센서의제조방법
DE60022170T2 (de) * 1999-03-09 2006-02-23 Rhodia Chimie Sulfoniertes copolymer und verfahren zur reinigung von oberflächen und/oder zur herstellung von flecken abweisenden eigenschaften dieser oberflächen und/oder zur entfernung von flecken oder verschmutzungen
EP1192269A2 (en) * 1999-06-18 2002-04-03 Therasense, Inc. MASS TRANSPORT LIMITED i IN VIVO /i ANALYTE SENSOR
US7045054B1 (en) * 1999-09-20 2006-05-16 Roche Diagnostics Corporation Small volume biosensor for continuous analyte monitoring
CA2385842C (en) * 1999-09-20 2008-12-09 Roche Diagnostics Corporation Small volume biosensor for continuous analyte monitoring
AU2001263022A1 (en) * 2000-05-12 2001-11-26 Therasense, Inc. Electrodes with multilayer membranes and methods of using and making the electrodes
WO2002064027A2 (en) * 2001-02-15 2002-08-22 The Regents Of The University Of California Membrane and electrode structure for implantable sensor
US20030032874A1 (en) * 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US20040137547A1 (en) * 2001-12-28 2004-07-15 Medtronic Minimed, Inc. Method for formulating a glucose oxidase enzyme with a desired property or properties and a glucose oxidase enzyme with the desired property
US7813780B2 (en) 2005-12-13 2010-10-12 Medtronic Minimed, Inc. Biosensors and methods for making and using them
US20040063167A1 (en) 2002-07-12 2004-04-01 Peter Kaastrup Minimising calibration problems of in vivo glucose sensors
CN100479750C (zh) 2003-09-02 2009-04-22 早出广司 葡萄糖传感器和葡萄糖浓度测定装置
WO2005032362A2 (en) * 2003-09-30 2005-04-14 Roche Diagnostics Gmbh Sensor with increaseed biocompatibility
US20050090607A1 (en) * 2003-10-28 2005-04-28 Dexcom, Inc. Silicone composition for biocompatible membrane
US20050244811A1 (en) * 2003-12-15 2005-11-03 Nano-Proprietary, Inc. Matrix array nanobiosensor
WO2005088288A1 (ja) 2004-03-10 2005-09-22 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブバイオセンサ
US20060015020A1 (en) * 2004-07-06 2006-01-19 Dexcom, Inc. Systems and methods for manufacture of an analyte-measuring device including a membrane system
US7572356B2 (en) * 2004-08-31 2009-08-11 Lifescan Scotland Limited Electrochemical-based sensor with a redox polymer and redox enzyme entrapped by a dialysis membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175872A (zh) * 2011-12-23 2013-06-26 长沙中生众捷生物技术有限公司 便携式电化学检测试纸条及其制备方法
CN104684477A (zh) * 2012-09-28 2015-06-03 德克斯康公司 用于连续传感器的两性离子表面修饰
CN106645353A (zh) * 2017-03-09 2017-05-10 扬州大学 一种酚传感器的生物电极的制备方法
CN108939253A (zh) * 2018-04-23 2018-12-07 中山大学 具有生物相容性涂层的胰岛素泵注射导管及其制备方法

Also Published As

Publication number Publication date
US8527024B2 (en) 2013-09-03
JP2009540889A (ja) 2009-11-26
US20090099433A1 (en) 2009-04-16
CA2654220A1 (en) 2007-12-27
HK1130088A1 (zh) 2009-12-18
WO2007147475A1 (en) 2007-12-27
EP2030012A1 (en) 2009-03-04
CN101473225B (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
CN101473225A (zh) 电流型传感器及其制造方法
Heller et al. Electrochemistry in diabetes management
DK2697388T3 (en) Enhanced diffusion layer to an enzymatic in-vivo sensor
Wilson et al. Enzyme-based biosensors for in vivo measurements
US6033866A (en) Highly sensitive amperometric bi-mediator-based glucose biosensor
JP3655587B2 (ja) 連続アナライトモニタリング用小型バイオセンサー
JP5950816B2 (ja) バイオセンサ
Tian et al. A microelectrode biosensor for real time monitoring of L-glutamate release
CA2867766C (en) Improved spacer membrane for an enzymatic in-vivo sensor
He et al. A novel stable amperometric glucose biosensor based on the adsorption of glucose oxidase on poly (methyl methacrylate)–bovine serum albumin core–shell nanoparticles
Çolak et al. Glucose biosensor based on the immobilization of glucose oxidase on electrochemically synthesized polypyrrole-poly (vinyl sulphonate) composite film by cross-linking with glutaraldehyde
US20170290538A1 (en) Amperometric sensor and method for its manufacturing
JP5273680B2 (ja) 酵素電極
Jiang et al. Amperometric ethanol biosensor based on integration of alcohol dehydrogenase with Meldola's blue/ordered mesoporous carbon electrode
Li et al. Boosting the performance of an iontophoretic biosensing system with a graphene aerogel and Prussian blue for highly sensitive and noninvasive glucose monitoring
JP2007518984A (ja) バイオセンサーおよび製造方法
DK3219807T3 (en) IMPROVED SPACER MEMBRANE FOR AN ENZYMATIC IN-VIVO SENSOR
Ahmad et al. The application of glucose biosensor in studying the effects of insulin and anti-hypertensive drugs towards glucose level in brain striatum
Atanasov et al. Glucose biosensor based on oxygen electrode. Part I: silastic coated polycarbonate membranes for biosensor application
JP2012208101A (ja) 多層構造を有するバイオセンサ
Schuhmann et al. Miniaturization of biosensors
Burugapalli et al. Nanomaterials in glucose sensing
JP2013205369A (ja) 血液抗凝固剤を含むバイオセンサ
Davis et al. Glucose Biosensors—Recent Advances in the Field of Diabetes Management

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1130088

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1130088

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160511

Termination date: 20180524

CF01 Termination of patent right due to non-payment of annual fee