CN101457222A - 用于抑制和杀灭耐药性细菌的双链小分子干扰核酸及其组合 - Google Patents

用于抑制和杀灭耐药性细菌的双链小分子干扰核酸及其组合 Download PDF

Info

Publication number
CN101457222A
CN101457222A CNA2007100324585A CN200710032458A CN101457222A CN 101457222 A CN101457222 A CN 101457222A CN A2007100324585 A CNA2007100324585 A CN A2007100324585A CN 200710032458 A CN200710032458 A CN 200710032458A CN 101457222 A CN101457222 A CN 101457222A
Authority
CN
China
Prior art keywords
dna
gene
staphylococcus aureus
target sequence
streptococcus aureus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007100324585A
Other languages
English (en)
Other versions
CN101457222B (zh
Inventor
李宝健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2007100324585A priority Critical patent/CN101457222B/zh
Publication of CN101457222A publication Critical patent/CN101457222A/zh
Application granted granted Critical
Publication of CN101457222B publication Critical patent/CN101457222B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及用于抑制和杀灭耐甲氧西林金黄色葡萄球菌为代表的各种耐药性细菌的双链小分子干扰核酸。本发明所述的siNA为双链分子,有19个碱基配对,正义链和反义链各自在5’末端有两个突出碱基dT,GC含量为40-55%;所针对的靶序列选自金黄色葡萄球菌基因组中与复制、转录、翻译等生命活动的有关基因,以及与耐药性相关的mecA基因;所述靶序列在90%以上的金黄色葡萄球菌株中保守的且与人体基因组中的所有基因序列不同源的序列区域;所述的siNA双链分子的靶序列选自SEQ ID NO.1-325,正义链是与靶序列一一对应的DNA或RNA序列,反义链是根据碱基互补原则与正义链序列一一相应的RNA或DNA。

Description

用于抑制和杀灭耐药性细菌的双链小分子干扰核酸及其组合
技术领域
本发明属于分子生物学领域,涉及用于抑制和杀灭超级细菌如耐甲氧西林金黄色葡萄球菌(MRSA)为代表的各种耐药性细菌的双链小分子干扰核酸。
背景技术
自上世纪60年代初首次发现耐甲氧西林性金黄色葡萄球菌(methicillin-resistantStaphylococcus aureus,MRSA)以来,这类细菌的感染至今已在环境中广泛存在,几乎遍及全球。到上世纪80年代后期,已成为引起全球性医院内感染的最主要的病原菌。有资料表明,20%的肺炎、40%的菌血症和49%的伤口感染由MRSA引起。上述疾病的死亡率,一般在10-30%,有时可高达50%。估计全球有多达1/3的人带有致命的超级细菌。随着抗生素的广泛应用,新的具有多重耐药的MRSA不断产生。过去一般用万古霉素来治疗MRSA,但现已发现了具有多重耐药性且又耐万古霉素的MRSA。长此以往,如果仍沿当前的临床药物的策略来治疗,人类将有可能失去对MRSA感染的“最后一道防线”。因此,有人认为MRSA是目前世界三大最难解决的感染性疾病之首,其次是乙肝和艾滋病。
除MRSA以外,其他的多种细菌性病菌也发现耐药性变异。细菌可对一种或多种抗生素或药物产生耐药性。这也开始成为世界范围的一个十分重要的预防和临床治疗的难题。如在上世纪50-60年代,结核病耐药菌的出现,就已致使结核病疫情在全球“死灰复燃”,而且有愈演愈烈的趋势,其他的各种细菌性病害,如霍乱,伤寒,鼠疫等,也因其产生细菌基因的变异而获得新的耐药性或新的毒力,也存在着潜在性重新流行的威胁。对所有上述的细菌性病害重新发生的情况,人类虽有所警觉,但至今尚未有确切可靠的对付的办法。
1998年2月,FireA et al.发现双链RNA(dsRNA)在线虫(Caenorhabditis elegans)中能够高效特异性阻断相应基因的表达。他们将这一现象称为RNA干扰(RNA interference,简称RNAi)。随后在果蝇、真菌、昆虫、植物等生物体及哺乳动物细胞中发现了RNAi现象。这种广泛性的存在表明RNAi很可能出现在生命进化的早期阶段。随着研究的不断深入,RNAi的机制正逐步地被阐明,同时亦成为功能基因组研究领域中的有力工具,RNAi也越来越被重视,自2001年起连续三年被《Science》杂志评为十大科学成就之一。2006年,FireA et al.因发现RNAi现象而获得生物医学诺贝尔奖。
研究表明,RNAi具有较高的特异性,能够非常特异地降解与其序列相应的单个内源基因的mRNA,且抑制基因表达的效率很高,相对少量的dsRNA就可以使表型达到缺失突变体程度,但dsRNA需要一个最小的长度才能产生有效地干扰效果。因此,用siRNA代替传统反义核酸进行转录后基因沉默,RNAi技术的应用领域已经从基因组学研究逐步扩展到医学领域并作为基因治疗手更有效地手段。利用RNAi不仅能提供一种经济、快捷、高效的抑制基因表达的技术手段,而且在基因功能测定和基因治疗等方面开辟一条新的更有效地策略,因此具有非常广阔的应用前景。并将为人类创造亿万价值的新药。现已证明应用siRNA策略可以预防和治疗病毒病的药物。(Fischel L.TAN,Jemes Q.Yin.RNAi,a new therapeutic stategyagainst viral infection.Cell research.2004.14(6):460-466.GreGory J.Hannon.Insignt new articles:RNA interference.Nature.2002.418:244-250.)
但是RNAi策略是否对细菌病有作用,至今尚未能确定。虽然在仅有的文献中,Yanagihara等(2005)使用一个MRSA菌株发现了靶向的siRNA可以在体内(in vivo)有效地抑制MRSA凝固酶基因的表达。但在他们进行的体外(in vitro)实验中没有发现siRNA实验组与对照组在细菌数量上的差别。仅在他们的动物模型(Murine infection Model)中,发现对照组与siRNA组MRSA的细菌数量分别为7.64e0.42和6.29e0.23 Log cfu/ml。虽然有这种差别,但不足证明siRNA可有效抑制和杀灭MRSA。
发明内容
本发明的目的是应用RNAi策略的基本原理,提供一种双链小分子干扰核酸(siNA)及其配套技术,能有效抑制和杀灭包括耐甲氧西林性金黄色葡萄球菌(MRSA)在内的各种耐药性细菌,可用于预防与治疗由以MRSA为代表的具多重耐药性基因变异细菌引起的疾病。
本发明所述的用于抑制和杀灭各种耐药性细菌的双链小分子干扰核酸即siNA为双链分子,有19个碱基配对,正义链和反义链各自在5’末端有两个突出碱基dT,GC含量为40-55%,包括双链RNA、双链DNA、RNA/DNA、DNA/RNA;所针对的靶序列选自金黄色葡萄球菌基因组中与复制,转录,翻译等生命关键性活动的有关基因,以及与耐药性相关的mecA基因;所述靶序列在90%以上的金黄色葡萄球菌株中保守的且与人体基因组中的所有基因序列不同源的序列区域;所述的siNA双链分子的靶序列选自SEQ ID NO.1-325,正义链是与靶序列一一对应的DNA或RNA序列,反义链是根据碱基互补原则与正义链序列一一相应的RNA或DNA。
所述的与复制,转录,翻译等生命活动的有关基因优选是rpoA基因、ftsZ基因、infB基因、murA基因、dnaA基因;所述的与耐药性相关的基因优选是mecA基因;优选的靶序列中,SEQ ID NO.1-56是来自rpoA基因,SEQ ID NO.57-107是来自ftsZ基因,SEQ IDNO.108-176是来自infB基因,SEQ ID NO.177-234是来自murA基因,SEQ ID NO.235-298是来自dnaA基因,SEQ ID NO.299-325是来自mecA基因。
本发明还提供了所述的双链小分子干扰核酸的组合,该组合是与靶序列SEQ IDNO.1-325一一对应的siNA双链分子的两条或两条以上的相互组合。
所述的双链小分子干扰核酸的优选组合,是所述的siNA双链分子根据针对的靶序列所在基因分为以下各组:
(1)所述的靶序列中SEQ ID NO.1-56是来自rpoA基因;
(2)所述的靶序列中SEQ ID NO.57-107是来自ftsZ基因;
(3)所述的靶序列中SEQ ID NO.108-176是来自infB基因;
(4)所述的靶序列中SEQ ID NO.177-234是来自murA基因;
(5)所述的靶序列中SEQ ID NO.235-298是来自dnaA基因;以及
(6)所述的靶序列中SEQ ID NO.299-325是来自mecA基因;
上述同组siNA双链分子的两条或两条以上相互组合,或者是上述不同组siNA双链分子的两条或两条以上相互组合。
本发明还提供了所述的双链小分子干扰核酸的筛选方法,其包括以下步骤:
1)对所有金黄色葡萄球菌株基因组进行同源性比对后,选取在90%以上的金黄色葡萄球菌株中保守的序列区域作为靶序列;
2)剔除容易形成二级结构而使siNA分子难以接近的靶序列;
3)剔除与人体基因组中的所有基因序列同源的靶序列;
4)在上述靶序列中选取长度为19bp的序列;
5)计算GC含量,选取GC含量为40-55%左右的序列;
6)经上述筛选得到候选siNA的靶位点,设计出相应的siNA,然后通过抑制金黄色葡萄球菌生长实验进行筛选,得到有效抑制或杀灭金黄色葡萄球菌的siNA序列。
本发明还提供了所述的双链小分子干扰核酸用于制备预防与治疗以耐甲氧西林性金黄色葡萄球菌MRSA为代表的具多重耐药性基因变异的细菌引起的疾病的药物的用途。
本发明还提供了所述双链小分子干扰核酸的组合用于制备预防与治疗以耐甲氧西林性金黄色葡萄球菌MRSA为代表的具多重耐药性基因变异细菌引起的疾病的药物的用途。
围绕RNAi策略能否成功地十分有效地抑制甚至杀灭以MRSA为代表的具多重耐药性基因变异的突变菌这一中心议题,本发明进行了以下问题的研究并建立和发明了一套较系统的能真正应用的siNA,以及其组合与筛选方法。这一套技术由于同时在MRSA的标准株及三个临床分离株上获得成功,故可认为具有广泛应用的前景。
1.参照当前国内外已有的设计siNA的原理和先进经验,针对MRSA基因组中,对细菌中涉及如复制,转录,翻译等重要生命活动的有关基因,如rpoA基因,ftsZ基因,infB基因,murA基因,dnaA基因等,设计出系列的小分子核酸并找出十分有效地抑制和杀死MRSA的siNA。
2.参照当前国内外已有的设计siNA的原理和先进经验,针对选择导致金黄色葡萄球菌产生甲氧西林耐药性突变的mecA基因作为靶基因,设计并找出能沉默该耐药性基因的siNA,这样便可以应用这些siNA于耐药性靶基因,从而可逆转该病菌的耐药性,使药物恢复原有的对病菌的有效抑制或杀灭作用。
3.在上述基础上,通过实验发现并证实在不同形式但内容相同的四种双链小分子核酸siNA(包括+RNA/-RNA(双链RNA),+DNA/-DNA(双链DNA),+RNA/-DNA(正义链为RNA,负义链为DNA),+DNA/-RNA(正义链为DNA,负义链为RNA))中,-RNA/+DNA抑菌和杀菌效果最好。
4.通过研究发现并确定在抑制或杀灭MRSA的过程中所使用的siNA的浓度是有效性的一个十分重要因素。发明人通过实验发现,在细菌体内能沉默基因的相关靶向siNA的有效浓度(不小于2.3nmol/ml),比在许多生物体如哺乳动物,甚至病毒的浓度要明显偏高。
5.发现应用上述两大类的siNA作用于不同的MRSA菌株(包括标准株ATCC25923、谈延娥株、关沃株、姚贵顺株、何杰昌株)均有类似的抑菌和杀菌作用,从而证明了这一发明具有一定的普遍意义。
6.综上所述的发明内容,我们可看出:本专利发明的技术不仅可以十分有效地通过沉默对MRSA生命活动的关键基因,从而有效地抑制或甚至杀灭MRSA。另外,通过成功地控制MRSA的耐药性突变,可以成功地使能不断发生的耐药性突变基因沉默,从而使耐药菌株重新失去耐药性性质,使原来本已失去药效的抗生素重新恢复抑菌或杀菌的功能。使用上述任一条技术路线,或者将两条技术路线结合起来应用于新药的研制和开发,人类肯定将能控制好现有的及不断产生的新的超级细菌的危害。
7.根据所有的细菌生物体具有基本共同的生物学规律,因此本发明专利所发现和确定的技术和原则,基本适应于所有的细菌,包括肺结核菌,伤寒沙门菌,血喉棒状杆菌,破伤风杆菌等的预防和治疗药物的研制与开发。
综上所述,本发明所述的用于抑制和杀灭超级细菌——耐甲氧西林金黄色葡萄球菌(简称MRSA)以及各种耐药性细菌的双链小分子干扰核酸,可有效地解决超级细菌以及其他各种耐药性细菌病对人类健康造成的巨大的现实的以及潜在的威胁,属于生物医药技术的一个十分重要的、至今尚未有解决苗头的全新的突破。
附图说明
图1为siNA 1对MRSA的抑制效果。
图2为siNA 60对MRSA的抑制效果。
图3为siNA 108对MRSA的抑制效果。
图4为siNA 177对MRSA的抑制效果。
图5为siNA 235对MRSA的抑制效果。
图6为siNA 305对MRSA的抑制效果。
具体实施方式
实施例一:靶位点的设计
本发明采取以下全部或大多数原则来选择靶序列,进行设计siNA:
1、选取长度为18-25bp的序列;
2、计算GC含量,选取GC含量为40-55%左右的序列;
3、在90%以上的金黄色葡萄菌株中,同一基因的靶序列的大部分碱基都是保守的;从NCBI(美国国立生物技术信息中心),EMBL(欧洲分子生物学实验室核酸序列数据库),DDBJ(日本DNA数据库)中下载所有金黄色葡萄球菌的靶基因序列,并进行同源性比对后,选取在90%以上的菌株中保守的序列区域作为靶序列。
4、在金黄色葡萄菌株靶基因中的靶序列所在的区域不会因形成二级结构而使siNA分子难以接近;siRNA发生作用是通过碱基互补原则识别与其互补的mRNA,在同源序列的中部剪切mRNA;如果在该序列区域存在二级结构而难以使siNA接近,就会导致siNA难以识别该互补序列,从而不能抑制或降解mRNA。
5、本发明中的siNA所针对金黄色葡萄菌株靶基因中的靶序列是与人体基因组中的所有基因序列不同源。将siNA分子的靶序列在GenBank进行Blast。如与靶序列相比,在人类基因中不存在等于或多于16个连续相同碱基,则选取该靶序列用来设计siNA。这样避免siNA分子在人体内降解其他不相关基因,引起人体细胞功能失调,从而有可能导致产生副作用。
根据上述原则,得到了候选siNA的靶位点,从而设计出相应的siNA,然后通过实验进行筛选,得到了325条siNA(见最后所附的表8)。
实施例二:针对dnaA基因所设计的siNA的抑菌或杀菌有效性的确定
1.siNA的合成:根据附表1中的靶序列SEQ ID NO.1,得到一一对应的正义链和反义链序列,合成如下结构的siNA 1:
5’      C U U G G U A G A G A G C A A U U C A dT dT 3’
         | | | | | | | | | | | | | | | | | | |
3’dT dT G A A C C A T C T C T C G T T A A G T       5’
无关siNA为:
5’      G A C C C G C A U U G A G C A U C A A dT dT 3’
         | | | | | | | | | | | | | | | | | | |
3’dT dT C T G G G C G T A A C T C G T A G T T       5’
2.在营养肉汤培养基(36μg/ml苯唑西林,0.125mM EDTA)中接种MRSA谈延娥株(由中山大学中山医学院微生物学教研室分离并鉴定,保存于广州市疾病预防控制中心;该菌株对苯唑西林的最小抑菌浓度为72μg/ml)。
3.在2个玻璃管中,各取0.8ml菌液,并加入150μl 2×肉汤;一管加入150μl无关siNA(500μg/ml),一管加入150μl siNA1母液(500μg/ml);
4.于37度中摇床培养11.5小时;
5.使用酶标仪(LALJYVRAM MKIII)于630mm波长处测量2次吸光度,取平均值,结果见图1;如图1所示,siNA1 1号孔OD值比对应无关siNA孔OD值小超过20倍,表明siNA1能够极大的抑制MRSA的生长。
6.根据上述实验,表明通过实施例1的方法设计的针对dnaA基因的siNA(附表SEQID NO.1-SEQ ID NO.56)能够有效地抑制MRSA的生长。
实施例三:针对ftsZ基因所设计的siNA的抑菌或杀菌有效性的确定
1.siNA的合成:根据附表1中的靶序列SEQ ID NO.60,得到一一对应的正义链和反义链序列,合成如下结构的siNA:
siNA 60:
5’      G U U A C G C C A A G G U G U A C A A dT dT 3’
         | | | | | | | | | | | | | | | | | | |
3’dT dT C A A T G C G G T T C C A C A T G T T       5’
无关siNA为:
5’      G A C C C G C A U U G A G C A U C A A dT dT 3’
         | | | | | | | | | | | | | | | | | | |
3’dT dT C T G G G C G T A A C T C G T A G T T       5’
2.在营养肉汤培养基中接种MRSA标准株ATCC25923(购自美国ATCC;对苯唑西林的最小抑菌浓度为1.2μg/ml);
3.在2个玻璃管中,各取0.5ml菌液,加入50μl 2×肉汤;一管加入30μl无关siNA(500μg/ml),一管加入30μl siNA60母液(500μg/ml);
4.于37度中摇床培养8.5小时;
5.使用酶标仪(LALJYVRAM MKIII)于630mm波长处测量2次吸光度,取平均值,结果见图2;如图2所示,siNA60孔OD值比对应无关siNA孔OD值小近百倍,表明siNA60能够极大的抑制MRSA的生长。
6.根据上述实验,表明通过实施例1的方法设计的针对ftsZ基因的siNA(附表SEQ IDNO.57-NO.107)能够有效地抑制MRSA的生长。
实施例四:针对infB基因所设计的siNA的抑菌或杀菌有效性的确定
1.siNA的合成:根据附表1中的靶序列SEQ ID NO.108,得到一一对应的正义链和反义链序列,合成如下结构的siNA 108:
5’      C C A G C U G C U C C A A A A G A A A dT dT 3’
         | | | | | | | | | | | | | | | | | | |
3’dT dT G G T C G A C G A G G T T T T C T T T       5’
无关siNA为:
5’      G A C C C G C A U U G A G C A U C A A dT dT 3’
         | | | | | | | | | | | | | | | | | | |
3’dT dT C T G G G C G T A A C T C G T A G T T        5’
2.在营养肉汤培养基中接种MRSA标准株ATCC25923(购自美国ATCC;对苯唑西林的最小抑菌浓度为1.2μg/ml);
3.在2个玻璃管中,各取0.5ml菌液,加入50μl 2×肉汤;一管加入30μl无关siNA(500μg/ml),一管加入30μl siNA108母液(500μg/ml);
4.于37度中摇床培养8.5小时;
5.使用酶标仪(LALJYVRAM MKIII)于630mm波长处测量2次吸光度,取平均值,结果见图3;如图3所示,siNA108孔的OD值远远小于对应无关siNA孔,表明siNA108能够极大的抑制MRSA的生长。
6.根据上述实验,表明通过实施例1的方法设计的针对infB基因的siNA(附表SEQ IDNO.108-NO.176)能够有效地抑制MRSA的生长。
实施例五:针对murA基因所设计的siNA的抑菌或杀菌有效性的确定
1.siNA的合成:根据附表1中的靶序列SEQ ID NO.177,得到一一对应的正义链和反义链序列,合成如下结构的siNA 177:
5’      G U C G U U G A U G C A A C A A A G A dT dT 3’
         | | | | | | | | | | | | | | | | | | |
3’dT dT C A G C A A C T A C G T T G T T T C T       5’
无关siNA为:
5’      G A C C C G C A U U G A G C A U C A A dT dT 3’
         | | | | | | | | | | | | | | | | | | |
3’dT dT C T G G G C G T A A C T C G T A G T T       5’
2.在营养肉汤培养基中接种MRSA何杰昌株(由中山大学中山医学院微生物学教研室分离并鉴定,保存于广州市疾病预防控制中心;该菌株对苯唑西林的最小抑菌浓度为90μg/ml);
3.取12μl菌液,加入6ml 2×肉汤,混匀,在96孔板两孔中加入50μl菌液;
4.一孔加入50μl无关siNA(1μg/μl),一孔加入50μl siNA108母液(1μg/μi);混匀;
5.于37度中摇床培养22小时;
6.使用酶标仪(LALJYVRAM MKIII)于630mm波长处测量3次吸光度,取平均值,结果见图4;如图4所示,siNA177孔OD值比无关siNA孔OD值小差不多十倍,表明siNA177可以极大抑制MRSA的生长。
7.根据上述实验,表明通过实施例1的方法设计的针对murA基因的siNA(附表SEQID NO.177-NO.234)能够有效地抑制MRSA的生长。
实施例六:针对rpoA基因所设计的siNA的抑菌或杀菌有效性的确定
1.siNA的合成:根据附表1中的靶序列SEQ ID NO.235,得到一一对应的正义链和反义链序列,合成如下结构的siNA 235:
5’      C U G U U G A A C G U G U G A A C U A dT dT 3’
         | | | | | | | | | | | | | | | | | | |
3’dT dT G A C A A C T T G C A C A C T T G A T       5’
无关siNA为:
5’      G A C C C G C A U U G A G C A U C A A dT dT 3’
         | | | | | | | | | | | | | | | | | | |
3’dT dT C T G G G C G T A A C T C G T A G T T       5’
2.在营养肉汤培养基中接种MRSA标准株ATCC25923(购自美国ATCC;对苯唑西林的最小抑菌浓度为1.2μg/ml);
3.在2个玻璃管中,各取0.5ml菌液,加入50μl 2×肉汤;一管加入30μl无关siNA(500μg/ml),一管加入30μl siNA235母液(500μg/ml);
4.于37度中摇床培养8.5小时;
5.使用酶标仪(LALJYVRAM MKIII)于630mm波长处测量2次吸光度,取平均值,结果见图5;如图5所示,siNA235孔的OD值比无关siNA孔OD值小近百倍,表明siNA235能够极大的抑制MRSA的生长。
6.根据上述实验,表明通过实施例1的方法设计的针对infB基因的siNA(附表SEQ IDNO.235-NO.298)能够有效地抑制MRSA的生长。
实施例七:以MRSA产生耐药性的mecA基因为靶点所设计的siNA及其抑菌或杀菌有效性的确定
1.siNA的合成:根据附表1中的靶序列SEQ ID NO.302与SEQ ID NO.303,得到一一对应的正义链和反义链序列,合成如下结构的siNA:
siNA305:
5’      U U C A A U C U A U A G C G C A U U A dT dT 3’
         | | | | | | | | | | | | | | | | | | |
3’dT dT A A G T T A G A T A T C G C G T A A T       5’
无关siNA为:
5’      G A C C C G C A U U G A G C A U C A A dT dT 3’
         | | | | | | | | | | | | | | | | | | |
3’dT dT C T G G G C G T A A C T C G T A G T T 5’
2.接种MRSA关沃株(由中山大学中山医学院微生物学教研室分离并鉴定,保存于广州市疾病预防控制中心;该菌株对苯唑西林的最小抑菌浓度为54μg/ml)至3ml营养肉汤培养基,加入9μl 18mg/ml苯唑西林溶液;
3.在2个10ml离心管中,各管分别加入1ml菌液;
4.两管分别加入75μl 1μg/μl siNA 305,75μl 1μg/μl无关siNA;
5.37度摇床中培养;
6.11h后,将菌液稀释10倍,使用酶标仪(LALJYVRAM MKIII)于630mm波长处测量2次吸光度,取平均值,结果见图6;如图6所示,siNA 305孔的OD值都与无关siNA孔的OD值小60倍以上,表明siNA305可以极大抑制MRSA的生长。
7.根据上述实验,表明通过实施例1的方法设计的针对mecA基因的siNA(附表SEQID NO.299-NO.325)能够有效地抑制MRSA的生长。
实施例八:以MRSA产生耐药性的mecA基因为靶点所设计不同成分的siNA及其抑菌或杀菌有效性的确定
1.siNA的合成:根据附表1中的靶序列SEQ ID NO.302得到一一对应的正义链和反义链序列,合成如下结构的不同成分的siNA:
siNA 302a(dsDNA):
5’    T A C A A G A T A T G A A G T G G T AdT dT  3’
       | | | | | | | | | | | | | | | | | | |
3’dT dTA T G T T C T A T A C T T C A C C A T      5’
siNA 302b(乱序dsDNA):
5’    G G T G A A G T A T A T A G A A C A TdT dT  3’
       | | | | | | | | | | | | | | | | | | |
3’dT dTC C A C T T C A T A T A T C T T G T A      5’
siNA 302c(dsRNA):
5’    U A C A A G A U A U G A A G U G G U AdT dT  3’
       | | | | | | | | | | | | | | | | | | |
3’dT dTA U G U U C U A U A C U U C A C C A U      5’
siNA 302d(乱序dsRNA):
5’    G G U G A A G U A U A U A G A A C A UdT dT  3’
       | | | | | | | | | | | | | | | | | | |
3’dT dTC C A C U U C A U A U A U C U U G U A      5’
siNA 302e(正义链为RNA,反义链为DNA,简称为RNA:DNA):
5’    U A C A A G A U A U G A A G U G G U AdT dT   3’
       | | | | | | | | | | | | | | | | | | |
3’dT dTA T G T T C T A T A C T T C A C C A T       5’
siNA 302f(正义链为RNA,反义链为DNA,简称为乱序RNA:DNA):
5’    G G U G A A G U A U A U A G A A C A UdT dT   3’
       | | | | | | | | | | | | | | | | | | |
3’dT dTC C A C T T C A T A T A T C T T G T A       5’
siNA 302g(正义链为DNA,反义链为RNA,简称为DNA:RNA):
5’    T A C A A G A T A T G A A G T G G T AdT dT   3’
3’dT dTA U G U U  C U A U A C U U C A C C A U      5’
siNA 302h(正义链为DNA,反义链为RNA,简称为乱序DNA:RNA):
5’   G G T G A A G T A T A T A G A A C A TdT dT    3’
3’dT dTA U G U U C U A U A C U U C A C C A U       5’
2.在96孔板1-8号孔各加入50μl相应250μg/ml siNA;
3.接种MRSA谈延娥株(由中山大学中山医学院微生物学教研室分离并鉴定,保存于广州市疾病预防控制中心;该菌株对苯唑西林的最小抑菌浓度为72μg/ml)至15ml营养肉汤培养基,加入36μl 18mg/ml苯唑西林溶液,120μl EDTA溶液(0.5mM);
4.在每个孔中各加入50μl MRSA菌液,混匀。
5.用封口胶封口,并放入保鲜袋中,37℃孵育;
6.培养36h后,统计平板上的菌落数,结果见下表7:
表7
 
目标dsDNA 乱序dsDNA 目标dsRNA 乱序dsRNA 目标RNA:DNA 乱序RNA:DNA 目标DNA:RNA 乱序DNA:RNA
极多 极多 极多>500 极多>500 2 多(>300) 115
由表7可见,目标RNA:DNA和目标DNA:RNA siNA分子在一定浓度时能特异性的杀灭MRSA。与对照相比,在应用250μg/ml目标RNA:DNA或DNA:RNA siNA分子时,可以取得杀灭MRSA的效果。
表8
NO.靶序列                靶基因    RNA正义链            DNA反义链
1  CTTGGTAGAGAGCAATTCA   dnaA      CUUGGUAGAGAGCAAUUCA  TGAATTGCTCTCTACCAAG
2  CTATGGAGGTGTTGGTTTA   dnaA      CUAUGGAGGUGUUGGUUUA  TAAACCAACACCTCCATAG
3  GGAGGTGTTGGTTTAGGAA   dnaA      GGAGGUGUUGGUUUAGGAA  TTCCTAAACCAACACCTCC
4  GGTGAAGCTTTCAGAGAAA   dnaA      GGUGAAGCUUUCAGAGAAA  TTTCTCTGAAAGCTTCACC
5  GCATGCCATTGGTCATCAT   dnaA      GCAUGCCAUUGGUCAUCAU  ATGATGACCAATGGCATGC
6  CGAAGGTGAAGCTTTCAGA   dnaA      CGAAGGUGAAGCUUUCAGA  TCTGAAAGCTTCACCTTCG
7  GCCACCAGATTATGAAACT   dnaA      GCCACCAGAUUAUGAAACU  AGTTTCATAATCTGGTGGC
8  GGGGGCTAATTGTTGATAT   dnaA      GGGGGCUAAUUGUUGAUAU  ATATCAACAATTAGCCCCC
9  CAAGCACCAAAATCTAAAA   dnaA      CAAGCACCAAAAUCUAAAA  TTTTAGATTTTGGTGCTTG
10 CATTCATGCTCATGAAAAA   dnaA      CAUUCAUGCUCAUGAAAAA  TTTTTCATGAGCATGAATG
11 CATTGGTCATCATGTTTTA   dnaA      CAUUGGUCAUCAUGUUUUA  TAAAACATGATGACCAATG
12 CCAGTACTATAATGTTAGA   dnaA      CCAGUACUAUAAUGUUAGA  TCTAACATTATAGTACTGG
13 GCACCAAAATCTAAAAAGA   dnaA      GCACCAAAAUCUAAAAAGA  TCTTTTTAGATTTTGGTGC
14 CCAGAAGCTTTAAATTATA   dnaA      CCAGAAGCUUUAAAUUAUA  TATAATTTAAAGCTTCTGG
15 GAATTTTTCTATACTTTTA   dnaA      GAAUUUUUCUAUACUUUUA  TAAAAGTATAGAAAAATTC
16 CGTCATTCATGCTCATGAA   dnaA      CGUCAUUCAUGCUCAUGAA  TTCATGAGCATGAATGACG
17 CAAAGCGTACAATCCATTA   dnaA      CAAAGCGUACAAUCCAUUA  TAATGGATTGTACGCTTTG
18 CAATGCCCATAACACATTT   dnaA      CAAUGCCCAUAACACAUUU  AAATGTGTTATGGGCATTG
19 CAATTCAATGCCCATAACA   dnaA      CAAUUCAAUGCCCAUAACA  TGTTATGGGCATTGAATTG
20 CACGTCAAATAGCTATGTA   dnaA      CACGUCAAAUAGCUAUGUA  TACATAGCTATTTGACGTG
21 CAGATGCCAAAGTGATTTA   dnaA      CAGAUGCCAAAGUGAUUUA  TAAATCACTTTGGCATCTG
22 CCACCAGAAGCTTTAAATT   dnaA      CCACCAGAAGCUUUAAAUU  AATTTAAAGCTTCTGGTGG
23 CTAGAGAGCTTACAGATTT   dnaA      CUAGAGAGCUUACAGAUUU  AAATCTGTAAGCTCTCTAG
24 GCTTGAAATTGCTCAAGAA   dnaA      GCUUGAAAUUGCUCAAGAA  TTCTTGAGCAATTTCAAGC
25 GGCCAGTACTATAATGTTA   dnaA      GGCCAGUACUAUAAUGUUA  TAACATTATAGTACTGGCC
26 GGGGCTAATTGTTGATATT   dnaA      GGGGCUAAUUGUUGAUAUU  AATATCAACAATTAGCCCC
27 GGTGTTGGTTTAGGAAAAA   dnaA      GGUGUUGGUUUAGGAAAAA  TTTTTCCTAAACCAACACC
28 CAAAGGAAATTGCACAATT   dnaA      CAAAGGAAAUUGCACAAUU  AATTGTGCAATTTCCTTTG
29 CACCAGAAGCTTTAAATTA   dnaA      CACCAGAAGCUUUAAAUUA  TAATTTAAAGCTTCTGGTG
30 CCATCCAAGATATTCAAAA   dnaA      CCAUCCAAGAUAUUCAAAA  TTTTGAATATCTTGGATGG
31 CGATGATATTCAGTTCATA   dnaA      CGAUGAUAUUCAGUUCAUA  TATGAACTGAATATCATCG
32 GAAGATTTCAGTGCAAAAA   dnaA      GAAGAUUUCAGUGCAAAAA  TTTTTGCACTGAAATCTTC
33 GAAGTAAAACCTCACTTTA   dnaA      GAAGUAAAACCUCACUUUA  TAAAGTGAGGTTTTACTTC
34 GAAGTAGAGAATCTTGAAA   dnaA      GAAGUAGAGAAUCUUGAAA  TTTCAAGATTCTCTACTTC
35 GAATTAGAAGGTGCATTAA   dnaA      GAAUUAGAAGGUGCAUUAA  TTAATGCACCTTCTAATTC
36 GAATTGCATCAGAATAACA   dnaA      GAAUUGCAUCAGAAUAACA  TGTTATTCTGATGCAATTC
37 GCAATTTTGCAGAAGAAAA   dnaA      GCAAUUUUGCAGAAGAAAA  TTTTCTTCTGCAAAATTGC
38 GCAGAAGAAAATTGAAGAA   dnaA      GCAGAAGAAAAUUGAAGAA  TTCTTCAATTTTCTTCTGC
39 GCGTACAATCCATTATTTA   dnaA      GCGUACAAUCCAUUAUUUA  TAAATAATGGATTGTACGC
40 GCTGAAGCTTTAAAAGATA   dnaA      GCUGAAGCUUUAAAAGAUA  TATCTTTTAAAGCTTCAGC
41 GCTTACAGATTTCTCATTA   dnaA      GCUUACAGAUUUCUCAUUA  TAATGAGAAATCTGTAAGC
42 GGAAAAAGTGCTTGAAATT   dnaA      GGAAAAAGUGCUUGAAAUU  AATTTCAAGCACTTTTTCC
43 GGAAATTGCACAATTAGAA    dnaA     GGAAAUUGCACAAUUAGAA    TTCTAATTGTGCAATTTCC
44 GTAATATCGACGTCTTATT    dnaA     GUAAUAUCGACGUCUUAUU    AATAAGACGTCGATATTAC
45 CATCCAAGATATTCAAAAA    dnaA     CAUCCAAGAUAUUCAAAAA    TTTTTGAATATCTTGGATG
46 CTGAAGAATTAGCAAATTA    dnaA     CUGAAGAAUUAGCAAAUUA    TAATTTGCTAATTCTTCAG
47 GAAGAAAATTGAAGAAGAA    dnaA     GAAGAAAAUUGAAGAAGAA    TTCTTCTTCAATTTTCTTC
48 GATTTCTCATTACCTAAAA    dnaA     GAUUUCUCAUUACCUAAAA    TTTTAGGTAATGAGAAATC
49 GTAAAACCTCACTTTATTA    dnaA     GUAAAACCUCACUUUAUUA    TAATAAAGTGAGGTTTTAC
50 CAAATCAAATTCAATCTAA    dnaA     CAAAUCAAAUUCAAUCUAA    TTAGATTGAATTTGATTTG
51 CAAGAAGAATTTTTCTATA    dnaA     CAAGAAGAAUUUUUCUAUA    TATAGAAAAATTCTTCTTG
52 CCAAGATATTCAAAAAATT    dnaA     CCAAGAUAUUCAAAAAAUU    AATTTTTTGAATATCTTGG
53 CTATAATGTTAGAATTGAA    dnaA     CUAUAAUGUUAGAAUUGAA    TTCAATTCTAACATTATAG
54 GAAAATTGAAGAAGAAAAA    dnaA     GAAAAUUGAAGAAGAAAAA    TTTTTCTTCTTCAATTTTC
55 GAAGAATTAGCAAATTATA    dnaA     GAAGAAUUAGCAAAUUAUA    TATAATTTGCTAATTCTTC
56 GAATCTTGAAAAAGAAATA    dnaA     GAAUCUUGAAAAAGAAAUA    TATTTCTTTTTCAAGATTC
57 GCACAAGGTGTGCTTATGA    ftsZ     GCACAAGGUGUGCUUAUGA    TCATAAGCACACCTTGTGC
58 CTGGAGTAGAAGCTATGAA    ftsZ     CUGGAGUAGAAGCUAUGAA    TTCATAGCTTCTACTCCAG
59 CTGCAGATGAAGACGTTAA    ftsZ     CUGCAGAUGAAGACGUUAA    TTAACGTCTTCATCTGCAG
60 GTTACGCCAAGGTGTACAA    ftsZ     GUUACGCCAAGGUGUACAA    TTGTACACCTTGGCGTAAC
61 CCAAGATGCTGCAGATGAA    ftsZ     CCAAGAUGCUGCAGAUGAA    TTCATCTGCAGCATCTTGG
62 CGGTAGAAGCTGCTAAAAA    ftsZ     CGGUAGAAGCUGCUAAAAA    TTTTTAGCAGCTTCTACCG
63 GAAAGCTGCAGTAGATACA    ftsZ     GAAAGCUGCAGUAGAUACA    TGTATCTACTGCAGCTTTC
64 GGCGAGTCATTGTCATTAT    ftsZ     GGCGAGUCAUUGUCAUUAU    ATAATGACAATGACTCGCC
65 CACAAGGTGTGCTTATGAA    ftsZ     CACAAGGUGUGCUUAUGAA    TTCATAAGCACACCTTGTG
66 CGCTGTTTCTGGTGAAGTA    ftsZ     CGCUGUUUCUGGUGAAGUA    TACTTCACCAGAAACAGCG
67 CACCAGTCGTTGCTAAAAT    ftsZ     CACCAGUCGUUGCUAAAAU    ATTTTAGCAACGACTGGTG
68 CAGACGGTCAAGCTTTAAA    ftsZ     CAGACGGUCAAGCUUUAAA    TTTAAAGCTTGACCGTCTG
69 GCACCAGTCGTTGCTAAAA    ftsZ     GCACCAGUCGUUGCUAAAA    TTTTAGCAACGACTGGTGC
70 CACAGACGGTCAAGCTTTA    ftsZ     CACAGACGGUCAAGCUUUA    TAAAGCTTGACCGTCTGTG
71 GCGGTAGAAGCTGCTAAAA    ftsZ     GCGGUAGAAGCUGCUAAAA    TTTTAGCAGCTTCTACCGC
72 GTGCAGACATGGTATTTGT    ftsZ     GUGCAGACAUGGUAUUUGU    ACAAATACCATGTCTGCAC
73 CAGCACCAGTCGTTGCTAA    ftsZ     CAGCACCAGUCGUUGCUAA    TTAGCAACGACTGGTGCTG
74 CCAAATCGGTGAAAAATTA    ftsZ     CCAAAUCGGUGAAAAAUUA    TAATTTTTCACCGATTTGG
75 GAAAGACGTTCAAGAAGAA    ftsZ     GAAAGACGUUCAAGAAGAA    TTCTTCTTGAACGTCTTTC
76 GGTAGAAGCTGCTAAAAAA    ftsZ     GGUAGAAGCUGCUAAAAAA    TTTTTTAGCAGCTTCTACC
77 GCAGACGTTAAGACAATTA    ftsZ     GCAGACGUUAAGACAAUUA    TAATTGTCTTAACGTCTGC
78 CAATGATGGAAGCATTTAA    ftsZ     CAAUGAUGGAAGCAUUUAA    TTAAATGCTTCCATCATTG
79 GGAATCTCGTGAACAAATT    ftsZ     GGAAUCUCGUGAACAAAUU    AATTTGTTCACGAGATTCC
80 GAAGAAAGACGTTCAAGAA    ftsZ     GAAGAAAGACGUUCAAGAA    TTCTTGAACGTCTTTCTTC
81 CCTAGCTTCATTAGAAATA    ftsZ     CCUAGCUUCAUUAGAAAUA    TATTTCTAATGAAGCTAGG
82 GAACACATACAACTAAAGA    ftsZ     GAACACAUACAACUAAAGA    TCTTTAGTTGTATGTGTTC
83 GAAAGAACACATACAACTA    ftsZ     GAAAGAACACAUACAACUA    TAGTTGTATGTGTTCTTTC
84 GTAAGTGAAAGAACACATA    ftsZ     GUAAGUGAAAGAACACAUA    TATGTGTTCTTTCACTTAC
85 CAAGCAACTGATAGTGTAA    ftsZ     CAAGCAACUGAUAGUGUAA    TTACACTATCAGTTGCTTG
86 GATGAATCATTCACTTCAA    ftsZ     GAUGAAUCAUUCACUUCAA    TTGAAGTGAATGATTCATC
87 CAATGCAACTTCTAAAGAT    ftsZ     CAAUGCAACUUCUAAAGAU    ATCTTTAGAAGTTGCATTG
88 GCAATGCAACTTCTAAAGA    ftsZ     GCAAUGCAACUUCUAAAGA    TCTTTAGAAGTTGCATTGC
89  CTAGCAATGCAACTTCTAA   ftsZ    CUAGCAAUGCAACUUCUAA    TTAGAAGTTGCATTGCTAG
90C AACTGGTTTTGATGACAA    ftsZ    CAACUGGUUUUGAUGACAA    TTGTCATCAAAACCAGTTG
91  GATTTTCGGTACAGTTATT   ftsZ    GAUUUUCGGUACAGUUAUU    AATAACTGTACCGAAAATC
92  GCAGATGAAGACGTTAATA   ftsZ    GCAGAUGAAGACGUUAAUA    TATTAACGTCTTCATCTGC
93  CGAGTCATTGTCATTATTT   ftsZ    CGAGUCAUUGUCAUUAUUU    AAATAATGACAATGACTCG
94  GCGAGTCATTGTCATTATT   ftsZ    GCGAGUCAUUGUCAUUAUU    AATAATGACAATGACTCGC
95  GGTGTGCTTATGAATATTA   ftsZ    GGUGUGCUUAUGAAUAUUA    TAATATTCATAAGCACACC
96  CAAGGTGTGCTTATGAATA   ftsZ    CAAGGUGUGCUUAUGAAUA    TATTCATAAGCACACCTTG
97  CCATTACTTGAAACATCTA   ftsZ    CCAUUACUUGAAACAUCUA    TAGATGTTTCAAGTAATGG
98  CTGGTGAAGTAAACTTAGA   ftsZ    CUGGUGAAGUAAACUUAGA    TCTAAGTTTACTTCACCAG
99  CAAGGTATCTCAGACTTAA   ftsZ    CAAGGUAUCUCAGACUUAA    TTAAGTCTGAGATACCTTG
100 CCAATGATGGAAGCATTTA   ftsZ    CCAAUGAUGGAAGCAUUUA    TAAATGCTTCCATCATTGG
101 CAAATGACCGTTTATTAGA   ftsZ    CAAAUGACCGUUUAUUAGA    TCTAATAAACGGTCATTTG
102 GCTGCAGTAGATACATTAA   ftsZ    GCUGCAGUAGAUACAUUAA    TTAATGTATCTACTGCAGC
103 GTTGTAACTCGTCCATTTA   ftsZ    GUUGUAACUCGUCCAUUUA    TAAATGGACGAGTTACAAC
104 GCAGACATGGTATTTGTTA   ftsZ    GCAGACAUGGUAUUUGUUA    TAACAAATACCATGTCTGC
105 CCCTGAAATCGGTAAAAAA   ftsZ    CCCUGAAAUCGGUAAAAAA    TTTTTTACCGATTTCAGGG
106 CAAATCGGTGAAAAATTAA   ftsZ    CAAAUCGGUGAAAAAUUAA    TTAATTTTTCACCGATTTG
107 CGGTCAAGCTTTAAACTTA   ftsZ    CGGUCAAGCUUUAAACUUA    TAAGTTTAAAGCTTGACCG
108 CCAGCTGCTCCAAAAGAAA   infB    CCAGCUGCUCCAAAAGAAA    TTTCTTTTGGAGCAGCTGG
109 CGTGCTGTTGGTACAGTTA   infB    CGUGCUGUUGGUACAGUUA    TAACTGTACCAACAGCACG
110 GCTAATGCCTCAAATGGTA   infB    GCUAAUGCCUCAAAUGGUA    TACCATTTGAGGCATTAGC
111 GACCAGCTGTTGTAACAAT   infB    GACCAGCUGUUGUAACAAU    ATTGTTACAACAGCTGGTC
112 GCGATTGTAGTGGGTAATA   infB    GCGAUUGUAGUGGGUAAUA    TATTACCCACTACAATCGC
113 GGCGGAATCACTCAACATA   infB    GGCGGAAUCACUCAACAUA    TATGTTGAGTGATTCCGCC
114 GCGTTGAGGTTGAAGAAGA   infB    GCGUUGAGGUUGAAGAAGA    TCTTCTTCAACCTCAACGC
115 CAGCGGTTGGTGCGATTAA   infB    CAGCGGUUGGUGCGAUUAA    TTAATCGCACCAACCGCTG
116 GAGACCAGCTGTTGTAACA   infB    GAGACCAGCUGUUGUAACA    TGTTACAACAGCTGGTCTC
117 GTATCCGTGCAATGGTTAA   infB    GUAUCCGUGCAAUGGUUAA    TTAACCATTGCACGGATAC
118 CGAAGCTAGCATTGTACAA   infB    CGAAGCUAGCAUUGUACAA    TTGTACAATGCTAGCTTCG
119 CGTTGAGGTTGAAGAAGAA   infB    CGUUGAGGUUGAAGAAGAA    TTCTTCTTCAACCTCAACG
120 GTGATGGTATCGACGATTT   infB    GUGAUGGUAUCGACGAUUU    AAATCGTCGATACCATCAC
121 CCATCAACGCCTGTTGAAA   infB    CCAUCAACGCCUGUUGAAA    TTTCAACAGGCGTTGATGG
122 GGGATCGCTTTGTTGTATT   infB    GGGAUCGCUUUGUUGUAUU    AATACAACAAAGCGATCCC
123 GCGTGGTGCACAAGTAACA   infB    GCGUGGUGCACAAGUAACA    TGTTACTTGTGCACCACGC
124 GGTCCTTCTGCATCATTAT   infB    GGUCCUUCUGCAUCAUUAU    ATAATGATGCAGAAGGACC
125 GGTGCACAAGTAACAGATA   infB    GGUGCACAAGUAACAGAUA    TATCTGTTACTTGTGCACC
126 CCGGGACATGCTGCATTTA   infB    CCGGGACAUGCUGCAUUUA    TAAATGCAGCATGTCCCGG
127 GTGCTGCAGAAGCTGAAAA   infB    GUGCUGCAGAAGCUGAAAA    TTTTCAGCTTCTGCAGCAC
128 GGTGTTATGCCACAAACAA   infB    GGUGUUAUGCCACAAACAA    TTGTTTGTGGCATAACACC
129 CGTTCCACTTTCTGCATTA   infB    CGUUCCACUUUCUGCAUUA    TAATGCAGAAAGTGGAACG
130 GGGACATGCTGCATTTACA   infB    GGGACAUGCUGCAUUUACA    TGTAAATGCAGCATGTCCC
131 GGACATGCTGCATTTACAA   infB    GGACAUGCUGCAUUUACAA    TTGTAAATGCAGCATGTCC
132 CAAAAAGAATCAACAACAA   infB    CAAAAAGAAUCAACAACAA    TTGTTGTTGATTCTTTTTG
133 CAAAAGAAATACCATCAAA   infB    CAAAAGAAAUACCAUCAAA    TTTGATGGTATTTCTTTTG
134 CAAAATAAAGGGCAACAAA   infB    CAAAAUAAAGGGCAACAAA    TTTGTTGCCCTTTATTTTG
135 CAAAGATGATGCTAAGGAA   infB   CAAAGAUGAUGCUAAGGAA    TTCCTTAGCATCATCTTTG
136 CAATTAACCATGCTAAAGA   infB   CAAUUAACCAUGCUAAAGA    TCTTTAGCATGGTTAATTG
137 CAATTATTGTTGCAGTAAA   infB   CAAUUAUUGUUGCAGUAAA    TTTACTGCAACAATAATTG
138 CAGCTGTTGTAACAATTAT   infB   CAGCUGUUGUAACAAUUAU    ATAATTGTTACAACAGCTG
139 CATCAAAAGTGACATATCA   infB   CAUCAAAAGUGACAUAUCA    TGATATGTCACTTTTGATG
140 CATCAGAAATTATCAAAAA   infB   CAUCAGAAAUUAUCAAAAA    TTTTTGATAATTTCTGATG
141 CCATGGTAAAACTACTTTA   infB   CCAUGGUAAAACUACUUUA    TAAAGTAGTTTTACCATGG
142 CGAAAGAATTAAATCTAAA   infB   CGAAAGAAUUAAAUCUAAA    TTTAGATTTAATTCTTTCG
143 CGAGTTATGCAAGAATTAA   infB   CGAGUUAUGCAAGAAUUAA    TTAATTCTTGCATAACTCG
144 CGGAATCACTCAACATATT   infB   CGGAAUCACUCAACAUAUU    AATATGTTGAGTGATTCCG
145 CTACAATGACCTTAAAGAA   infB   CUACAAUGACCUUAAAGAA    TTCTTTAAGGTCATTGTAG
146 CTTAAACGTTATTATTAAA   infB   CUUAAACGUUAUUAUUAAA    TTTAATAATAACGTTTAAG
147 GAAATAATAAGAAAAATAA   infB   GAAAUAAUAAGAAAAAUAA    TTATTTTTCTTATTATTTC
148 GAAATACCATCAAAAGTGA   infB   GAAAUACCAUCAAAAGUGA    TCACTTTTGATGGTATTTC
149 GAAGTTCGTCAAACATTCA   infB   GAAGUUCGUCAAACAUUCA    TGAATGTTTGACGAACTTC
150 GAATTTGCGGATAAATTAA   infB   GAAUUUGCGGAUAAAUUAA    TTAATTTATCCGCAAATTC
151 GCACAAGTAACAGATATTA   infB   GCACAAGUAACAGAUAUUA    TAATATCTGTTACTTGTGC
152 GCTGCATCATTAATGAAAA   infB   GCUGCAUCAUUAAUGAAAA    TTTTCATTAATGATGCAGC
153 GCTTTAGCTGCATCATTAA   infB   GCUUUAGCUGCAUCAUUAA    TTAATGATGCAGCTAAAGC
154 GGCAACAAAGGCAATAAAA   infB   GGCAACAAAGGCAAUAAAA    TTTTATTGCCTTTGTTGCC
155 GGTTATGAATGTGGTATTA   infB   GGUUAUGAAUGUGGUAUUA    TAATACCACATTCATAACC
156 GTAAAAATGTTTCATTAGA   infB   GUAAAAAUGUUUCAUUAGA    TCTAATGAAACATTTTTAC
157 GTACAACAACGTCAAGAAA   infB   GUACAACAACGUCAAGAAA    TTTCTTGACGTTGTTGTAC
158 GTATCGACGATTTATTAGA   infB   GUAUCGACGAUUUAUUAGA    TCTAATAAATCGTCGATAC
159 GTATTACAATTGAAAACTA   infB   GUAUUACAAUUGAAAACUA    TAGTTTTCAATTGTAATAC
160 GTGATGGTATTGTTCAATA   infB   GUGAUGGUAUUGUUCAAUA    TATTGAACAATACCATCAC
161 GTTCCACTTTCTGCATTAA   infB   GUUCCACUUUCUGCAUUAA    TTAATGCAGAAAGTGGAAC
162 CAACGTCAAGAAAGTAAAA   infB   CAACGUCAAGAAAGUAAAA    TTTTACTTTCTTGACGTTG
163 CAATCAAAATCAAAATAAA   infB   CAAUCAAAAUCAAAAUAAA    TTTATTTTGATTTTGATTG
164 CCAGCTGTTGTAACAATTA   infB   CCAGCUGUUGUAACAAUUA    TAATTGTTACAACAGCTGG
165 CGAAGCTGAATTAGATAAA   infB   CGAAGCUGAAUUAGAUAAA    TTTATCTAATTCAGCTTCG
166 CGAATATGCGAAAGAATTA   infB   CGAAUAUGCGAAAGAAUUA    TAATTCTTTCGCATATTCG
167 CGAATTAGATACACTTAAA   infB   CGAAUUAGAUACACUUAAA    TTTAAGTGTATCTAATTCG
168 CGAATTTGCGGATAAATTA   infB   CGAAUUUGCGGAUAAAUUA    TAATTTATCCGCAAATTCG
169 CTACTTCGAAGACGAAAAA   infB   CUACUUCGAAGACGAAAAA    TTTTTCGTCTTCGAAGTAG
170 GAAAACGATGGCAAAAAAA   infB   GAAAACGAUGGCAAAAAAA    TTTTTTTGCCATCGTTTTC
171 GAAACAAGGTGAAATGAAA   infB   GAAACAAGGUGAAAUGAAA    TTTCATTTCACCTTGTTTC
172 GAAGCAGAAGTACCAATTA   infB   GAAGCAGAAGUACCAAUUA    TAATTGGTACTTCTGCTTC
173 GCAACAAAGGCAATAAAAA   infB   GCAACAAAGGCAAUAAAAA    TTTTTATTGCCTTTGTTGC
174 GGAAGATGACCAAATTAAA   infB   GGAAGAUGACCAAAUUAAA    TTTAATTTGGTCATCTTCC
175 GGATCGCTTTGTTGTATTT   infB   GGAUCGCUUUGUUGUAUUU    AAATACAACAAAGCGATCC
176 GTACAAAACGGTACATTAA   infB   GUACAAAACGGUACAUUAA    TTAATGTACCGTTTTGTAC
177 GTCGTTGATGCAACAAAGA   murA   GUCGUUGAUGCAACAAAGA    TCTTTGTTGCATCAACGAC
178 GTGTAGGAGCAACACAAAA   murA   GUGUAGGAGCAACACAAAA    TTTTGTGTTGCTCCTACAC
179 CTTTAGGCGCAGAAATTCA   murA   CUUUAGGCGCAGAAAUUCA    TGAATTTCTGCGCCTAAAG
180 CAGCAGCCGCCTTAATTTT   murA   CAGCAGCCGCCUUAAUUUU    AAAATTAAGGCGGCTGCTG
181 GTGGTGCAATCAAAGAACA    murA     GUGGUGCAAUCAAAGAACA    TGTTCTTTGATTGCACCAC
182 GCCTGGTGGTTGTGCAATT    murA     GCCUGGUGGUUGUGCAAUU    AATTGCACAACCACCAGGC
183 GAAGAGGCACCATATGAAT    murA     GAAGAGGCACCAUAUGAAU    ATTCATATGGTGCCTCTTC
184 CCGATTGAGCAACACATTA    murA     CCGAUUGAGCAACACAUUA    TAATGTGTTGCTCAATCGG
185 GCGCAGAAATTCATCTTGA    murA     GCGCAGAAAUUCAUCUUGA    TCAAGATGAATTTCTGCGC
186 GCTGGTACAGACACAATTA    murA     GCUGGUACAGACACAAUUA    TAATTGTGTCTGTACCAGC
187 GCAGCAGCCGCCTTAATTT    murA     GCAGCAGCCGCCUUAAUUU    AAATTAAGGCGGCTGCTGC
188 GCAAGGTGCACAAGTTAAA    murA     GCAAGGUGCACAAGUUAAA    TTTAACTTGTGCACCTTGC
189 GTTGCAGAGTTCAAACGTA    murA     GUUGCAGAGUUCAAACGUA    TACGTTTGAACTCTGCAAC
190 GCATGTTGCAGAGTTCAAA    murA     GCAUGUUGCAGAGUUCAAA    TTTGAACTCTGCAACATGC
191 CCTGGATTCCCGACTGATA    murA     CCUGGAUUCCCGACUGAUA    TATCAGTCGGGAATCCAGG
192 GTGCTGAAGGGGAATTACA    murA     GUGCUGAAGGGGAAUUACA    TGTAATTCCCCTTCAGCAC
193 CGACTGATATGCAATCACA    murA     CGACUGAUAUGCAAUCACA    TGTGATTGCATATCAGTCG
194 GCGTTGAATTGGACTATCA    murA     GCGUUGAAUUGGACUAUCA    TGATAGTCCAATTCAACGC
195 CTAATCGCTGGTGCTATAA    murA     CUAAUCGCUGGUGCUAUAA    TTATAGCACCAGCGATTAG
196 GAAGCAGGCACATTACTAA    murA     GAAGCAGGCACAUUACUAA    TTAGTAATGTGCCTGCTTC
197 GCAATTAGGTGCAGACATT    murA     GCAAUUAGGUGCAGACAUU    AATGTCTGCACCTAATTGC
198 GAGGCTATGTTGACTTACA    murA     GAGGCUAUGUUGACUUACA    TGTAAGTCAACATAGCCTC
199 GAATTAACGCACCTAGATA    murA     GAAUUAACGCACCUAGAUA    TATCTAGGTGCGTTAATTC
200 GAATGCTAATATCAATGTA    murA     GAAUGCUAAUAUCAAUGUA    TACATTGATATTAGCATTC
201 CCGAAACAGTTTTTGAAAA    murA     CCGAAACAGUUUUUGAAAA    TTTTCAAAAACTGTTTCGG
202 GATATGCAATCACAAATGA    murA     GAUAUGCAAUCACAAAUGA    TCATTTGTGATTGCATATC
203 CAACCTGTAGACATCAAAA    murA     CAACCUGUAGACAUCAAAA    TTTTGATGTCTACAGGTTG
204 CGAGTTTAGTCTATAAACT    murA     CGAGUUUAGUCUAUAAACU    AGTTTATAGACTAAACTCG
205 GGCGAGTTTAGTCTATAAA    murA     GGCGAGUUUAGUCUAUAAA    TTTATAGACTAAACTCGCC
206 GCGTGGTGATATTTTTGTA    murA     GCGUGGUGAUAUUUUUGUA    TACAAAAATATCACCACGC
207 CATTCCAGATAGAATTGAA    murA     CAUUCCAGAUAGAAUUGAA    TTCAATTCTATCTGGAATG
208 CAATGGTGTAGAATCATTA    murA     CAAUGGUGUAGAAUCAUUA    TAATGATTCTACACCATTG
209 CAGACACAATTACAATCAA    murA     CAGACACAAUUACAAUCAA    TTGATTGTAATTGTGTCTG
210 GTAAGACTTTAATTGAAAA    murA     GUAAGACUUUAAUUGAAAA    TTTTCAATTAAAGTCTTAC
211 GGGTAAGACTTTAATTGAA    murA     GGGUAAGACUUUAAUUGAA    TTCAATTAAAGTCTTACCC
212 CTAAGGGTAAGACTTTAAT    murA     CUAAGGGUAAGACUUUAAU    ATTAAAGTCTTACCCTTAG
213 GCTAAGGGTAAGACTTTAA    murA     GCUAAGGGUAAGACUUUAA    TTAAAGTCTTACCCTTAGC
214 GCAACACAAAATATTATTA    murA     GCAACACAAAAUAUUAUUA    TAATAATATTTTGTGTTGC
215 GTACATCAATTCATTTAGA    murA     GUACAUCAAUUCAUUUAGA    TCTAAATGAATTGATGTAC
216 GGATTAAAAGGTACATCAA    murA     GGAUUAAAAGGUACAUCAA    TTGATGTACCTTTTAATCC
217 GCAGAAATTCATCTTGAAA    murA     GCAGAAAUUCAUCUUGAAA    TTTCAAGATGAATTTCTGC
218 CGCAGAAATTCATCTTGAA    murA     CGCAGAAAUUCAUCUUGAA    TTCAAGATGAATTTCTGCG
219 GCAACACATTAAAGGTTTT    murA     GCAACACAUUAAAGGUUUU    AAAACCTTTAATGTGTTGC
220 GATTGAGCAACACATTAAA    murA     GAUUGAGCAACACAUUAAA    TTTAATGTGTTGCTCAATC
221 GCACCATATGAATATGTTA    murA     GCACCAUAUGAAUAUGUUA    TAACATATTCATATGGTGC
222 CAAAGACTCTAAATGAAGA    murA     CAAAGACUCUAAAUGAAGA    TCTTCATTTAGAGTCTTTG
223 CAACAAAGACTCTAAATGA    murA     CAACAAAGACUCUAAAUGA    TCATTTAGAGTCTTTGTTG
224 CTGACGTTACATACAAAAA    murA     CUGACGUUACAUACAAAAA    TTTTTGTATGTAACGTCAG
225 CGAGCAAATTAGTTAATGT    murA     CGAGCAAAUUAGUUAAUGU    ACATTAACTAATTTGCTCG
226 GCAGTATTACCAATATTGA    murA     GCAGUAUUACCAAUAUUGA    TCAATATTGGTAATACTGC
227 GGGTGAAGTTAAAGTAGAA    murA    GGGUGAAGUUAAAGUAGAA    TTCTACTTTAACTTCACCC
228 CAAAGGTGGAAATAAATTA    murA    CAAAGGUGGAAAUAAAUUA    TAATTTATTTCCACCTTTG
229 GTAATCAAAGGTGGAAATA    murA    GUAAUCAAAGGUGGAAAUA    TATTTCCACCTTTGATTAC
230 GCAGACATTGAACGTATTA    murA    GCAGACAUUGAACGUAUUA    TAATACGTTCAATGTCTGC
231 GAAATGGGTGGTAGAATTA    murA    GAAAUGGGUGGUAGAAUUA    TAATTCTACCACCCATTTC
232 GGAGCAACACAAAATATTA    murA    GGAGCAACACAAAAUAUUA    TAATATTTTGTGTTGCTCC
233 GTAGGAGCAACACAAAATA    murA    GUAGGAGCAACACAAAAUA    TATTTTGTGTTGCTCCTAC
234 CGATTGAGCAACACATTAA    murA    CGAUUGAGCAACACAUUAA    TTAATGTGTTGCTCAATCG
235 CTGTTGAACGTGTGAACTA    rpoA    CUGUUGAACGUGUGAACUA    TAGTTCACACGTTCAACAG
236 GTAACAGCAAGCGACATTA    rpoA    GUAACAGCAAGCGACAUUA    TAATGTCGCTTGCTGTTAC
237 CTCAGCAGTAGACAATGTA    rpoA    CUCAGCAGUAGACAAUGUA    TACATTGTCTACTGCTGAG
238 CAGCCGTTAAGTACATTGA    rpoA    CAGCCGUUAAGUACAUUGA    TCAATGTACTTAACGGCTG
239 GTGCAGCCGTTAAGTACAT    rpoA    GUGCAGCCGUUAAGUACAU    ATGTACTTAACGGCTGCAC
240 CGTTGGTCTTACTGATGAA    rpoA    CGUUGGUCUUACUGAUGAA    TTCATCAGTAAGACCAACG
241 CTGAAGCTGACATGATGAA    rpoA    CUGAAGCUGACAUGAUGAA    TTCATCATGTCAGCTTCAG
242 GTAGGTCAAAGCAGTGATT    rpoA    GUAGGUCAAAGCAGUGAUU    AATCACTGCTTTGACCTAC
243 CCCAGAGCTTAAAATTGCA    rpoA    CCCAGAGCUUAAAAUUGCA    TGCAATTTTAAGCTCTGGG
244 CAGGTGCAGCCGTTAAGTA    rpoA    CAGGUGCAGCCGUUAAGUA    TACTTAACGGCTGCACCTG
245 CTCCTTACGTCGTATCCTA    rpoA    CUCCUUACGUCGUAUCCUA    TAGGATACGACGTAAGGAG
246 CAATTCTGTTCAAGAGTTA    rpoA    CAAUUCUGUUCAAGAGUUA    TAACTCTTGAACAGAATTG
247 GCATTAGCAGAACAAAATA    rpoA    GCAUUAGCAGAACAAAAUA    TATTTTGTTCTGCTAATGC
248 CTAAAGGTGGTCACTTAAA    rpoA    CUAAAGGUGGUCACUUAAA    TTTAAGTGACCACCTTTAG
249 CAATTATTATGAACATTAA    rpoA    CAAUUAUUAUGAACAUUAA    TTAATGTTCATAATAATTG
250 GAAGATGTTTCTACAATTA    rpoA    GAAGAUGUUUCUACAAUUA    TAATTGTAGAAACATCTTC
251 GATGAAAGTGCGTAATTTA    rpoA    GAUGAAAGUGCGUAAUUUA    TAAATTACGCACTTTCATC
252 CAGTGATTTTGATAAATTA    rpoA    CAGUGAUUUUGAUAAAUUA    TAATTTATCAAAATCACTG
253 GCAGTGATTTTGATAAATT    rpoA    GCAGUGAUUUUGAUAAAUU    AATTTATCAAAATCACTGC
254 CAAAGCAGTGATTTTGATA    rpoA    CAAAGCAGUGAUUUUGAUA    TATCAAAATCACTGCTTTG
255 CTATACTGTTGAAAATACA    rpoA    CUAUACUGUUGAAAAUACA    TGTATTTTCAACAGTATAG
256 GAACTATACTGTTGAAAAT    rpoA    GAACUAUACUGUUGAAAAU    ATTTTCAACAGTATAGTTC
257 CAGTGATGTTGAAATTTTA    rpoA    CAGUGAUGUUGAAAUUUUA    TAAAATTTCAACATCACTG
258 CAATTAGCATTGAAAATTT    rpoA    CAAUUAGCAUUGAAAAUUU    AAATTTTCAATGCTAATTG
259 CAATGTAGTTGAAGATGTT    rpoA    CAAUGUAGUUGAAGAUGUU    AACATCTTCAACTACATTG
260 GCCGTTAAGTACATTGAAA    rpoA    GCCGUUAAGUACAUUGAAA    TTTCAATGTACTTAACGGC
261 GTATCCTACTATCTTCATT    rpoA    GUAUCCUACUAUCUUCAUU    AATGAAGATAGTAGGATAC
262 CTAGAATTGAGACAATTGA    rpoA    CUAGAAUUGAGACAAUUGA    TCAATTGTCTCAATTCTAG
263 GATTTAGGATTAGGATTAA    rpoA    GAUUUAGGAUUAGGAUUAA    TTAATCCTAATCCTAAATC
264 CTTTAGAAGAAGTTAAATA    rpoA    CUUUAGAAGAAGUUAAAUA    TATTTAACTTCTTCTAAAG
265 CGTAATTTAGGTCGTAAAT    rpoA    CGUAAUUUAGGUCGUAAAU    ATTTACGACCTAAATTACG
266 GCGTAATTTAGGTCGTAAA    rpoA    GCGUAAUUUAGGUCGUAAA    TTTACGACCTAAATTACGC
267 GAAAGTGCGTAATTTAGGT    rpoA    GAAAGUGCGUAAUUUAGGU    ACCTAAATTACGCACTTTC
268 GAATCAATTCTGTTCAAGA    rpoA    GAAUCAAUUCUGUUCAAGA    TCTTGAACAGAATTGATTC
269 CGTTCATATAACTGCTTAA    rpoA    CGUUCAUAUAACUGCUUAA    TTAAGCAGTTATATGAACG
270 GAAGAAGATCAAAAAGAAA    rpoA    GAAGAAGAUCAAAAAGAAA    TTTCTTTTTGATCTTCTTC
271 CTGAAATCATGATTGAAAA    rpoA    CUGAAAUCAUGAUUGAAAA    TTTTCAATCATGATTTCAG
272 GCTGAAATCATGATTGAAA    rpoA    GCUGAAAUCAUGAUUGAAA    TTTCAATCATGATTTCAGC
273 CAAAACGCTGAAATCATGA    rpoA  CAAAACGCUGAAAUCAUGA    TCATGATTTCAGCGTTTTG
274 CTGAACACTTGAATATCTT    rpoA  CUGAACACUUGAAUAUCUU    AAGATATTCAAGTGTTCAG
275 GTTTCATTAGCAGCAAAAA    rpoA  GUUUCAUUAGCAGCAAAAA    TTTTTGCTGCTAATGAAAC
276 CCACAAGAATCAGTTTCAT    rpoA  CCACAAGAAUCAGUUUCAU    ATGAAACTGATTCTTGTGG
277 GACTAATGGTTCAATCACA    rpoA  GACUAAUGGUUCAAUCACA    TGTGATTGAACCATTAGTC
278 GTCAAAGCAGTGATTTTGA    rpoA  GUCAAAGCAGUGAUUUUGA    TCAAAATCACTGCTTTGAC
279 GTTGAACGTGTGAACTATA    rpoA  GUUGAACGUGUGAACUAUA    TATAGTTCACACGTTCAAC
280 CCTGTTGATTCATTGTATT    rpoA  CCUGUUGAUUCAUUGUAUU    AATACAATGAATCAACAGG
281 CCCTGTTGATTCATTGTAT    rpoA  CCCUGUUGAUUCAUUGUAU    ATACAATGAATCAACAGGG
282 GCAGAACAAAATAATACTA    rpoA  GCAGAACAAAAUAAUACUA    TAGTATTATTTTGTTCTGC
283 CATTAGCAGAACAAAATAA    rpoA  CAUUAGCAGAACAAAAUAA    TTATTTTGTTCTGCTAATG
284 CGCATTAGCAGAACAAAAT    rpoA  CGCAUUAGCAGAACAAAAU    ATTTTGTTCTGCTAATGCG
285 GCTTAAAATTGCAACAGTA    rpoA  GCUUAAAAUUGCAACAGUA    TACTGTTGCAATTTTAAGC
286 CCAGAGCTTAAAATTGCAA    rpoA  CCAGAGCUUAAAAUUGCAA    TTGCAATTTTAAGCTCTGG
287 GTGATGTTGAAATTTTAAA    rpoA  GUGAUGUUGAAAUUUUAAA    TTTAAAATTTCAACATCAC
288 GAAGATAAAACTTTAGAAA    rpoA  GAAGAUAAAACUUUAGAAA    TTTCTAAAGTTTTATCTTC
289 GAAAATTTACTCTGAAGAA    rpoA  GAAAAUUUACUCUGAAGAA    TTCTTCAGAGTAAATTTTC
290 CTACAATTATTATGAACAT    rpoA  CUACAAUUAUUAUGAACAU    ATGTTCATAATAATTGTAG
291 GATGTTTCTACAATTATTA    rpoA  GAUGUUUCUACAAUUAUUA    TAATAATTGTAGAAACATC
292 GTTGAAGATGTTTCTACAA    rpoA  GUUGAAGAUGUUUCUACAA    TTGTAGAAACATCTTCAAC
293 GTAGTTGAAGATGTTTCTA    rpoA  GUAGUUGAAGAUGUUUCUA    TAGAAACATCTTCAACTAC
294 GAGGGAGTTTTACATGAAT    rpoA  GAGGGAGUUUUACAUGAAU    ATTCATGTAAAACTCCCTC
295 CCTACTATCTTCATTACCA    rpoA  CCUACUAUCUUCAUUACCA    TGGTAATGAAGATAGTAGG
296 CGTTGTTGAACCACTAGAA    rpoA  CGUUGUUGAACCACUAGAA    TTCTAGTGGTTCAACAACG
297 CGGTAAGTTCGTTGTTGAA    rpoA  CGGUAAGUUCGUUGUUGAA    TTCAACAACGAACTTACCG
298 GAAAAACCTAGAATTGAGA    rpoA  GAAAAACCUAGAAUUGAGA    TCTCAATTCTAGGTTTTTC
299 ATTGGCCAATACAGGAACA    mecA  AUUGGCCAAUACAGGAACA    TGTTCCTGTATTGGCCAAT
300 GAAGATGGCTATCGTGTCA    mecA  GAAGAUGGCUAUCGUGUCA    TGACACGATAGCCATCTTC
301 ACAATCGCACATACATTAA    mecA  ACAAUCGCACAUACAUUAA    TTAATGTATGTGCGATTGT
302 TACAAGATATGAAGTGGTA    mecA  UACAAGAUAUGAAGUGGUA    TACCACTTCATATCTTGTA
303 AGGTGTTGGTGAAGATATA    mecA  AGGUGUUGGUGAAGAUAUA    TATATCTTCACCAACACCT
304 TGATTCAGGTTACGGACAA    mecA  UGAUUCAGGUUACGGACAA    TTGTCCGTAACCTGAATCA
305 TTCAATCTATAGCGCATTA    mecA  UUCAAUCUAUAGCGCAUUA    TAATGCGCTATAGATTGAA
306 TGAACGTCCGATAAAAATA    mecA  UGAACGUCCGAUAAAAAUA    TATTTTTATCGGACGTTCA
307 GTTTAGGCGTTAAAGATAT    mecA  GUUUAGGCGUUAAAGAUAU    ATATCTTTAACGCCTAAAC
308 ATCGCAACGTTCAATTTAA    mecA  AUCGCAACGUUCAAUUUAA    TTAAATTGAACGTTGCGAT
309 AAAAGCGACTTCACATCTA    mecA  AAAAGCGACUUCACAUCUA    TAGATGTGAAGTCGCTTTT
310 TCACAATCGTTGACGATAA    mecA  UCACAAUCGUUGACGAUAA    TTATCGTCAACGATTGTGA
311 TCACCAGGTTCAACTCAAA    mecA  UCACCAGGUUCAACUCAAA    TTTGAGTTGAACCTGGTGA
312 CCAGGTTCAACTCAAAAAA    mecA  CCAGGUUCAACUCAAAAAA    TTTTTTGAGTTGAACCTGG
313 GCAATGATTGGGTTAAATA    mecA  GCAAUGAUUGGGUUAAAUA    TATTTAACCCAATCATTGC
314 CAACGTTACAAGATATGAA    mecA  CAACGUUACAAGAUAUGAA    TTCATATCTTGTAACGTTG
315 TGAAGTGGTAAATGGTAAT    mecA  UGAAGUGGUAAAUGGUAAU    ATTACCATTTACCACTTCA
316 GAAGTGGTAAATGGTAATA    mecA  GAAGUGGUAAAUGGUAAUA    TATTACCATTTACCACTTC
317 GCAATAGAATCATCAGATA    mecA  GCAAUAGAAUCAUCAGAUA    TATCTGATGATTCTATTGC
318 AAAACTAGGTGTTGGTGAA    mecA  AAAACUAGGUGUUGGUGAA    TTCACCAACACCTAGTTTT
319 CCAAGTGATTATCCATTTT   mecA   CCAAGUGAUUAUCCAUUUU   AAAATGGATAATCACTTGG
320 TTACGGACAAGGTGAAATA   mecA   UUACGGACAAGGUGAAAUA   TATTTCACCTTGTCCGTAA
321 GGACAAGGTGAAATACTGA   mecA   GGACAAGGUGAAAUACUGA   TCAGTATTTCACCTTGTCC
322 CAAGGTGAAATACTGATTA   mecA   CAAGGUGAAAUACUGAUUA   TAATCAGTATTTCACCTTG
323 CTATAGCGCATTAGAAAAT   mecA   CUAUAGCGCAUUAGAAAAU   ATTTTCTAATGCGCTATAG
324 AGACACGAAAAACAAAGTT   mecA   AGACACGAAAAACAAAGUU   AACTTTGTTTTTCGTGTCT
325 TGCAACAAGTCGTAAATAA   mecA   UGCAACAAGUCGUAAAUAA   TTATTTACGACTTGTTGCA
序列表
<110>李,宝健
<120>用于抑制和杀灭耐药性细菌的双链小分子干扰核酸及其组合
<140>
<141>2007-12-14
<160>325
<170>PatentIn version 3.4
<210>1
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>1
Figure A200710032458D00231
<210>2
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>2
<210>3
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>3
Figure A200710032458D00233
<210>4
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>4
Figure A200710032458D00234
<210>5
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>5
<210>6
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>6
<210>7
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>7
Figure A200710032458D00242
<210>8
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>8
<210>9
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>9
Figure A200710032458D00244
<210>10
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>10
Figure A200710032458D00245
<210>11
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>11
Figure A200710032458D00246
<210>12
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>12
Figure A200710032458D00251
<210>13
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>13
<210>14
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>14
Figure A200710032458D00253
<210>15
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>15
Figure A200710032458D00254
<210>16
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>16
Figure A200710032458D00255
<210>17
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>17
Figure A200710032458D00256
<210>18
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>18
Figure A200710032458D00257
<210>19
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>19
Figure A200710032458D00261
<210>20
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>20
Figure A200710032458D00262
<210>21
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>21
Figure A200710032458D00263
<210>22
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>22
Figure A200710032458D00264
<210>23
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>23
Figure A200710032458D00265
<210>24
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>24
Figure A200710032458D00266
<210>25
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>25
Figure A200710032458D00271
<210>26
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>26
Figure A200710032458D00272
<210>27
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>27
Figure A200710032458D00273
<210>28
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>28
Figure A200710032458D00274
<210>29
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>29
<210>30
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>30
<210>31
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>31
Figure A200710032458D00277
<210>32
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>32
<210>33
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>33
Figure A200710032458D00282
<210>34
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>34
<210>35
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>35
Figure A200710032458D00284
<210>36
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>36
Figure A200710032458D00285
<210>37
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>37
Figure A200710032458D00286
<210>38
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>38
Figure A200710032458D00291
<210>39
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>39
Figure A200710032458D00292
<210>40
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>40
Figure A200710032458D00293
<210>41
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>41
Figure A200710032458D00294
<210>42
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>42
Figure A200710032458D00295
<210>43
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>43
Figure A200710032458D00296
<210>44
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>44
Figure A200710032458D00297
<210>45
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>45
Figure A200710032458D00301
<210>46
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>46
Figure A200710032458D00302
<210>47
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>47
Figure A200710032458D00303
<210>48
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>48
<210>49
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>49
<210>50
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>50
Figure A200710032458D00306
<210>51
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>51
Figure A200710032458D00311
<210>52
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>52
Figure A200710032458D00312
<210>53
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>53
<210>54
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>54
Figure A200710032458D00314
<210>55
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>55
<210>56
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>56
Figure A200710032458D00316
<210>57
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>57
Figure A200710032458D00317
<210>58
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>58
Figure A200710032458D00321
<210>59
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>59
Figure A200710032458D00322
<210>60
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>60
Figure A200710032458D00323
<210>61
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>61
Figure A200710032458D00324
<210>62
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>62
Figure A200710032458D00325
<210>63
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>63
Figure A200710032458D00326
<210>64
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>64
Figure A200710032458D00331
<210>65
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>65
Figure A200710032458D00332
<210>66
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>66
Figure A200710032458D00333
<210>67
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>67
Figure A200710032458D00334
<210>68
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>68
Figure A200710032458D00335
<210>69
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>69
Figure A200710032458D00336
<210>70
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>70
Figure A200710032458D00341
<210>71
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>71
Figure A200710032458D00342
<210>72
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>72
Figure A200710032458D00343
<210>73
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>73
Figure A200710032458D00344
<210>74
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>74
Figure A200710032458D00345
<210>75
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>75
<210>76
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>76
Figure A200710032458D00347
<210>77
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>77
Figure A200710032458D00351
<210>78
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>78
Figure A200710032458D00352
<210>79
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>79
Figure A200710032458D00353
<210>80
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>80
Figure A200710032458D00354
<210>81
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>81
Figure A200710032458D00355
<210>82
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>82
Figure A200710032458D00356
<210>83
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>83
Figure A200710032458D00361
<210>84
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>84
Figure A200710032458D00362
<210>85
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>85
Figure A200710032458D00363
<210>86
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>86
<210>87
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>87
Figure A200710032458D00365
<210>88
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>88
Figure A200710032458D00366
<210>89
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>89
Figure A200710032458D00367
<210>90
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>90
Figure A200710032458D00371
<210>91
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>91
Figure A200710032458D00372
<210>92
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>92
<210>93
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>93
Figure A200710032458D00374
<210>94
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>94
<210>95
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>95
Figure A200710032458D00376
<210>96
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>96
Figure A200710032458D00381
<210>97
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>97
Figure A200710032458D00382
<210>98
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>98
Figure A200710032458D00383
<210>99
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>99
Figure A200710032458D00384
<210>100
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>100
Figure A200710032458D00385
<210>101
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>101
Figure A200710032458D00386
<210>102
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>102
Figure A200710032458D00387
<210>103
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>103
Figure A200710032458D00391
<210>104
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>104
<210>105
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>105
Figure A200710032458D00393
<210>106
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>106
<210>107
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>107
Figure A200710032458D00395
<210>108
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>108
<210>109
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>109
Figure A200710032458D00401
<210>110
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>110
Figure A200710032458D00402
<210>111
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>111
Figure A200710032458D00403
<210>112
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>112
<210>113
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>113
Figure A200710032458D00405
<210>114
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>114
<210>115
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>115
<210>116
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>116
Figure A200710032458D00411
<210>117
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>117
Figure A200710032458D00412
<210>118
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>118
Figure A200710032458D00413
<210>119
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>119
<210>120
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>120
Figure A200710032458D00415
<210>121
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>121
Figure A200710032458D00416
<210>122
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>122
Figure A200710032458D00421
<210>123
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>123
Figure A200710032458D00422
<210>124
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>124
Figure A200710032458D00423
<210>125
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>125
Figure A200710032458D00424
<210>126
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>126
Figure A200710032458D00425
<210>127
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>127
Figure A200710032458D00426
<210>128
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>128
Figure A200710032458D00427
<210>129
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>129
Figure A200710032458D00431
<210>130
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>130
Figure A200710032458D00432
<210>131
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>131
Figure A200710032458D00433
<210>132
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>132
Figure A200710032458D00434
<210>133
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphy lococcus aureus
<400>133
Figure A200710032458D00435
<210>134
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>134
Figure A200710032458D00436
<210>135
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>135
Figure A200710032458D00441
<210>136
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>136
<210>137
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>137
Figure A200710032458D00443
<210>138
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>138
Figure A200710032458D00444
<210>139
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>139
Figure A200710032458D00445
<210>140
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>140
Figure A200710032458D00446
<210>141
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>141
Figure A200710032458D00447
<210>142
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>142
Figure A200710032458D00451
<210>143
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>143
Figure A200710032458D00452
<210>144
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>144
<210>145
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>145
Figure A200710032458D00454
<210>146
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>146
Figure A200710032458D00455
<210>147
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>147
Figure A200710032458D00456
<210>148
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>148
Figure A200710032458D00461
<210>149
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>149
Figure A200710032458D00462
<210>150
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>150
Figure A200710032458D00463
<210>151
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>151
Figure A200710032458D00464
<210>152
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>152
Figure A200710032458D00465
<210>153
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>153
Figure A200710032458D00466
<210>154
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>154
Figure A200710032458D00467
<210>155
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>155
<210>156
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>156
Figure A200710032458D00472
<210>157
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>157
Figure A200710032458D00473
<210>158
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>158
Figure A200710032458D00474
<210>159
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>159
Figure A200710032458D00475
<210>160
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>160
Figure A200710032458D00476
<210>161
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>161
Figure A200710032458D00481
<210>162
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>162
Figure A200710032458D00482
<210>163
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>163
Figure A200710032458D00483
<210>164
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>164
Figure A200710032458D00484
<210>165
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>165
Figure A200710032458D00485
<210>166
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>166
Figure A200710032458D00486
<210>167
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>167
<210>168
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>168
Figure A200710032458D00491
<210>169
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>169
Figure A200710032458D00492
<210>170
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>170
Figure A200710032458D00493
<210>171
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>171
Figure A200710032458D00494
<210>172
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>172
Figure A200710032458D00495
<210>173
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>173
Figure A200710032458D00496
<210>174
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>174
Figure A200710032458D00501
<210>175
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>175
Figure A200710032458D00502
<210>176
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>176
Figure A200710032458D00503
<210>177
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>177
Figure A200710032458D00504
<210>178
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>178
Figure A200710032458D00505
<210>179
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>179
Figure A200710032458D00506
<210>180
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>180
Figure A200710032458D00507
<210>181
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>181
Figure A200710032458D00511
<210>182
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>182
Figure A200710032458D00512
<210>183
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>183
<210>184
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>184
Figure A200710032458D00514
<210>185
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>185
Figure A200710032458D00515
<210>186
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>186
Figure A200710032458D00516
<210>187
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>187
Figure A200710032458D00521
<210>188
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>188
<210>189
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>189
<210>190
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>190
Figure A200710032458D00524
<210>191
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>191
Figure A200710032458D00525
<210>192
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>192
Figure A200710032458D00526
<210>193
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>193
Figure A200710032458D00527
<210>194
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>194
Figure A200710032458D00531
<210>195
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>195
Figure A200710032458D00532
<210>196
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>196
<210>197
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>197
<210>198
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>198
Figure A200710032458D00535
<210>199
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>199
Figure A200710032458D00536
<210>200
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>200
Figure A200710032458D00541
<210>201
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>201
<210>202
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>202
Figure A200710032458D00543
<210>203
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>203
<210>204
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>204
Figure A200710032458D00545
<210>205
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>205
<210>206
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>206
Figure A200710032458D00547
<210>207
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>207
Figure A200710032458D00551
<210>208
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>208
Figure A200710032458D00552
<210>209
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>209
Figure A200710032458D00553
<210>210
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>210
Figure A200710032458D00554
<210>211
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>211
<210>212
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>212
<210>213
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>213
Figure A200710032458D00561
<210>214
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>214
Figure A200710032458D00562
<210>215
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>215
Figure A200710032458D00563
<210>216
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>216
<210>217
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>217
Figure A200710032458D00565
<210>218
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>218
Figure A200710032458D00566
<210>219
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>219
Figure A200710032458D00567
<210>220
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>220
Figure A200710032458D00571
<210>221
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>221
Figure A200710032458D00572
<210>222
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>222
Figure A200710032458D00573
<210>223
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>223
Figure A200710032458D00574
<210>224
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>224
<210>225
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>225
Figure A200710032458D00576
<210>226
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphy lococcus aureus
<400>226
Figure A200710032458D00581
<210>227
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>227
<210>228
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>228
Figure A200710032458D00583
<210>229
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>229
<210>230
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>230
<210>231
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>231
Figure A200710032458D00586
<210>232
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>232
Figure A200710032458D00587
<210>233
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>233
Figure A200710032458D00591
<210>234
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>234
Figure A200710032458D00592
<210>235
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>235
Figure A200710032458D00593
<210>236
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>236
Figure A200710032458D00594
<210>237
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>237
Figure A200710032458D00595
<210>238
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>238
<210>239
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>239
<210>240
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>240
<210>241
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>241
Figure A200710032458D00603
<210>242
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>242
Figure A200710032458D00604
<210>243
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>243
<210>244
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>244
Figure A200710032458D00606
<210>245
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>245
Figure A200710032458D00607
<210>246
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>246
Figure A200710032458D00611
<210>247
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>247
Figure A200710032458D00612
<210>248
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>248
<210>249
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>249
Figure A200710032458D00614
<210>250
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>250
Figure A200710032458D00615
<210>251
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>251
Figure A200710032458D00616
<210>252
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>252
<210>253
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>253
Figure A200710032458D00622
<210>254
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>254
Figure A200710032458D00623
<210>255
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>255
Figure A200710032458D00624
<210>256
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>256
Figure A200710032458D00625
<210>257
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>257
Figure A200710032458D00626
<210>258
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>258
Figure A200710032458D00627
<210>259
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>259
Figure A200710032458D00631
<210>260
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>260
Figure A200710032458D00632
<210>261
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>261
Figure A200710032458D00633
<210>262
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>262
<210>263
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>263
Figure A200710032458D00635
<210>264
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>264
Figure A200710032458D00636
<210>265
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>265
Figure A200710032458D00641
<210>266
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>266
<210>267
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>267
Figure A200710032458D00643
<210>268
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>268
Figure A200710032458D00644
<210>269
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>269
Figure A200710032458D00645
<210>270
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>270
<210>271
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>271
Figure A200710032458D00647
<210>272
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>272
Figure A200710032458D00651
<210>273
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>273
Figure A200710032458D00652
<210>274
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>274
Figure A200710032458D00653
<210>275
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>275
<210>276
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>276
<210>277
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>277
<210>278
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>278
Figure A200710032458D00661
<210>279
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>279
Figure A200710032458D00662
<210>280
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>280
Figure A200710032458D00663
<210>281
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>281
Figure A200710032458D00664
<210>282
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>282
Figure A200710032458D00665
<210>283
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>283
Figure A200710032458D00666
<210>284
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>284
Figure A200710032458D00667
<210>285
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>285
Figure A200710032458D00671
<210>286
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>286
Figure A200710032458D00672
<210>287
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>287
<210>288
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>288
Figure A200710032458D00674
<210>289
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>289
Figure A200710032458D00675
<210>290
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>290
<210>291
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>291
Figure A200710032458D00681
<210>292
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>292
Figure A200710032458D00682
<210>293
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>293
Figure A200710032458D00683
<210>294
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>294
Figure A200710032458D00684
<210>295
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>295
Figure A200710032458D00685
<210>296
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>296
Figure A200710032458D00686
<210>297
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>297
Figure A200710032458D00687
<210>298
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>298
Figure A200710032458D00691
<210>299
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>299
Figure A200710032458D00692
<210>300
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>300
Figure A200710032458D00693
<210>301
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>301
Figure A200710032458D00694
<210>302
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>302
Figure A200710032458D00695
<210>303
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>303
<210>304
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>304
Figure A200710032458D00701
<210>305
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>305
Figure A200710032458D00702
<210>306
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>306
Figure A200710032458D00703
<210>307
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>307
Figure A200710032458D00704
<210>308
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>308
Figure A200710032458D00705
<210>309
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>309
Figure A200710032458D00706
<210>310
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>310
Figure A200710032458D00707
<210>311
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>311
Figure A200710032458D00711
<210>312
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>312
Figure A200710032458D00712
<210>313
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>313
<210>314
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>314
<210>315
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>315
Figure A200710032458D00715
<210>316
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>316
Figure A200710032458D00716
<210>317
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphy lococcus aureus
<400>317
Figure A200710032458D00721
<210>318
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>318
Figure A200710032458D00722
<210>319
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>319
<210>320
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>320
<210>321
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>321
Figure A200710032458D00725
<210>322
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>322
Figure A200710032458D00726
<210>323
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>323
Figure A200710032458D00727
<210>324
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>324
Figure A200710032458D00731
<210>325
<211>19
<212>DNA
<213>金黄色葡萄球菌Staphylococcus aureus
<400>325
Figure A200710032458D00732

Claims (8)

1、用于抑制和杀灭各种耐药性细菌的双链小分子干扰核酸,其特征在于:所述的双链小分子干扰核酸即siNA为双链分子,有19个碱基配对,正义链和反义链各自在5’末端有两个突出碱基dT,GC含量为40-55%,包括双链RNA、双链DNA、RNA/DNA、DNA/RNA;所针对的靶序列选自金黄色葡萄球菌基因组中与复制,转录,翻译等生命活动的有关基因,以及与耐药性相关的mecA基因;所述靶序列在90%以上的金黄色葡萄球菌株中保守的且与人体基因组中的所有基因序列不同源的序列区域;所述的siNA双链分子的靶序列选自SEQ ID NO.1-325,正义链是与靶序列一一对应的DNA或RNA序列,反义链是根据碱基互补原则与正义链序列一一相应的RNA或DNA。
2、根据权利要求1所述的双链小分子干扰核酸,其特征在于:所述的与复制,转录,翻译等生命活动的有关基因是rpoA基因、ftsZ基因、infB基因、murA基因、dnaA基因;所述的与耐药性相关的基因是mecA基因;所述的靶序列中,SEQ ID NO.1-56是来自rpoA基因,SEQ ID NO.57-107是来自ftsZ基因,SEQ ID NO.108-176是来自infB基因,SEQID NO.177-234是来自murA基因,SEQ ID NO.235-298是来自dnaA基因,SEQ IDNO.299-325是来自mecA基因。
3、如权利要求1所述的双链小分子干扰核酸的组合,其特征在于:该组合是与靶序列SEQ ID NO.1-325一一对应的siNA双链分子的两条或两条以上的相互组合。
4、根据权利要求3所述的双链小分子干扰核酸的组合,其特征在于,所述的siRNA双链分子根据针对的靶序列所在基因分为以下各组:
(1)所述的靶序列中SEQ ID NO.1-56是来自rpoA基因;
(2)所述的靶序列中SEQ ID NO.57-107是来自ftsZ基因;
(3)所述的靶序列中SEQ ID NO.108-176是来自infB基因;
(4)所述的靶序列中SEQ ID NO.177-234是来自murA基因;
(5)所述的靶序列中SEQ ID NO.235-298是来自dnaA基因;以及
(6)所述的靶序列中SEQ ID NO.299-325是来自mecA基因;
上述同组siRNA双链分子的两条或两条以上相互组合。
5、根据权利要求3所述的双链小分子干扰核酸的组合,其特征在于,所述的siRNA双链分子根据针对的靶序列所在基因分为以下各组:
(1)所述的靶序列中SEQ ID NO.1-56是来自rpoA基因;
(2)所述的靶序列中SEQ ID NO.57-107是来自ftsZ基因;
(3)所述的靶序列中SEQ ID NO.108-176是来自infB基因;
(4)所述的靶序列中SEQ ID NO.177-234是来自murA基因;
(5)所述的靶序列中SEQ ID NO.235-298是来自dnaA基因;以及
(6)所述的靶序列中SEQ ID NO.299-325是来自mecA基因;
上述不同组siRNA双链分子的两条或两条以上相互组合。
6、如权利要求1所述的双链小分子干扰核酸的筛选方法,其特征在于,包括以下步骤:
1)对所有金黄色葡萄球菌株基因组进行同源性比对后,选取在90%以上的金黄色葡萄球菌株中保守的序列区域作为靶序列;
2)剔除容易形成二级结构而使siNA分子难以接近的靶序列;
3)剔除与人体基因组中的所有基因序列同源的靶序列;
4)在上述靶序列中选取长度为19bp的序列;
5)计算GC含量,选取GC含量为40-55%左右的序列;
6)经上述筛选得到候选siNA的靶位点,设计出相应的siNA,然后通过抑制金黄色葡萄球菌生长实验进行筛选,得到有效抑制或杀灭金黄色葡萄球菌的siNA序列。
7、如权利要求1所述的双链小分子干扰核酸用于制备预防与治疗以耐甲氧西林性金黄色葡萄球菌MRSA为代表的具多重耐药性基因变异的细菌引起的疾病的药物的用途。
8、如权利要求3所述的双链小分子干扰核酸的组合用于制备预防与治疗以耐甲氧西林性金黄色葡萄球菌MRSA为代表的具多重耐药性基因变异的细菌引起的疾病的药物的用途。
CN2007100324585A 2007-12-14 2007-12-14 用于抑制和杀灭耐药性细菌的双链小分子干扰核酸及其组合 Expired - Fee Related CN101457222B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007100324585A CN101457222B (zh) 2007-12-14 2007-12-14 用于抑制和杀灭耐药性细菌的双链小分子干扰核酸及其组合

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007100324585A CN101457222B (zh) 2007-12-14 2007-12-14 用于抑制和杀灭耐药性细菌的双链小分子干扰核酸及其组合

Publications (2)

Publication Number Publication Date
CN101457222A true CN101457222A (zh) 2009-06-17
CN101457222B CN101457222B (zh) 2011-12-21

Family

ID=40768342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100324585A Expired - Fee Related CN101457222B (zh) 2007-12-14 2007-12-14 用于抑制和杀灭耐药性细菌的双链小分子干扰核酸及其组合

Country Status (1)

Country Link
CN (1) CN101457222B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110368399A (zh) * 2018-04-13 2019-10-25 成都腾达树纳米生物科技有限公司 一种反义肽核酸-dna四面体载体复合物及其制备方法和应用
WO2020035619A1 (en) * 2018-08-17 2020-02-20 Centre National De La Recherche Scientifique (Cnrs) Rna-based biocontrol methods to protect plants against pathogenic bacteria and / or promote beneficial effects of symbiotic and commensal bacteria
CN112972702A (zh) * 2019-12-17 2021-06-18 南京大学 用于治疗耐药菌感染的外泌体制剂
CN113257345A (zh) * 2021-06-09 2021-08-13 上海宝藤生物医药科技股份有限公司 一种利用基因序列信息预测药物最小抑菌浓度的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160021076A (ko) * 2013-03-15 2016-02-24 테출론 인코포레이티드 스타필로코커스 아우레우스 감염의 치료를 위한 안티센스 분자

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110368399A (zh) * 2018-04-13 2019-10-25 成都腾达树纳米生物科技有限公司 一种反义肽核酸-dna四面体载体复合物及其制备方法和应用
WO2020035619A1 (en) * 2018-08-17 2020-02-20 Centre National De La Recherche Scientifique (Cnrs) Rna-based biocontrol methods to protect plants against pathogenic bacteria and / or promote beneficial effects of symbiotic and commensal bacteria
WO2020035620A1 (en) * 2018-08-17 2020-02-20 Centre National De La Recherche Scientifique (Cnrs) Rna-based therapeutic methods to protect animals against pathogenic bacteria and / or promote beneficial effects of symbiotic and commensal bacteria
WO2021032794A1 (en) * 2018-08-17 2021-02-25 Centre National De La Recherche Scientifique (Cnrs) Rna-based therapeutic methods to protect animals against pathogenic bacteria and / or promote beneficial effects of symbiotic and commensal bacteria
CN112888306A (zh) * 2018-08-17 2021-06-01 国家科学研究中心 保护植物防御致病性细菌和/或促进共生和共栖细菌的有益作用的基于rna的生物防治方法
CN112888305A (zh) * 2018-08-17 2021-06-01 国家科学研究中心 保护动物防御病原细菌和/或促进共生和共栖细菌的有益作用的基于rna的治疗方法
CN112972702A (zh) * 2019-12-17 2021-06-18 南京大学 用于治疗耐药菌感染的外泌体制剂
WO2021121038A1 (zh) * 2019-12-17 2021-06-24 南京大学 用于治疗耐药菌感染的外泌体制剂
CN113257345A (zh) * 2021-06-09 2021-08-13 上海宝藤生物医药科技股份有限公司 一种利用基因序列信息预测药物最小抑菌浓度的方法

Also Published As

Publication number Publication date
CN101457222B (zh) 2011-12-21

Similar Documents

Publication Publication Date Title
Deng et al. Bio‐organic soil amendment promotes the suppression of Ralstonia solanacearum by inducing changes in the functionality and composition of rhizosphere bacterial communities
Musa et al. Diversity and antimicrobial potential of cultivable endophytic actinobacteria associated with the medicinal plant Thymus roseus
Li et al. Isolation and characterization of culturable endophytic actinobacteria associated with Artemisia annua L.
Passari et al. Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential
Livingstone et al. Myxobacteria are able to prey broadly upon clinically-relevant pathogens, exhibiting a prey range which cannot be explained by phylogeny
Raghavendra et al. The contribution of foliar endophytes to quantitative resistance to Melampsora rust
Yang et al. Isolation and identification of endophytic bacterium W4 against tomato Botrytis cinerea and antagonistic activity stability
CN101457222B (zh) 用于抑制和杀灭耐药性细菌的双链小分子干扰核酸及其组合
Friman et al. Pseudomonas aeruginosa adaptation to lungs of cystic fibrosis patients leads to lowered resistance to phage and protist enemies
Fujiwara et al. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum
Hillesland et al. Experimental evolution of a microbial predator's ability to find prey
Rakshith et al. Isolation and characterization of antimicrobial metabolite producing endophytic Phomopsis sp. from Ficus pumila Linn.(Moraceae)
Broadbent et al. Association of bacteria with sporangium formation and breakdown of sporangia in Phytophthora spp
De Lencastre et al. Genetic control of population structure in heterogeneous strains of methicillin resistant Staphylococcus aureus
Agadagba et al. Isolation of actinomycetes from soil
Ding et al. Whole genome sequence of bacillus velezensis strain GUMT319: a potential biocontrol agent against tobacco black shank disease
Gohain et al. Phylogenetic affiliation and antimicrobial effects of endophytic actinobacteria associated with medicinal plants: prevalence of polyketide synthase type II in antimicrobial strains
Shodiyeva et al. IDENTIFICATION AND ISOLATION OF ENDOPHYTIC FUNGI PRODUCING L-ASPARAGINASE IN REPRESENTATIVES OF THE ASTERATCEA FAMILY
Alsanie et al. Molecular identification and phylogenetic analysis of multidrug-resistant bacteria using 16S rDNA sequencing
Gemin et al. Growth‐promoting bacteria for the green seaweed Ulva clathrata
El-sersy et al. Antagonistic effect of marine Nocardia brasiliensis against the fish pathogen Vibrio damsela: Application of Plackett
Mayali et al. Bacterial induction of temporary cyst formation by the dinoflagellate Lingulodinium polyedrum
CN107217016A (zh) 一株具有抑制水稻纹枯病的内生芽孢杆菌菌株zy122及其应用
Izadiyan et al. Diversity of Iranian isolates of Ralstonia solanacearum
Golińska et al. Entering Poorly Charted Waters The Biology of the Filamentous Acid-loving Actinomycetes and Acidimicrobia

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB03 Change of inventor or designer information

Inventor after: Li Baojian

Inventor after: Jiang Lifang

Inventor before: Li Baojian

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: LI BAOJIAN TO: LI BAOJIAN JIANG LIFANG

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111221

Termination date: 20141214

EXPY Termination of patent right or utility model