CN101454452A - 用于亲和纯化的工程蛋白酶及融合蛋白的加工 - Google Patents

用于亲和纯化的工程蛋白酶及融合蛋白的加工 Download PDF

Info

Publication number
CN101454452A
CN101454452A CN200480025223.8A CN200480025223A CN101454452A CN 101454452 A CN101454452 A CN 101454452A CN 200480025223 A CN200480025223 A CN 200480025223A CN 101454452 A CN101454452 A CN 101454452A
Authority
CN
China
Prior art keywords
predomain
albumen
protein
tsp concentrate
validase tsp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200480025223.8A
Other languages
English (en)
Other versions
CN101454452B (zh
Inventor
菲利普·N·布赖恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Maryland Biotechnology Institute UMBI
Original Assignee
University of Maryland Biotechnology Institute UMBI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Maryland Biotechnology Institute UMBI filed Critical University of Maryland Biotechnology Institute UMBI
Publication of CN101454452A publication Critical patent/CN101454452A/zh
Application granted granted Critical
Publication of CN101454452B publication Critical patent/CN101454452B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • C12N9/54Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea bacteria being Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明涉及鉴定能够以高亲和力结合相应蛋白酶的蛋白酶前结构域。本发明的前结构域融合到另一蛋白以形成蛋白酶前结构域融合蛋白。融合蛋白中存在蛋白酶前结构域蛋白使得可以通过用相应的蛋白酶温育而容易地和选择性地纯化第二蛋白。

Description

用于亲和纯化的工程蛋白酶及融合蛋白的加工
发明背景
发明领域
本发明涉及纯化方法,和更具体地涉及包含靶蛋白和蛋白酶前结构域蛋白的融合蛋白,其中前结构域蛋白与相应的蛋白酶或其变体具有高度亲和力从而以提供随后用于回收靶蛋白的蛋白酶结合复合物。
背景技术
重组DNA技术已经促进了用于医药和生物技术多种应用的蛋白的表达。然而,重组蛋白的纯化通常是复杂和难以解决的。大规模,经济的纯化蛋白通常包括由细胞培养物,比如通过插入含有所述蛋白基因的重组质粒基因工程化产生目的蛋白的细菌细胞系而产生蛋白。从供应给细胞的化合物的混合物及从细胞自身的副产物中分离需要的蛋白到足以用作人药物的纯度构成艰巨的挑战。
用于从细胞碎片纯化蛋白的方法最初取决于蛋白表达的位置。一些蛋白可以直接从细胞分泌到周围生长介质;其它的蛋白则在细胞内制备。对于后一种蛋白,纯化过程的第一步包括裂解细胞,可以通过各种方法完成,包括机械剪切,渗透压冲击或酶处理。这样的破裂将细胞的全部内容物释放进入组织匀浆,此外产生由于其较小而难以除去的亚细胞碎片。这些通常通过差速离心或过滤除去。由于在蛋白生产过程中细胞的自然死亡和细胞内宿主细胞蛋白的释放而出现与直接分泌的蛋白相关的相同问题,尽管程度上较小。
一旦获得含有目的蛋白的澄清溶液,通常尝试使用不同的技术组合将其与细胞产生的其它蛋白分离开来。作为蛋白的总体回收方法的一部分,蛋白可以暴露于结合到蛋白的固定化试剂。
后基因组时代蛋白质组的启动大大地增加了对于快速,有效和标准的蛋白纯化和分析方法的需求。例如,重组蛋白经常与其它的蛋白或肽融合以促进纯化。融合的结构域用作亲和纯化的临时钩子(hook)并最终必须通过位点特异性蛋白水解而被切割掉。许多使用不同的载体蛋白的融合蛋白系统目前市场上可以买到,特别是用于大肠杆菌(E.coli)的表达。例子包括麦芽糖结合蛋白,谷胱甘肽S转移酶,生物素羧基载体蛋白,硫氧还蛋白和纤维素结合结构域。
融合蛋白表达使用固定化的,特异于载体蛋白的中等亲和力的配体通过亲和层析简化从细胞提取物分离重组蛋白。然而固定化通常要求配体共价附于基质,在很多情况下导致活性的损失。广泛使用的产品的典型例子是蛋白A Sepharose。这个非常昂贵的产品用来通过亲和层析纯化IgG,以及用于许多诊断方案。
因而,目前非常需要更经济且技术上简单的不包括大规模亲和步骤的纯化可溶蛋白的方法。
蛋白酶功能的范围从广泛特异性的降解性酶到调节胚胎发育到细胞死亡的生理过程的高度序列特异性的酶。一些高度特异性蛋白酶已经从自然中获得作为蛋白纯化和分析的工具,在某种意义上的方式类似于使用限制性核酸内切酶以操作DNA。现有具体的加工酶来自于哺乳动物来源,比如凝血酶,因子Xa和肠激酶。然而,尽管广泛地用于蛋白工作,这些天然酶非常昂贵而且低稳定性限制了其用于许多应用的用途。
相当多的努力已经被致力于工程化改造耐用的,细菌性蛋白酶比如枯草芽孢杆菌蛋白酶以切割所限定的序列。枯草芽孢杆菌蛋白酶是革兰氏阳性细菌或真菌产生的丝氨酸蛋白酶。枯草芽孢杆菌蛋白酶是重要的工业酶还是了解受酶影响的大量速率增加的模型。许多枯草芽孢杆菌蛋白酶的氨基酸顺序是已知的,包括来自杆菌菌株的枯草芽孢杆菌蛋白酶,例如枯草芽孢杆菌蛋白酶BPN′,枯草芽孢杆菌蛋白酶Carlsberg,枯草芽孢杆菌蛋白酶DY,枯草芽孢杆菌蛋白酶amylosacchariticus,和mesenticopeptidase。出于这些以及及时克隆基因,方便表达和获得纯化和原子分辨率的结构的原因,枯草芽孢杆菌蛋白酶成为1980年代蛋白工程研究的模型系统。十五年后,已经在科学文献中已经报道了远远超过枯草芽孢杆菌蛋白酶275个氨基酸的50%的突变。大多数的枯草芽孢杆菌蛋白酶工程改造涉及催化的氨基酸,底物结合区域和稳定性突变。诱变得最显著的枯草芽孢杆菌蛋白酶[1,2]是来自杆菌属的解淀粉芽孢杆菌(Bacillus amyloliquefaciens)(BPN′),枯草芽孢杆菌(Bacillus subtilis)(枯草芽孢杆菌蛋白酶E)和缓慢芽孢杆菌(Bacillus lentus)(Savinase)分泌的枯草芽孢杆菌蛋白酶。
尽管枯草芽孢杆菌蛋白酶的蛋白工程中的强活性,先前还不能将该蛋白从具有广泛底物偏爱的蛋白酶转化为适于处理特异性底物的酶从而使其可用于蛋白回收。因而,能使用低特异性蛋白酶比如枯草芽孢杆菌蛋白酶用于纯化过程对于研究和蛋白纯化是非常有用的。
发明概述
本发明涉及当使用对枯草芽孢杆菌蛋白酶具有高亲和力的底物序列时,枯草芽孢杆菌蛋白酶和其变体可用于纯化蛋白的发现,其中底物序列优选为枯草芽孢杆菌蛋白酶的前结构域。此外,本发明公开了生产包含枯草芽孢杆菌蛋白酶的前结构域和目的第二蛋白的融合蛋白的表达系统的构建。
分泌的蛋白酶,比如枯草芽孢杆菌蛋白酶作为无活性的酶原前体合成,以便紧密调节蛋白酶活化的时机[159]。酶原前体常常由附着于成熟蛋白酶序列的N-末端氨基酸组成。许多这些N-末端延伸(前结构域)足够大到能独立地折叠并已经显示紧密结合到成熟蛋白酶的活性位点[149,160-166]。
枯草芽孢杆菌蛋白酶BPN是来自解淀粉芽孢杆菌的细胞外丝氨酸蛋白酶,具有作为前原蛋白的初级翻译产物[9,10]。30氨基酸前序列(SEQ ID NO.2)用作蛋白跨膜分泌的信号肽并通过信号肽酶被水解[167]。成熟过程的细胞外部分包括枯草芽孢杆菌蛋白酶前体的折叠,77氨基酸序列(SEQ ID NO.1)的自我加工,以产生加工的复合物并最后降解前结构域产生275个氨基酸(SEQ ID NO.3)的成熟SBT序列。77氨基酸前结构域被自身催化除去,已经暗示了前结构域延迟了枯草芽孢杆菌蛋白酶的活化直至从芽孢杆菌分泌之后[168],因为前结构域是具活性的枯草芽孢杆菌蛋白酶(Ki 5.4×10-7M)的竞争性抑制剂,其显示出对枯草芽孢杆菌蛋白酶活性的强烈抑制。
枯草芽孢杆菌蛋白酶的广泛偏好来自于其结合到蛋白底物的方式。大多数的枯草芽孢杆菌蛋白酶接触的是位于底物结构中的易切断键的酰基侧的最初的四个氨基酸。这些残基命名为P1至P4,从易切断键向底物的N末端编号[157]。底物侧链组分的结合主要来自于P1和P4氨基酸[193][46,47]。枯草芽孢杆菌蛋白酶在这些位置优选疏水性氨基酸。枯草芽孢杆菌蛋白酶和前结构域之间的复合物的高分辨率结构显示了前结构域的C-末端作为底物结合进入枯草芽孢杆菌蛋白酶的活性位点,前结构域的球状部分对枯草芽孢杆菌蛋白酶具有广泛的互补表面。C-末端残基从前结构域的中心部分伸出并以底物样方式沿着SBT的活性位点的裂缝结合。因而,前结构域的残基Y77,A76,H75和A74分别作为P1到P4底物氨基酸。这些残基符合枯草芽孢杆菌蛋白酶的天然序列偏好。折叠的前结构域对天然枯草芽孢杆菌蛋白酶具有通过C-末端尾部的底物相互作用和β-折叠提供的疏水性界面介导的的形状互补性和高亲和力[133]。
同样,碱性磷酸酶(ALP)基因测序显示ALP也以酶原形式合成。在ALP中,前结构域(166个氨基酸)几乎与成熟蛋白酶(198氨基酸)一样大。此外,据显示ALP前结构域是体内产生活性的ALP所需的,而且166氨基酸前结构域是ALP强烈的竞争性抑制剂[170]。有趣的是,ALP与其前结构域的结构分析显示前结构域与ALP活性位点的亲和结合[187]。
前结构域介导的折叠的其它的例子已经在蛋白酶的所有四个机械概念上的家族中发现:丝氨酸蛋白酶[172-177];天冬氨酸蛋白酶[178-180];金属蛋白酶[181-185]和半胱氨酸蛋白酶[186]。
因而,在一个方面,本发明涉及使用连接到靶蛋白的前结构域蛋白的蛋白纯化方法,其中前结构域蛋白具有对通常相关的蛋白酶的高亲和力从而可以很容易地由前结构域分离靶蛋白。优选地,本发明涉及分泌的蛋白酶比如枯草芽孢杆菌蛋白酶或其变体的前结构域,其中前结构域具有对于枯草芽孢杆菌蛋白酶或其变体的高亲和力。
在另一个方面,本发明涉及包含融合到靶蛋白的蛋白酶前结构域的融合蛋白,其中切割特异性地指向连接前结构域和靶蛋白的肽键,并且其中前结构域对相应的蛋白酶具有高亲和性。优选,蛋白酶是枯草芽孢杆菌蛋白酶或其变体,其中变体被修饰成特异性水解蛋白酶前结构域和靶蛋白之间的肽键和/或其水解活性可以通过特定的离子触发。另外,前结构域蛋白可以通过包含蛋白酶的同源序列而被优化。
在另一方面,本发明包含融合到目的蛋白的氨基酸序列SEQ IDNO.1的前结构域蛋白。前结构域序列此外可以包含如下在至少P1-P4氨基酸残基位置的取代:
 
前结构域 P4 P3 P2 P1
野生型 A H A Y
取代 F或Y 任意 A或S M,Y,F,H或L
包括FKAM,FKAY或FKAF的多个同源序列已经被认为是高度有效的。意外的是添加序列FKAM,FKAY或FKAF也将前结构域对枯草芽孢杆菌蛋白酶的亲和力提高到>109M-1
另外枯草芽孢杆菌蛋白酶前结构域可以此外包括稳定性突变以进一步提高其对于枯草芽孢杆菌蛋白酶的亲和力。此外,可以将突变引入到枯草芽孢杆菌蛋白酶的四个催化氨基酸的一个或者多个中,以急剧降低其对非特定氨基酸序列的蛋白水解。优选的突变包括在鉴定为SEQ ID NO.3的枯草芽孢杆菌蛋白酶序列的氨基酸位置32,64,55和221并显示于图2中。
因此,在另一个方面,本发明提供了对于前结构域中的同源序列的Km<1nm的加工的蛋白酶。加工的蛋白酶kcat在10-1sec-1到10-5sec-1的范围内。因此加工蛋白酶及其关联前结构域底物的转换数(kcat/Km)在104M-1s-1到108M-1s-1的范围内,而转换数vs.非特定的序列为<1M-1s-1
一种优选的加工酶优选其关联前结构域比非特异性序列>106倍。本发明最优选的实施方案是具有kcat值在0.001到0.0001S-1范围内的加工枯草芽孢杆菌蛋白酶。在这一时间范围内切割枯草芽孢杆菌蛋白酶可以足够缓慢地加工底物,以允许任何含有作为N-末端融合结构域的关联前结构域的蛋白被亲和纯化。
在另一方面,本发明提供了包含连接到结构域的靶蛋白的融合蛋白,其中结构域蛋白包括在C-末端包含(EEDKL(F/Y)QS(M/L/Y)变体的氨基酸残基,其中结构域的C-末端部分产生对于枯草芽孢杆菌蛋白酶或其变体的亲和力。
在另一方面,本发明提供了生成枯草芽孢杆菌蛋白酶前结构域融合产物的方法。示例性的方法包含以下步骤:
提供编码枯草芽孢杆菌蛋白酶前结构域融合蛋白的核酸,其中融合蛋白包括枯草芽孢杆菌蛋白酶或其变体的前结构域和目的第二蛋白,前结构域能够以高亲和力结合枯草芽孢杆菌蛋白酶或其变体;
用核酸转染宿主细胞或使用等同的方法将核酸引入宿主细胞;和
在适于表达融合蛋白的条件下培养转化的宿主细胞。
目标融合蛋白通常通过重组方法产生,尤其并优选通过表达枯草芽孢杆菌蛋白酶前结构域/第二蛋白DNA,其中DNA在微生物宿主细胞中表达,尤其是枯草芽孢杆菌(Bacillus subtilis)中表达,因为这种细菌天然产生枯草芽孢杆菌蛋白酶,是有效率的蛋白分泌器,并能产生活性构象的前结构域蛋白。然而,本发明不局限于在芽孢杆菌(Bacillus)中表达融合蛋白,而是包括在任何提供融合蛋白表达的宿主细胞中表达。用于表达的合适宿主细胞是本领域公知的,包括例如细菌宿主细胞,例如大肠杆菌(Escherichia coli);芽孢杆菌(Bacillus),沙门氏菌(Salmonella),假单胞菌(Pseudomonas);酵母细胞如酿酒酵母(Saccharomyces cerevisiae),毕赤氏酵母(Pichia pastoris),克鲁弗氏酵母(Kluveromyces),假丝酵母(Candida),裂殖酵母(Schizosaccharomyces);和哺乳动物宿主细胞诸如CHO细胞。然而细菌宿主细胞是优选用于表达的宿主细胞。
编码枯草芽孢杆菌蛋白酶前结构域/第二蛋白融合蛋白的DNA的表达可以使用可以获得的载体和调控序列。实际的选择很大部分依赖于用于表达的特定宿主细胞。例如,如果融合蛋白在芽孢杆菌中表达,通常利用芽孢杆菌启动子以及芽孢杆菌来源的载体。在微生物宿主细胞中表达融合蛋白通常是优选的,因为这允许微生物宿主细胞以合适的构象产生枯草芽孢杆菌蛋白酶前结构域。
另一方面,本发明涉及从融合蛋白纯化目的蛋白并从其中分离的方法,所述方法包含:
将包含连接到目的蛋白的前结构域蛋白的融合蛋白与有效量的枯草芽孢杆菌蛋白酶或其变体在适于形成枯草芽孢杆菌蛋白酶或其变体和融合蛋白的前结构域蛋白之间的复合物的条件下接触;
温育结合复合物足够的时间以使枯草芽孢杆菌蛋白酶或其变体从结合复合物切割目的蛋白;以及
回收目的蛋白。
优选地,蛋白酶已经被修饰为特异性结合到蛋白酶前结构域融合蛋白,蛋白酶前结构域蛋白已经修饰为包括蛋白酶的同源序列用于自身催化从结合复合物除去第二蛋白。更优选地,蛋白酶是枯草芽孢杆菌蛋白酶或其变体并且前结构域具有对于这样的蛋白酶的高结合亲和力。
另一方面,本发明提供了编码融合蛋白的核酸,该融合蛋白包含蛋白酶前结构域蛋白和包含位于其间的切割位点的第二靶蛋白。优选地,所述切割位点在融合产物第二蛋白N-末端氨基酸的上游。更优选地,切割位点在P4-P1氨基酸残基的下游。
切割点
   ↓
前结构域P4 P3 P2 P1  靶蛋白
本发明的另一方面提供了包含编码本发明的蛋白酶前结构域融合蛋白的核酸的宿主细胞。
本发明的附加方面涉及用于检测目的物质的诊断试剂盒,包括:
(a)蛋白酶前结构域融合蛋白,包括:
(i)能够以高亲和力结合到枯草芽孢杆菌蛋白酶或其变体的蛋白酶前结构域;和
(ii)能够结合目的物质的第二蛋白;
(b)可检测的标记物;和
(c)用于结合到蛋白酶前结构域融合蛋白的枯草芽孢杆菌蛋白酶或其变体。
优选地,前结构域是枯草芽孢杆菌蛋白酶前结构域并且第二蛋白可以包括但不局限于酶,激素,抗原或抗体。
在另一个方面,本发明涉及使用上述诊断试剂盒检测测试样品中目的物质的存在的分析方法,包括:
(a)用足够量的蛋白酶前结构域融合蛋白与可以包含目的物质的测试样品一起温育,其中蛋白酶前结构域融合蛋白包括:
(i)能够以高亲和力结合到枯草芽孢杆菌蛋白酶或其变体的蛋白酶前结构域;和
(ii)能够结合目的物质的第二蛋白,
其中所述培养条件允许目的物质与第二蛋白的结合;
(b)将用于步骤(a)的蛋白酶前结构域融合蛋白与枯草芽孢杆菌蛋白酶或其变体接触,其中枯草芽孢杆菌蛋白酶或其变体在溶液中以有效量结合融合蛋白并形成结合复合物,或固定在固相上以形成枯草芽孢杆菌蛋白酶/前结构域融合蛋白结合复合物;
(c)将枯草芽孢杆菌蛋白酶/前结构域融合蛋白结合复合物温育足够的时间以自身催化第二蛋白从结合复合物上的切割;
(d)回收结合到目的物质的第二蛋白。
该实施方案还提供了引入可检测的标记物的方法,其中标记物能够结合到目的物质;以及确定标记物存在与否,以提供测试样品中目的物质存在与否的指示。可检测的标记物可以在从结合复合物分离第二蛋白之前或回收第二蛋白之后被引入。
测试样品可以是体液,包括但不限于,血液,尿,精液,唾液,粘液,眼泪,阴道分泌物等等。
在本发明具体的实施方案中,该方法设计成检测测试样品中的特定蛋白或肽,因而前结构域枯草芽孢杆菌蛋白酶融合蛋白的第二蛋白可以是针对测试样品中特定蛋白或肽的抗体。所述抗体可以是单克隆抗体或多克隆抗体。本发明的枯草芽孢杆菌蛋白酶前结构域可以直接地或通过接头部分结合于抗体。
目的物质还可以包含结合到蛋白,肽,激素,核酸或其它可靶向到探针的分子的生物素化探针。所述标记物可以包括酶,在添加足够量用于该酶的底物后,底物通过酶被转化为可检测的化合物。
最后,本发明的另一方面提供了药物递送系统,包括连接到药物化合物或目的药物以形成融合产物的枯草芽孢杆菌蛋白酶前结构域蛋白,其中融合产物还复合到枯草芽孢杆菌蛋白酶或其变体中以形成药物递送复合物。在这样的药物递送系统中,目的药物可以直接地或通过接头部分结合到枯草芽孢杆菌蛋白酶前结构域。存在许多结合方法,并且是本领域已知的。例如,存在酰基活化试剂,例如可用于形成酰胺或者酯键的环己基碳二亚胺。
在一个实施方案中,这样的药物递送系统可以是缓慢的或缓释的药物递送系统,其中目的药物被缓慢地从结合到枯草芽孢杆菌蛋白酶的枯草芽孢杆菌蛋白酶前结构域中释放。构思这样的药物递送系统可以引入到可以非肠道,口服,局部或通过吸入给药的组合物中。此外,组合物可以是固体,凝胶,液体或气溶胶的形式。
本发明的其它特征和优点从以下详细说明,附图和权利要求而显而易见。
附图说明
图1示例了显示与其前结构域复合的枯草芽孢杆菌蛋白酶的α碳主链的带状图。
图2显示了野生型枯草芽孢杆菌蛋白酶BPN’的氨基酸序列。
图3显示了引入到枯草芽孢杆菌蛋白酶’BPN的表1所述的突变。
图4显示了与离子浓度成比例的蛋白酶加工速度。
图5显示了加工枯草芽孢杆菌蛋白酶(S189)对前结构域的结合速度是快速的。
图6显示了S189切割大约四个小时的半衰期。迟滞期是明显的。滞后对于蛋白纯化是有用的,允许污染物在发生显著切割前被洗涤掉。
图7显示包括具有固定化的底物枯草芽孢杆菌蛋白酶S189或190的pR8FKAM-蛋白G融合蛋白纯化的结果,其中印迹泳道的分配如下:
泳道1:分子量标准参照物-2μg条带
泳道2:细胞裂解物-10ml取自250ml671pr8FKAM-蛋白G培养物中的10μl
泳道3:以1ml/min(10μl级分2)上样的S189AL的流出液
泳道4:以1ml/min(10μl级分2)上样的S190AL的流出液
泳道5:15小时后从S189AL的洗脱液(10μl,8μg蛋白G)
泳道6:15小时后从S190AL的洗脱液(10μl级分,4.8μg蛋白G)
泳道7:从189AL解离(10μl级分7,3μg pR8FKAM)
泳道8:从S190AL解离(10μl级分7,9μg pR8FKAM)
泳道9:约10分钟后从S189AL解离(10μL级分6,6.4μg 671FKAM)
泳道10:GB标准品
图8显示了牛转导素α-亚单位的纯化结果,其中印迹泳道的分配如下:
泳道1:细胞裂解物-10ml取自250ml的671pr8FKAM-ChiT培养物中的10μL
泳道2-3:洗涤柱
泳道4-9:15小时后从S189AL的洗脱液
泳道10:合并的级分
图9显示了甲烷杆菌(Methanothermobacter thermoautotrophicum)CDC6的纯化结果,其中印迹泳道的分配如下:
泳道1:分子量标准参照物-2μg条带
泳道2:细胞裂解物-50ml取自750ml的pr8FKAM-CDC6的培养物中的10μl
泳道3:以10ml/min上样的来自S189AL_10柱的流出液
泳道4-8:15小时后从S189AL的洗脱液(10μl级分2-6)
图10A和B显示了(a)蛋白G311和(b)蛋白A219的具有残基特异性主链分配的15N HSQC谱。两种蛋白序列上59%相同,但NMR显示不同的蛋白折叠。
图11显示在S189HiTrap NHS柱上56个氨基酸GB从671融合蛋白(pR58FKAM-GB)分离方法的结果,其中融合蛋白以常规的方法结合和洗涤。
图12显示通过添加氟离子触发靶蛋白的释放时的结果,所述氟离子减少了纯化靶蛋白所需要的时间。
图13显示了以正常方法当用0.1M H3PO4使前结构域(pR58)从柱上脱离时的结果。
图14显示当通过添加KF触发链球菌蛋白GB的纯化结果,其中印迹泳道的分配如下:
泳道1:分子量标准参照物-2μg条带
泳道2:BL21 DE3细胞裂解物-50ml取自1L 671(pR58FKAM-GB)培养物中的10μl
在S189HT1柱上注射的1ml的裂解物;
泳道3:以1ml/min上样的流出液(2ml级分2的10μl)
泳道4:以1ml/min上样的流出液(2ml级分3的10μ)
泳道5:通过0.1M KF切割/洗脱(1ml级分1的10μl;总共大约7μg)
泳道6:通过0.1M KF切割/洗脱(1ml级分2的10μl;总共大约3μg)
泳道7:通过0.1M H3PO4脱离(1ml级分1的10μl;两种条带组合总共大约10μg)
注:
1)GB的考马斯染色比pR58融合结构域的染色弱得多。通过A280测定蛋白浓度。
2)使用该切割/洗脱方案切割反应完成大约90%。
发明详述
本发明涉及包含优化的同源序列的前结构域,用于结合到高度特异的加工枯草芽孢杆菌蛋白酶,其中该配对对于蛋白纯化特别有用。
分离的枯草芽孢杆菌蛋白酶前结构域是解折叠的但是具有与枯草芽孢杆菌蛋白酶复合的四个条状反向平行的β-折叠和两个三转角α螺旋的致密结构[130,131](图1)。C-末端残基从前结构域的中心部分伸出并以底物样方式沿着SBT的活性位点裂缝结合。因而,前结构域的残基Y77,A76,H75和A74分别变成P1到P4底物氨基酸。这些残基符合枯草芽孢杆菌蛋白酶的天然序列偏好。折叠的前结构域具有通过C-末端尾部的底物相互作用和β-折叠提供的疏水性界面介导的对天然的枯草芽孢杆菌蛋白酶的形状互补性和高亲和力[133]。前结构域的天然三级结构是对枯草芽孢杆菌蛋白酶的最大结合所需的。如果突变被引入到不直接接触枯草芽孢杆菌蛋白酶的前结构域区域,则突变对于结合枯草芽孢杆菌蛋白酶的影响与它们是否稳定天然构象有关。因此,稳定前结构域独立折叠的突变提高前了结构域的结合亲和力[137]。
此处使用的术语“突变“是指基因序列的改变和/或通过那些基因序列产生的氨基酸序列的改变。突变包括野生型蛋白序列的氨基酸残基的缺失,置换,和添加。
此处使用的术语“野生型”是指由未突变的生物产生的蛋白,此处具体是指蛋白酶或前结构域。野生型枯草芽孢杆菌蛋白酶样蛋白酶由例如嗜碱芽孢杆菌(Bacillus alcalophilus),解淀粉芽孢杆菌,Bacillusamylosaccharicus,地衣芽孢杆菌,缓慢芽孢杆菌,和枯草芽孢杆菌的微生物产生。
此处使用的术语“变体”定义为天然存在的分子的氨基酸序列或其它特征已经被修饰并包含突变体。一些本发明范围内的变体具有氨基酸置换缺失和/或插入,条件是最终的结构在蛋白酶前结构域和相应的蛋白酶之间具有需要的结合亲和力。蛋白酶前结构域蛋白或相应的蛋白酶的氨基酸置换可以基于关联残基的极性,电荷,溶解性,疏水性,亲水性和/或两亲性的性质的相似性进行。例如,带负电荷的氨基酸包括天冬氨酸和谷氨酸;带正电荷的氨基酸包括赖氨酸和精氨酸;具有类似的亲水性值的无电荷的极性头基团或非极性的头基团的氨基酸包括:亮氨酸,异亮氨酸,缬氨酸;甘氨酸,丙氨酸;天冬酰胺,谷氨酰胺;丝氨酸,苏氨酸;苯丙氨酸,酪氨酸。还包括在变体定义内的是那些在C-末端,N-末端的一个或多个位点具有附加氨基酸的蛋白,只要变体保持结合亲和力。
本发明的变体可以包含枯草芽孢杆菌蛋白酶样蛋白酶。此处使用的术语“枯草芽孢杆菌蛋白酶样蛋白酶”表示与枯草芽孢杆菌蛋白酶的序列具有至少25%,和优选80%,和更优选90%氨基酸序列同一性并保持与野生型蛋白酶至少相同功能活性的蛋白酶。
本发明涉及能够以高亲和力结合相应的蛋白酶的蛋白酶前结构域的鉴定。本发明的蛋白酶前结构域融合到第二蛋白以形成蛋白酶前结构域融合蛋白。融合蛋白中存在蛋白酶前结构域蛋白使得通过与相应的蛋白酶一起温育而容易地和选择性地纯化第二蛋白。
第二蛋白的例子包括但是不限于蛋白A,包括葡萄球菌蛋白AB结构域和蛋白AB的突变体A219;蛋白G包括链球菌蛋白GB结构域,链球菌蛋白Ga结构域和蛋白GB突变体G311;大肠杆菌假定的Yab;牛转导素a亚单位;甲烷杆菌CDC 6;链霉亲和素;亲和素;Taq聚合酶及其他聚合酶;碱性磷酸酶;RNase;DNase;各种限制性内切酶;过氧化物酶;葡聚糖酶例如内-1,4-β葡聚糖酶,内-1,3-β-葡聚糖酶;几丁质酶,等;β和α葡萄糖苷酶;β和α葡苷酸酶(glucoronidase);淀粉酶;转移酶例如葡萄糖基转移酶,磷酸转移酶,氯霉素乙酰基转移酶;β-内酰胺酶及其他抗生素修饰和降解酶;荧光素酶;酯酶;脂肪酶;蛋白酶;细菌素;抗生素;酶抑制剂;不同的生长因子;激素;受体;膜蛋白;核蛋白;转录和翻译因子和核酸修饰酶。
术语“蛋白酶前结构域蛋白”是指前结构域氨基酸序列或其功能等同物,其中蛋白酶前结构域蛋白具有以高亲和力结合到相应的蛋白酶的能力。优选,前结构域基本没有与其天然联系的其它蛋白,例如蛋白酶蛋白的配重。此外,前结构域中的一个或者多个预定的氨基酸残基可以例如被置换,插入或缺失以产生具有改进的生物学性质的前结构域蛋白,或改变结合和表达水平。通过使用重组DNA技术,具有残基缺失,置换和/或插入的本发明的前结构域蛋白可以通过改变基础(underlying)核酸而进行制备。
在一个实施方案中,蛋白酶前结构域蛋白可以融合到作为第二蛋白的抗体或抗原决定簇形成用于诊断试剂盒和免疫分析的蛋白酶前结构域融合蛋白。因而,例如可以通过利用蛋白酶前结构域和作为融合到蛋白酶前结构域蛋白的第二蛋白的抗原性表位来检验体液中特定抗体的存在。相反的,可以使用蛋白酶前结构域和抗体融合蛋白检测抗原或其抗原性部分。
此处使用的术语“融合蛋白”是指至少两个蛋白,前结构域蛋白优选蛋白酶前结构域和第二蛋白连接在一起。另外,本发明的融合产物包括位于蛋白酶前结构域和第二蛋白之间的酶切割位点。所述切割位点优选与第二蛋白N末端邻接从而提供从融合产物回收第二蛋白的方法。
在本发明的另一个实施方案中,融合蛋白是重组融合产物。“重组融合产物”是已经在用编码融合产物的核酸转化或转染的宿主细胞中产生的融合产物,或作为同源重组的结果产生融合蛋白。“转化”和“转染”可互换使用,是指将核酸引入到细胞的方法。继转化或转染之后,核酸可以整合到宿主细胞基因组,或可以作为染色体外因子存在。所述“宿主细胞”包括体外细胞培养的细胞以及宿主生物体内的细胞。
“核酸”是指包括一系列5′到3′磷酸二酯键的核酸的核苷酸序列,其可以是RNA或DNA序列。如果所述核酸是DNA,所述核苷酸序列是单链或双链的。编码前结构域蛋白酶蛋白的核酸是编码能够以高亲和力结合相应蛋白酶的蛋白的RNA或DNA,与编码这样的蛋白的核酸序列互补,或杂交到编码这样的蛋白的核酸序列并在下严格条件下保持稳定结合到该核酸序列。
在构造融合蛋白表达载体时,编码前结构域的核酸被连接或结合到编码第二蛋白的核酸,使得蛋白酶前结构域蛋白和第二蛋白的开放阅读框是完整的,允许融合蛋白产物翻译的发生。
编码本发明前结构域蛋白的核酸可以从细胞来源或通过基因组克隆而分离和纯化的DNA获得。可以使用本领域已知的技术制备cDNA或基因组文库克隆,并可以用基本上互补到基因的任何部分的核苷酸探针筛选具体的蛋白酶或蛋白酶前结构域的编码核酸。或者,cDNA或基因组DNA可以用合适的寡聚核苷酸引物被用作PCR克隆的模板。全长克隆,即含有需要的蛋白酶前结构域蛋白的全部编码区域的那些克隆可以被选择用于构建表达载体,或者重叠cDNAs可以被连接到一起形成完整的编码序列。或者,优选的蛋白酶前结构域编码DNA可以使用本领域的标准技术通过化学合成全部或部分合成。
用于重组生产多肽的方法是本领域技术人员公知的。简而言之,例如,宿主细胞用编码连接到选择的第二蛋白的蛋白酶前结构域蛋白的多核苷酸转染。用外源多核苷酸例如DNA分子转化或转染细胞的方法是本领域公知的,包括例如磷酸钙或DEAE葡聚糖介导的转染,原生质体融合,电穿孔法,脂质体介导的转染,直接显微注射和腺病毒感染。
最广泛使用的方法是通过磷酸钙或DEAE葡聚糖介导的转染。尽管机制还不清楚,据信转染的DNA通过胞吞进入细胞的细胞质并转运到细胞核。取决于细胞类型,在任意一次转染中可以转染高达90%的培养细胞群体。因为其高效率,通过磷酸钙或DEAE葡聚糖介导的转染是在大量细胞中要求瞬时表达外源DNA的实验中选择的方法。磷酸钙介导的转染还用于建立整合外源DNA拷贝的细胞系,该DNA通常首尾串联排列进入宿主细胞基因组。
对各种哺乳动物和植物细胞施用短暂的高电压电脉冲导致在质膜中形成纳米大小的孔。DNA通过这些孔或作为伴随孔闭合的膜组分重新分配的结果而直接地吸收进入细胞质。电穿孔法可以是非常有效率的,并可以用于克隆的基因的瞬时表达和用于建立携带整合的目的基因拷贝的细胞系。与磷酸钙介导的转染和原生质体融合相反,电穿孔法经常产生携带一个或至多一些外源DNA整合的拷贝的细胞系。
继转染之后,细胞被培养在培养条件下持续一段足以表达本发明融合蛋白的时间。培养条件是本领域公知的,包括离子组成和浓度,温度,pH等等。典型地,转染的细胞在培养条件下被培养在培养基中。用于各种细胞类型的合适的培养基是本领域公知的。在优选实施方案中,温度从大约20℃到大约50℃。pH优选从大约6.0到大约8.0。转染和表达编码的蛋白所需的其它的生物学条件是本领域公知的。
转染的细胞培养一段足以表达融合蛋白的时间,典型地,培养时间从大约2到大约14天。使用重组技术时,融合蛋白可以在细胞内,周质间隙内产生,或直接分泌进入培养基。如果多肽在细胞内产生,作为第一步通过例如离心或超滤除去宿主细胞或裂解细胞(例如来自于匀浆)的颗粒碎片。
为将本发明的蛋白酶前结构域融合蛋白导向宿主细胞的分泌途径,通常需要分泌信号序列(又名引导序列或前序列)。在本发明中,蛋白酶的前结构域序列是融合蛋白的一部分,因而通过包括信号序列例如SEQ ID NO.2所定义的序列而容易地实现融合蛋白的分泌。
因而,从转染的细胞或培养细胞的培养基中回收或收集重组融合蛋白。然后融合蛋白进行一个和多个纯化步骤。在本发明的一个实施方案中,回收步骤包括将包含融合蛋白的组合物暴露于固相,该固相上固定有以高亲和力结合前结构域蛋白的枯草芽孢杆菌蛋白酶或其变体从而形成蛋白酶/蛋白酶前结构域结合复合物。固相可以被填充在柱中,固定的相应蛋白酶捕获融合蛋白并化学和/或物理修饰融合蛋白以释放第二蛋白。
“固相”表示包含可以吸附融合产物的蛋白酶的基质。固相可以是纯化柱,非连续相的离散颗粒,膜或滤器。用于形成固相的材料的例子包括多糖(例如琼脂糖和纤维素);及其他机械稳定的基质例如二氧化硅(例如可控孔度的玻璃),聚(苯乙烯二乙烯基)苯,聚丙烯酰胺,陶瓷颗粒和上述任何物质的衍生物。在优选的实施方案中,固相包括维持在柱中的可控孔度玻璃珠,其涂布有用于以高亲和力结合融合蛋白产物的前结构域蛋白的蛋白酶。
此处使用的短语“以高亲和力结合”指蛋白酶前结构域以Kd从nM到pM,范围从大约10nM到大约10pM,优选<100pM,结合到同源蛋白酶的能力。
本发明还涉及使用本发明的融合蛋白诊断检测测试样品中目的蛋白,特别是在生物样品例如组织提取液或生物液体,例如血清或尿中的目的蛋白。生物样品优选是哺乳动物来源的并最优选人来源。在本发明的一个实施方案中,融合蛋白可以包含使用各种本领域公知的免疫分析形式用来检测生物样品中抗原存在的抗体。或者,融合蛋白的第二蛋白包括可用于检测识别抗原决定簇的抗体的抗原性表位。
此处使用的“抗体”包括多克隆抗体,单克隆抗体(MAbs),人源化或嵌合抗体,单链抗体,抗独特型(抗-Id)抗体,和上述任何抗体的表位结合片段。
此处使用的术语“可检测的标记物”是指直接或间接提供可检测的信号的任何标记物,并包括例如酶,放射性标记的分子,荧光剂,颗粒,化学发光剂,酶底物或辅因子,酶抑制剂,磁性颗粒。用作本发明的可检测的标记物的例子包括碱性磷酸酶和辣根过氧化物酶。多种方法可以用于将可检测的标记物连接到目的蛋白,包括例如使用双功能试剂例如4,4′-二氟-3,3′-二硝基-苯基砜以将酶例如辣根过氧化物酶连接到目的蛋白上。附加的可检测的标记物然后与底物反应得到可检测的反应产物。
同时在本发明范围内的是蛋白酶前结构域融合产物的治疗或诊断应用,其中第二蛋白是对抗原性表位具有亲和力的单克隆抗体。例如,包括如下产物的蛋白酶前结构域融合产物可被用于将药物/蛋白酶复合物或显影剂/蛋白酶复合物靶向产生抗原的癌细胞的方法:(i)能够以高亲和力结合到同源蛋白酶的蛋白酶前结构域,和(ii)能够结合抗原的单克隆抗体。在此实施方案中,连接到第二蛋白(单克隆抗体)的蛋白酶前结构域被给药到哺乳动物。与融合产物给药同时或给药之后,给药药物/蛋白酶或显影剂/蛋白酶复合物。药物/蛋白酶或显影剂/蛋白酶复合物与定位在抗原位点的蛋白酶前结构域融合产物结合将药物或显影剂导向和靶向到有关的位点用于目的治疗或诊断活性。
本发明将在下面的实施例中进一步举例说明,实施例不是以任何方式限制本发明的范围。
方法和材料
突变的选择,克隆和表达
本申请中列举的具体的点突变鉴定了枯草芽孢杆菌蛋白酶BPN′氨基酸序列的具体的氨基酸,如根据本发明突变的SEQUENCE ID NO:3(图2)所示。例如,S149突变体包括75-83氨基酸的缺失,还包括以下置换突变:Q2K,S3C,P5S,S9A,I31L,K43N,MS0F,A73L,E156S,G166S,G169A,S188P,Q206C,N212G,K217L,N218S,T254A和Q271E。表1中所述的另外的突变体如图3所示。
来自解淀粉芽孢杆菌的枯草芽孢杆菌蛋白酶(枯草芽孢杆菌蛋白酶BPN′)基因已经在枯草芽孢杆菌中被克隆,测序和从其天然启动子序列高水平表达[9,10]。所有的突变体基因被再克隆进基于pUB110-的表达质粒中并用于转化枯草芽孢杆菌。用作宿主的枯草芽孢杆菌菌株包含其枯草芽孢杆菌蛋白酶基因的染色体缺失并因此产生无背景的野生型(wt)活性(Fahnestock等,Appl.Environ.Microbial.53:379-384(1987))。如前所述进行寡聚核苷酸诱变[17]。
野生型枯草芽孢杆菌蛋白酶和变体酶主要如Bryan等[17,94和95]所述被纯化和验证均一性。在一些情况下,C221突变体枯草芽孢杆菌蛋白酶在巯基特异性的汞亲和柱(Affi-gel 501,Biorad)上再纯化。
枯草芽孢杆菌蛋白酶前结构域的克隆和表达
枯草芽孢杆菌蛋白酶BPN′前结构域区域基因如Strausberg等所述使用聚合酶链式反应亚克隆[138]。根据寡聚核苷酸导向的体外诱变系统,版本2(Amersham International plc)进行克隆的前结构域基因的诱变。
实施例1
为表明前结构域导向的加工的可行性,构建基因以指导pR8前结构域向链球菌蛋白G的56氨基酸B结构域(GB)上的融合。在氨基酸残基16-21(QTMSTM)具有突变的前结构域pR8独立稳定并以比野生型前结构域高约100倍的亲和力结合到枯草芽孢杆菌蛋白酶,所述的氨基酸残基16-21(QTMSTM)被SGIK置换产生pR8两个氨基酸的缺失,其中S替换Q16,G替换T17,M18I替换S19和T20以及“K”替换M;连同另外的置换A23C,K27Q,V37L,Q40C,H72K和H75K。此外,pR8因而变成指定枯草芽孢杆菌蛋白酶切割位点的同源序列。
融合蛋白(1μM)与1μM野生型枯草芽孢杆菌蛋白酶混合。融合蛋白被快速和特异性地切割以从pR8释放GB。从结果观察到一些的相应的结论,包括:1)该加工是pR8在循环的结尾的具有强烈的产物抑制的单个转换反应;2)单个切割周期的速度受底物结合速度(1e6M-1s-1)的限制;和3)加工是高度特异性的,因为GB相当耐受枯草芽孢杆菌蛋白酶的活性。
实施例2
突变以降低枯草芽孢杆菌蛋白酶对非同源序列的活性。
由于枯草芽孢杆菌蛋白酶针对非同源序列的高活性,使用pR8直接地切割之中和自身不产生最佳加工系统。下一步是加工枯草芽孢杆菌蛋白酶使其对非同源序列的活性降低。工程改造加工枯草芽孢杆菌蛋白酶的起点是表示为S149的突变体:(Q2K,S3C,P5S,K43N,A73L,75-83,E156S,G166S,G169A,S188P,Q206C,N212G,K217L,N218S,T254A和Q271E)。S149先前被加工用于高稳定性和独立于前结构域折叠的能力。这些特性尽管不是关键的,但是在加工酶时是高度合乎需要的。
首先,在S149(表示S160)中引入突变G128S和Y104A以扩大S4口袋[48,51]。使用瞬态动力学方法研究针对两个荧光底物sDVRAF-AMC和sDFRAM-AMC的S149和S160的催化性质。S160中扩大的S4口袋在P1位置对M比对F具有现有的结合偏好,产生相对于sDVRAF-AMC(Ks=83μM)而言对sDFRAM-AMC(Ks=0.8μM)高100倍的偏好。比较起来S149优选sDFRAM-AMC(Ks=1μM)超过sDVRAF-AMC(Ks=5μM)5倍。因而,修饰的枯草芽孢杆菌蛋白酶可以被工程化以提高对于同源序列的偏好。
实施例3
pR8的版本被构造为其最后的四个氨基酸(AHAY)被FRAM置换(表示为pR58)。PR58以大约30pM的Ki抑制S160。pR58与GB结构域的N-末端融合被发现在pM范围,比高度优选的五肽底物sDFRAM-AMC至少高1e5倍的底物亲和力(Ks)结合到S160。前结构域结构主要作为P1和P4序列信号的放大器。通过强烈的产物抑制将水解限于单个转换(turn-over)。由于底物和产物的结构相似性,在使用高底物亲和力以导向特异性切割时难以避免产物抑制。因此我们不试图消除该性质。随后将描述,可以开发单个转换反应将该系统用于蛋白纯化。
还构建了具有S166G的修饰版本的S160(表示为S193)。该突变体分别优选F和Y作为P4和P1氨基酸。
相对于非同源序列S160对pR58-融合物的偏好结合不产生高度特异性的切割。其原因通过考虑以下单个催化性循环的机制可以得出:
k1     k2
E+S → ES → EX+P
k-1
产物释放的速度dP/dt=k2k1[S]/(k1[S]+k-1+k2)。
在sDFRAM-AMC与S160的反应中,与酰化速度(k2)100s-1相比底物的释放速度(k-1)为大约10s-1。在pR58-GB的反应中,酰化速度是类似的,但k-1要小5个数量级(1×10-4s-1)。然而速率方程的分母中的k2在两种情况下都比k-1大≥10倍。因而k-1对观察的产物形成速度影响很小。然而底物亲和力变得越来越重要,如果酰化速度足够缓慢,则酶和底物之间的平衡相类似。通过在催化氨基酸(S190中的D32),(S194中的S221)和氧负离子孔氨基酸(S188的N155)的突变完成减缓k2(参见图3中的表1)。
亲核的活性位点S221A中的突变
S160中活性位点丝氨酸亲核试剂的突变产生突变体(S194),其以≤10pM的亲和力结合pR58融合蛋白。结合的速度是快速的(~1 x 106M-1s-1),但S194切割融合蛋白非常缓慢(<100hr-1)。然而,突变体适用于未切割的融合蛋白的亲和纯化。
氧负离子孔的突变:N155L,N155Q。
除去稳定过渡状态氧负离子的氢键降低酰化反应的速度(k2)约1000倍。pR58-GB融合蛋白被N155(S188和S191)突变体的加工是一种缓慢的,单转换反应。在一轮切割之后pR58保持紧密结合到酶上。如上述的解释,k2的降低产生基于差别底物结合的很大程度上的序列识别力。
Asp-His配对中的突变:产生阴离子开关。
尤其有用的是D32的突变。D32的羧化物氢键键合到催化性的H64并使得其在酰化时首先作为常规碱并然后作为常规酸。胰蛋白酶催化性的Asp的突变产生约中性pH的活性的急剧降低,但是在高于pH10时出现明显的强烈的氢氧化物依赖的替换机制。产生由结合步骤随后是化学触发的切割步骤组成的产生两阶段反应的潜力导致集中在D32的突变。结果在S160和S193中D32被突变为A,S,V,G,和T。对比sFRAM-AMC,D32突变体的序列特异性极高,kcat/Km≤10M-1s-1。高特异性还通过其不能加工pR8-GB及其不能体内自身加工所显示,除非前序列的P4残基被从A突变为F。
融合蛋白pR58-GB切割的动力学显示在表2中:
 
突变 D32A(S189) D32V(S196) D32S(S190)
速度(hr-1) 0.18 0.3 1.4
反应在0.1M KPi,pH7.2,23℃下进行。
实施例4
尤其有用的是其活性按需要触发的加工蛋白酶。用作触发剂的离子是OH-(pH),Cl-和F-。表总结了作为具体的阴离子的函数的多种D32突变体的切割速度。
S189和S190的速度及pH比较
 
pH 5.7 7.2 8.8 10.0
S189hr-1 0.135 0.18 0.97 4
S190hr-1 0.18 1 5 ≥25
反应在0.1M KPi,23℃中进行
S189的速度与[Cl]
 
[Cl] 0M 0.5M
S189hr-1 0.97 5
反应在0.1M KPi,pH8.8,23℃中进行
S189的速度与[F]
 
[F] 0mM 1mM 10mM 100mM
S189min-1 0.003 0.018 0.14 0.8
反应在0.1M KPi,pH7.2,23℃中进行
如图4所示,激活速度与离子的浓度成正比。因而,如果需要的话S189可以被触发以提高切割速度,而这在需要用于纯化过程时是非常有利的。一旦融合蛋白被结合到枯草芽孢杆菌蛋白酶变体以形成结合复合物,靶蛋白可以通过引入活化性的离子溶液活化枯草芽孢杆菌蛋白酶变体而从前结构域蛋白切割下来。
实施例5
前结构域的平截
枯草芽孢杆菌蛋白酶的前结构域可以用短很多的同源序列置换,后者已经被选择用于优化与加工蛋白酶的结合。包括只有前结构域的C末端部分的突变的氨基酸(EEDKL(F/Y)QS(M/L/Y)可以用作同源序列。例如,已经显示链球菌蛋白G的IgG结合结构域一旦添加C-末端尾部九个氨基酸后则以亚微摩尔的离解常数结合到S194,所述链球菌蛋白G对枯草芽孢杆菌蛋白酶没有天然的亲和力。
实施例6
用于亲和纯化和加工的加工枯草芽孢杆菌蛋白酶的固定。
加工枯草芽孢杆菌蛋白酶的结合和催化性质使得它们既可用作亲和力基质也可用作纯化带有pR58序列标记的蛋白的加工蛋白酶。为证明这一点,S189被固定在层析树脂上。
含有pR58-GB的大肠杆菌细胞裂解物经过含有固定化S189的基质。融合蛋白快速结合到S189基质而杂质如图5所示被从基质上洗掉。如图6所示切割结合的融合蛋白然后通过添加触发阴离子(例如,10mM KF)或通过延长培养(例如pH7.2下18小时)而起实现。切割后,纯化的加工蛋白被从基质洗涤下来,而同源的前结构域保持紧密结合到基质上的枯草芽孢杆菌蛋白酶。可以通过在pH2.1将pR从S189柱上脱离和将柱在中性pH重新平衡而实现多次纯化。高度稳定的和容易折叠的突变体例如那些列在表1(图3)的加工枯草芽孢杆菌蛋白酶是柱循环所需的。
包括pR58和靶蛋白的八个不同融合蛋白通过将融合蛋白与枯草芽孢杆菌蛋白酶S189或S190复合而以良好的收率纯化和回收,包括:
链球菌蛋白GB结构域           56aa
链球菌蛋白Ga结构域           45aa
蛋白GB突变体G311             56aa
金黄色葡萄球菌蛋白AB结构域   56aa
蛋白AB突变体A219             56aa
E.coli假定的Yab              117aa
牛转导素a亚单位              350aa
甲烷杆菌CDC6                 379aa
如图7所示,包括连接到链球菌蛋白GB结构域的pR58(pR8FRAM)的融合蛋白在S189和S190固定化床上复合和分离。泳道3和4显示不同分子量的多组分被洗涤通过该系统。在充分温育之后,输出级分限于蛋白G,由如泳道5,6,7和8相对于泳道10鉴定的蛋白G的分子量而言的分子量级分所证实。
牛转导素β亚单位(350aa)的纯化结果如图8所示。通过泳道4-9的洗脱液证实,在通过枯草芽孢杆菌蛋白酶S189的活性切割前结构域蛋白和靶蛋白之间的键足够的时间后,蛋白从柱上洗脱下来。
CDC6(379aa)的纯化结果如图9所示。包括连接到甲烷杆菌CDC6的pR58(pR8FRAM)融合蛋白在S189固定化的床上被复合和分离。泳道2显示不同分子量的多组分在分离的早期被洗涤通过系统。在充分温育之后,输出级分限于CDC6,通过如泳道4-8的分子量级分所证实。
图10A和B显示在S189AL_10柱上纯化和回收的(a)蛋白G311和(b)蛋白A219的15N HSQC谱。两个蛋白在序列上59%同一,但代表不同的蛋白折叠。
实施例7
还对连接到pR58(pR8FRAM)的56个氨基酸的链球菌蛋白GB结构域进行了进一步的纯化实验,其中671融合蛋白(pR58FKAM-GB)通过连续注入0.1M KF在S189 HiTrap NHS柱上纯化和分离,以证明当突变体枯草芽孢杆菌蛋白酶被氟离子触发时释放靶蛋白的效力。图11显示当融合蛋白以常规方法结合和洗涤时的结果。图12显示添加以0.1ml/min注射的100mM氟化钾引起当氟离子接触到结合的融合蛋白时的快速切割以释放靶蛋白,因此当其在柱上被洗涤下来时被浓缩。图13显示以常规方法用0.1M H3PO4从柱上解离前结构域(pR58)。这些结果显示可以通过利用某些离子作为触发剂(OH-(pH),Cl-和F-)以启动突变体枯草芽孢杆菌蛋白酶的蛋白酶活性而调整靶蛋白的释放。
图14显示在S189固定化的床上分离包括连接到链球菌蛋白GB结构域的pR58(pR8FRAM)的融合蛋白。泳道1是分子量标准参照物。泳道2和4显示不同分子量的多组分被洗涤通过该系统。在添加0.1M的KF之后,输出级分限于蛋白GB,由泳道5和6的分子量级分所证实。
参考文献
这里引用的所有参考文献在此引作多功能参考。
1.Neet KE,Koshland DE,Jr.:The conversion of serine at the activesite of subtilisin to cysteine:a"chemical mutation".Proc Natl Acad Sci US A 1966,56:1606-1611.
2.Polgar L,Bender ML:The reactivity of thiol-subtilisin,an enzymecontaining a synthetic functional group.Biochemistry 1967,6:610-620.
3.Philipp M,Tsai IH,Bender ML:Comparison of the kineticspecificity of subtilisin and thiolsubtilisin toward n-alkyl p-nitrophenylesters.Biochemistry 1979,18:3769-3773.
4.Philipp M,Bender ML:Kinetics of subtilisin and thiolsubtilisin.Mol Cell Biochem 1983,51:5-32.
5.Nakatsuka T,Sasaki T,Kaiser ET:Peptide segment couplingcatalyzed by the semisynthetic enzyme thiolsubtilisin.J.Am.Chem.Soc.1987,109:3808-3810.
6.Kullman W:Enzymatic Peptide Synthesis.Boca Raton,FL:CRCPress;1987.
7.Wong CH:Enzymatic catalysts in organic synthesis.Science 1989,244:1145-1152.
8.Wong CH,Shen GJ,Pederson RL,Wang YF,Hennen WJ:Enzymatic catalysis in organic synthesis.Methods Enzymol 1991,202:591-620.
9.Wells JA,Ferrari E,Henner DJ,Estell DA,Chen EY:Cloning,sequencing and secretion of Bacillus amyloliquifaciens Subtilisin inBacillus Subtilis.Nucleic Acids Res.1983,11:7911-7925.
10.Vasantha N,Thompson LD,Rhodes C,Banner C,Nagle J,Filpula D:Genes for alkaline and neutral protease from Bacillusamyloliquifaciens contain a large open-readingframe between the regionscoding for signal sequence and mature protein.J.Bacteriol.1984,159:811-819.
11.Jacobs M,Eliason M,Uhlen M,Flock J:Cloning,sequencing andexpression of subtilisin Carlsberg from Bacillus licheniformis.NucleicAcids Res.1985,13:8913-8926.
12.Estell DA,Graycar TP,Wells JA:Engineering an enzyme bysite-directed mutagenesis to be resistant to chemical oxidation.J.Biol.Chem.1985,260:6518-6521.
13.Bryan PN,Rollence ML,Pantoliano MW,Wood J,Finzel BC,Gilliland GL,Howard AJ,Poulos TL:Proteases of enhanced stability:characterization of a thermostable variant of subtilisin.Proteins:Str.Funct.Gen.1986,1:326-334.
14.Wells JA,Powers DB:In vivo formation and stability ofengineered disulfide bonds in subtilisin.J.of Biol.Chem.1986,261:6564-6570.
15.Thomas PG,Russell AJ,Fersht AR:Tailoring the pH dependenceof enzyme catalysis using protein engineering.Nature 1985,318:375-376.
16.Wells JA,Cunningham BC,Graycar TP,Estell DA:Importanceof hydrogen-bond formation in stabilizing the transition state of Subtilisin.Phil.Trans.R.Soc.Lond.1986,317:415-423.
17.Bryan P,Pantoliano MW,Quill SG,Hsiao HY,Poulos T:Site-directed mutagenesis and the role of the oxyanion hole in subtilisin.Proc.Natl.Acad.Sci.USA 1986,83:3743-3745.
18.Estell DA,Graycar TP,Miller JV,Powers DB,Burnier JP,NgPG,Wells JA:Probing steric and hydrophobic effects on enzyme-substrateinteractions by protein engineering.Science 1986,233:659-663.
19.Carter P,Wells JA:Dissecting the catalytic triad of a serineprotease.Nature 1988,332:564-568.
20.Sternberg MJ,Hayes FR,Russell AJ,Thomas PG,Fersht AR:Prediction of electrostatic effects of engineering of protein charges.Nature1987,330:86-88.
21.Mizushima N,Spellmeyer D,Hirono S,Pearlman D,Kollman P:Free energy perturbation calculations on binding and catalysis aftermutating threonine 220 in subtilisin.J Biol Chem 1991,266:11801-11809.
22.Braxton S,Wells JA:The importance of a distal hydrogenbonding group in stabilizing the transition state in subtilisin BPN′.J BiolChem 1991,266:11797-11800.
23.Neet KE,Nanci A,Koshland DE,Jr.:Properties ofthiol-subtilisin.The consequences of converting the active serine residueto cysteine in a serine protease.J Biol Chem 1968,243:6392-6401.
24.Polgar L,Bender ML:Chromatography and activity ofthiol-subtilisin.Biochemistry 1969,8:136-141.
25.Rao SN,Singh UC,Bash PA,Kollman PA:Free energyperturbation calculations on binding and catalysis after mutating Asn 155in subtilisin.Nature 1987,328:551-554.
26.Carter P,Wells JA:Functional interaction among catalyticresidues in Subtilisin BPN′.Proteins:Str.,Funct.,and Gen.1990,7:335-342.
27.Davis BG,Shang X,DeSantis G,Bott RR,Jones JB:Thecontrolled introduction of multiple negative charge at single amino acidsites in subtilisin Bacillus lentus[In Process Citation].Bioorg Med Chem1999,7:2293-2301.
28.Russell AJ,Fersht AR:Rational modification of enzyme catalysisby engineering surface charge.Nature 1987,328:496-500.
29.Russell AJ,Thomas PG,Fersht AR:Electrostatic effects onmodification of charged groups in the active site cleftof subtilisin byprotein engineering.J Mol Biol 1987,193:803-813.
30.O′Connell T P,Day RM,Torchilin EV,Bachovchin WW,Malthouse JG:A 13C-NMR study of the role of Asn-155 in stabilizing theoxyanion of a subtilisin tetrahedral adduct.Biochem J 1997,326:861-866.
31.Wangikar PP,Rich JO,Clark DS,Dordick JS:Probing enzymictransition state hydrophobicities.Biochemistry 1995,34:12302-12310.
32.Dinakarpandian D,Shenoy BC,Hilvert D,McRee DE,McTigueM,Carey PR:Electric fields in active sites:substrate switching from nullto strong fields in thiol-and selenol-subtilisins.Biochemistry 1999,38:6659-6667.
33.Whiting AK,Peticolas WL:Details of the acyl-enzymeintermediate and the oxyanion hole in serine protease catalysis.Biochemistry 1994,33:552-561.
34.Tonge PJ,Carey PR:Length of the acyl carbonyl bond inacyl-serine proteases correlates with reactivity.Biochemistry 1990,29:10723-10727.
35.Wells JA:Additivity of mutational effects in proteins.Biochemistry 1990,29:8509-8517.
36.Leis JP,Cameron CE:Engineering proteases with alteredspecificity.Curr Opin Biotechnol 1994,5:403-408.
37.Ballinger MD,Tom J,Wells JA:Designing subtilisin BPN′tocleave substrates containing dibasic residues.Biochemistry 1995,34:13312-13319.
38.Ballinger MD,Tom J,Wells JA:Furilisin:a variant of subtilisinBPN′engineered for cleaying tribasic substrates.Biochemistry 1996,35:13579-13585.
39.Carter P,Wells JA:Engineering enzyme specificity by"substrate-assisted catalysis".Science 1987,237:394-399.
40.Carter P,Nilsson B,Burnier JP,Burdick D,Wells JA:Engineering Subtilisin BPN′for site-specific proteolysis.Proteins:Str.,Funct.,and Gen.1989,6:240-248.
41.Carter P,Abrahmsen L,Wells JA:Probing the mechanism andimproving the rate of substrate-assisted catalysis in Subtilisin BPN′.Biochemistry 1991,30:6141-6148.
42.Wells JA,Powers DB,Bott RR,Graycar TP,Estell DA:Designing substrate specificity by protein engineering of electrostaticinteractions.Proc.Natl.Acad.Sci.USA 1987,84:1219-1223.
43.Wells JA,Cunningham BC,Graycar TP,Estell DA:Recruitmentof substrate-specificity properties from one enzyme into a related one byprotein engineering.Proc Natl Acad Sci USA 1987,84:5167-5171.
44.Bech LM,Sorensen SB,Breddam K:Mutational replacements insubtilisin 309.Val104 has a modulating effect on the P4 substratepreference.Eur J Biochem 1992,209:869-874.
45.Bech LM,Sorensen SB,Breddam K:Significance of hydrophobicS4-P4 interactions in subtilisin 309 from Bacillus lentus.Biochemistry1993,32:2845-2852.
46.Gron H,Breddam K:Interdependency of the binding subsites insubtilisin.Biochemistry 1992,31:8967-8971.
47.Gron H,Meldal M,Breddam K:Extensive comparison of thesubstrate preferences of two subtilisins as determined with peptidesubstrates which are based on the principle of intramolecular quenching.Biochemistry 1992,31:6011-6018.
48.Gron H,Bech LM,Sorensen SB,Meldal M,Breddam K:Studiesof binding sites in the subtilisin from Bacillus lentus by means of sitedirected mutagenesis and kinetic investigations.Ady Exp Med Biol 1996,379:105-112.
49.Sorensen SB,Bech LM,Meldal M,Breddam K:Mutationalreplacements of the amino acid residues forming the hydrophobic S4binding pocket of subtilisin 309 from Bacillus lentus.Biochemistry 1993,32:8994-8999.
50.Rheinnecker M,Baker G,Eder J,Fersht AR:Engineering a novelspecificity in subtilisin BPN′.Biochemistry 1993,32:1199-1203.
51.Rheinnecker M,Eder J,Pandey PS,Fersht AR:Variants ofsubtilisin BPN′with altered specificity profiles.Biochemistry 1994,33:221-225.
52.Mei HC,Liaw YC,Li YC,Wang DC,Takagi H,Tsai YC:Engineering subtilisin YaB:restriction of substrate specificity by thesubstitution of Gly124 and Gly151 with Ala.ProteinEng 1998,11:109-117.
53.Takagi H:[Protein engineering of subtilisin].TanpakushitsuKakusan Koso 1992,37:303-313.
54.Takagi H,Maeda T,Ohtsu I,Tsai YC,Nakamori S:Restriction ofsubstrate specificity of subtilisin E by introduction of a side chain into aconserved glycine residue.FEBS Lett 1996,395:127-132.
55.Takagi H,Yamamoto M,Ohtsu I,Nakamori S:Randommutagenesis into the conserved Gly154 of subtilisin E:isolation andcharacterization of the revertant enzymes.Protein Eng 1998,11:1205-1210.
56.Tanaka T,Matsuzawa H,Kojima S,Kumagai I,Miura K,Ohta T:P1 specificity of aqualysin I(a subtilisin-type serine protease)fromThermus aquaticus YT-1,using P1-substituted derivatives of Streptomycessubtilisin inhibitor.Biosci Biotechnol Biochem 1998,62:2035-2038.
57.Tanaka T,Matsuzawa H,Ohta T:Engineering of S2 site ofaqualysin I;alteration of P2 specificity by excluding P2 side chain.Biochemistry 1998,37:17402-17407.
58.Tanaka T,Matsuzawa H,Ohta T:Identification and designing ofthe S3 site of aqualysin I,a thermophilic subtilisin-related serine protease.J Biochem(Tokyo)1999,125:1016-1021.
59.DeSantis G,Berglund P,Stabile MR,Gold M,Jones JB:Site-directed mutagenesis combined with chemical modification as astrategy for altering the specificity of the S1 and S1′pockets of subtilisinBacillus lentus.Biochemistry 1998,37:5968-5973.
60.DeSantis G,Shang X,Jones JB:Toward tailoring the specificityof the S1 pocket of subtilisin B.lentus:chemical modification of mutantenzymes as a strategy for removing specificity limitations.Biochemistry1999,38:13391-13397.
61.DeSantis G,Jones JB:Probing the altered specificity andcatalytic properties of mutant subtilisin chemically modified at positionS156C and S166C in the S1 pocket.Bioorg Med Chem 1999,7:1381-1387.
62.Lu W,Apostol I,Qasim MA,Warne N,Wynn R,Zhang WL,Anderson S,Chiang YW,Ogin E,Rothberg I,et al.:Binding of amino acidside-chains to S1 cavities of serine proteinases.J Mol Biol 1997,266:441-461.
63.Masuda-Momma K,Shimakawa T,Inouye K,Hiromi K,KojimaS,Kumagai I,Miura K,Tonomura B:Identification of amino acid residuesresponsible for the changes of absorption and fluorescence spectra on thebinding of subtilisin BPN′and Streptomyces subtilisin inhibitor.JBiochem(Tokyo)1993,114:906-911.
64.Masuda-Momma K,Hatanaka T,Inouye K,Kanaori K,Tamura A,Akasaka K,Kojima S,Kumagai I,Miura K,Tonomura B:Interaction ofsubtilisin BPN′and recombinant Streptomyces subtilisin inhibitors withsubstituted P1 site residues.J Biochem(Tokyo)1993,114:553-559.
65.Teplyakov AV,van der Laan JM,Lammers AA,Kelders H,KalkKH,Misset O,Mulleners LJ,Dijkstra BW:Protein engineering of thehigh-alkaline serine protease PB92 from Bacillus alcalophilus:functionaland structural consequences of mutation at the S4 substrate binding pocket.Protein Eng 1992,5:413-420.
66.Abrahmsen L,Tom J,Burnier J,Butcher KA,Kosiakoff A,WellsJA:Engineering Subtilisin and its substrates for efficient ligation ofpeptide bonds in aqueous solution.Biochemistry 1991,30:4151-4159.
67.Atwell S,Wells JA:Selection for improved subtiligases by phagedisplay.Proc Natl Acad Sci USA 1999,96:9497-9502.
68.Kidd RD,Sears P,Huang DH,Witte K,Wong CH,Farber GK:Breaking the low barrier hydrogen bond in a serine protease.Protein Sci1999,8:410-417.
69.Sears P,Schuster M,Wang P,Witte K,Wong C-H:Engineeringsubtilisin for peptide coupling:Studies on the effects of counterions andsite-specific modifications on the stability and specificity of the enzyme.J.Am.Chem.Soc.1994,116:6521-6530.
70.Zhao H,Li Y,Arnold FH:Strategy for the directed evolution of apeptide ligase.Ann N Y Acad Sci 1996,799:1-5.
71.Plettner E,DeSantis G,Stabile MR,Jones JB:Modulation ofesterase and amidase activity of subtilisin Bacillus lentus by chemicalmodification of cysteine mutants.J.Am.Chem.Soc.1999,121:4977-4981.
72.Bell IM,Hilvert D:Peroxide dependence of the semisyntheticenzyme selenosubtilisin.Biochemistry 1993,32:13969-13973.
73.Bell IM,Fisher ML,Wu ZP,Hilvert D:Kinetic studies on theperoxidase activity of selenosubtilisin[published erratum appears inBiochemistry 1993 Aug 31;32(34):8980].Biochemistry 1993,32:3754-3762.
74.Peterson EB,Hilvert D:Nonessential active site residuesmodulate selenosubtilisin′s kinetic mechanism.Biochemistry 1995,34:6616-6620.
75.Syed R,Wu ZP,Hogle JM,Hilvert D:Crystal structure ofselenosubtilisin at 2.0-A resolution.Biochemistry 1993,32:6157-6164.
76.Haring D,Schreier P:Chemical engineering of enzymes:alteredcatalytic activity,predictable selectivity and exceptional stability of thesemisynthetic peroxidase seleno-subtilisin.Naturwissenschaften 1999,86:307-312.
77.Haring D,Schreier P:From detergent additive to semisyntheticperoxidase-simplified and up-scaled synthesis of seleno-subtilisin.Biotechnol Bioeng 1998,59:786-791.
78.Haring D,Hubert B,Schuler E,Schreier P:Reasoningenantioselectivity and kinetics of seleno-subtilisin from the subtilisintemplate.Arch Biochem Biophys 1998,354:263-269.
79.Haring D,Schuler E,Waldemar A,Saha-Moller CR,Schreier P:Semisynthetic enzymes in asymetric synthesis:Enantioselectivereduction of racemic hydroperoxides catalyzed by seleno-subtilisin.J.Org.Chem.1999,64:832-835.
80.Graycar T,Knapp M,Ganshaw G,Dauberman J,Bott R:Engineered Bacillus lentus subtilisins having altered flexibility.J Mol Biol1999,292:97-109.
81.Kano H,Taguchi S,Momose H:Cold adaptation of a mesophilicserine protease,subtilisin,by in vitro random mutagenesis.Appl MicrobiolBiotechnol 1997,47:46-51.
82.Taguchi S,Ozaki A,Momose H:Engineering of a cold-adaptedprotease by sequential random mutagenesis and a screening system.ApplEnviron Microbiol 1998,64:492-495.
83.Taguchi S,Ozaki A,Nonaka T,Mitsui Y,Momose H:Acold-adapted protease engineered by experimental evolution system.JBiochem(Tokyo)1999,126:689-693.
84.Takagi H,Ohtsu I,Nakamori S:Construction of novel subtilisinE with high specificity,activity and productivity through multiple aminoacid substitutions.Protein Eng 1997,10:985-989.
85.Takagi H,Morinaga Y,Ikemura H,Inouye M:Mutant subtilisin Ewith enhanced protease activity obtained by site-directed mutagenesis.JBiol Chem1988,263:19592-19596.
86.Fagain CO:Understanding and increasing protein stability.Biochim Biophys Acta 1995,1252:1-14.
87.Braxton SB,Wells JA:Incorporation of a stabilizing Ca-bindingloop into subtilisin BPN′.Biochemistry 1992,31:7796-7801.
88.Cunningham BC,Wells JA:Improvement in the alkaline stabilityof subtilisin using an efficient random mutagenesis and screeningprocedure.Protein Engineering 1987,1:319-325.
89.Mitchinson C,Wells JA:Protein engineering of disulfide bondsin subtilisin BPN′.Biochemistry 1989,28:4807-4815.
90.Bryan PN,Rollence ML,Wood J,Quill S,Dodd S,Whitlow M,Hardman K,Pantoliano MW:Engineering a stable protease.InBiotechnology Research and Applications.Edited by Gavora J,Gerson DF,Luong J,Storer A,Woodley JH:Elsevier Applied Science Publishers,Ltd.;1988:57-67.
91.Bryan PN,Pantoliano MP:Combining mutations for thestabilization of subtilisin.US Patent 1988,4,990,452.
92.Bryan PN:Engineering dramatic increases in the stability ofsubtilisin.In Pharmaceutical Biotechnology.Edited by Ahern TJ,ManningMC:Plenum Press;1992:147-181.[Botchard RT(Series Editor):Stabilityof protein pharmaceuticals,vol Part B.]
93.Bryan PN:Site-directed mutagenesis to study protein folding andstability.In Protein Stability and Folding:Theory and Practice.Edited byShirley BA:Humana Press,Inc.;1995:271-289.Method in MolecularBiology,vol 40.]
94.Pantoliano MW,Ladner RC,Bryan PN,Rollence ML,Wood JF,Poulos TL:Protein engineering of Subtilisin BPN′:stabilization throughthe introduction of two cysteines to from a disulfide bond.Biochemistry1987,26:2077-2082.
95.Pantoliano MW,Whitlow M,Wood JF,Rollence ML,Finzel BC,Gilliland G,Poulos TL,Bfyan PN:The engineering of binding affinity atmetal ion binding sites for the stabilization of proteins:Subtilisin as a testcase.Biochemistry 1988,27:8311-8317.
96.Pantoliano MW,Whitlow M,Wood JF,Dodd SW,Hardman KD,Rollence ML,Bryan PN:Large increases in general stability for SubtilisinBPN′through incremental changes in the free energy of unfolding.Biochemistry 1989,28:7205-7213.
97.Rollence ML,Filpula D,Pantoliano MW,Bryan PN:Engineeringthermostability in Subtilisin BPN′by in vitro mutagenesis.CRC Crit.Rev.Biotechnol.1988,8:217-224.
98.Zhao H,Arnold FH:Functional and nonfunctional mutationsdistinguished by random recombination of homologous genes.Proc NatlAcad Sci USA 1997,94:7997-8000.
99.Miyazaki K,Arnold FH:Exploring nonnatural evolutionarypathways by saturation mutagenesis:rapid improvement of proteinfunction.J Mol Evol 1999,49:716-720.
100.Zhao H,Arnold FH:Directed evolution converts subtilisin Einto a functional equivalent
of thermitase.Protein Eng 1999,12:47-53.
101.Chu NM,Chao Y,Bi RC:The 2 A crystal structure of subtilisinE with PMSF inhibitor.Protein Eng 1995,8:211-215.
102.Erwin CR,B arnett BL,Oliver JD,Sullivan JF:Effects ofengineered salt bridges on the stability of subtilisin BPN′.Protein Eng1990,4:87-97.
103.Keough TW,Sun Y,Barnett BL,Lacey MP,Bauer MD,WangES,Erwin CR:Rapid analysis of single-cysteine variants of recombinantproteins.Methods Mol Biol 1996,61:171-183.
104.Goddette DW,Christianson T,Ladin BF,Lau M,Mielenz JR,Paech C,Reynolds RB,Yang SS,Wilson CR:Strategy and implementationof a system for protein engineering.J Biotechnol 1993,28:41-54.
105.Paech C,Goddette DW,Christianson T,Wilson CR:Unusualligand binding at the active site domain of an engineered mutant ofsubtilisin BL.Adv Exp Med Biol 1996,379:257-268.
106.Heringa J,Argos P,Egmond MR,de Vlieg J:Increasing thermalstability of subtilisin from mutations suggested by strongly interactingside-chain clusters.Protein Eng 1995,8:21-30.
107.Bae KH,Jang JS,Park KS,Lee SH,Byun SM:Improvement ofthermal stability of subtilisin J by changing the primary autolysis site.Biochem Biophys Res Commun 1995,207:20-24.
108.Jang JS,Bae KH,Byun SM:Effect of the weak Ca(2+)-bindingsite of subtilisin J by site-directed mutagenesis on heat stability.BiochemBiophys Res Commun 1992,188:184-189.
109.Jang JS,Park DK,Chun M,Byun SM:Identification ofautoproteolytic cleavage site in the Asp-49 mutant subtilisin J bysite-directed mutagenesis.Biochim Biophys Acta 1993,1162:233-235.
110.Narhi LO,Stabinsky Y,Levitt M,Miller L,Sachdev R,Finley S,Park S,Kolvenbach C,Arakawa T,Zukowski M:Enhanced stability ofsubtilisin by three point mutations.Biotechnol Appl Biochem 1991,13:12-24.
111.Sattler A,Kanka S,Maurer KH,Riesner D:Thermostablevariants of subtilisin selected by temperature-gradient gel electrophoresis.Electrophoresis 1996,17:784-792.
112.Kidd RD,Yennawar HP,Sears P,Wong C-H,Farber GK:Aweak calcium binding site in subtilisin BPN′has a dramatic effect onprotein stability.J.Am.Chem.Soc.1996,118:1645-1650.
113.Takagi H,Takahashi T,Momose H,Inouye M,Maeda Y,Matsuzawa H,Ohta T:Enhancement of the thermostability of subtilisin Eby introduction of a disulfide bond engineered on the basis of structuralcomparison with a thermophilic serine protease.J
Biol Chem 1990,265:6874-6878.
114.Tange T,Taguchi S,Kojima S,Miura K,Momose H:Improvement of a useful enzyme(subtilisin BPN′)by an experimentalevolution system.Appl Microbiol Biotechnol 1994,41:239-244.
115.Takagi H,Morinaga Y,Ikemura H,Inouye M:The role ofPro-239 in the catalysis and heat stability of subtilisin E.J Biochem(Tokyo)1989,105:953-956.
116.Zhu L,Ji Y:Protein engineering on subtilisin E.Chin JBiotechnol 1997,13:9-15.
117.Sowdhamini R,Srinivasan N,Shoichet B,Santi DV,Ramakrishnan C,Balaram P:Stereochemical modeling of disulfide bridges.Criteria for introduction into proteins by site-directed mutagenesis.ProteinEng 1989,3:95-103.
118.Narinx E,Baise E,Gerday C:Subtilisin from psychrophilicantarctic bacteria:
characterization and site-directed mutagenesis of residues possiblyinvolved in the adaptation to cold.Protein Eng 1997,10:1271-1279.
119.Pantoliano MW:Proteins designed for challenging environmentsand catalysis in organic solvents.Curr Opin Struct Biol 1992,2:559-568.
120.Gron H,Bech LM,Branner S,Breddam K:A highly active andoxidation-resistant subtilisin-like enzyme produced by a combination ofsite-directed mutagenesis and chemical modification.Eur J Biochem 1990,194:897-901.
121.Strausberg S,Alexander P,Gallagher DT,Gilliland G,BarnettBL,Bryan P:Directed evolution of a subtilisin with calcium-independentstability.Bio/technology 1995,13:669-673.
122.Wong C-H,Chen S-T,Hennen WJ,B ibbs JA,Wang Y-F,LiuJL-C,Pantoliano MW,Whitlow M,Bryan PN:Enzymes in organicsynthesis:Use of Subtilisin and a highly stable mutant derived frommultiple site-specific mutations.J.Am.Chem.Soc.1990,112:945-953.
123.Chen K,Arnold FH:Tuning the activity of an enzyme forunusual environments:sequential random mutagenesis of subtilisin E forcatalysis in dimethylformamide.Proc Natl Acad Sci USA 1993,90:5618-5622.
124.von der Osten C,Branner S,Hastrup S,Hedegaard L,Rasmussen MD,Bisgard-Frantzen H,Carlsen S,Mikkelsen JM:Proteinengineering of subtilisins to improve stability in detergent formulations.JBiotechnol 1993,28:55-68.
125.Brode PF,3rd,Erwin CR,Rauch DS,Lucas DS,Rubingh DN:Enzyme behavior at surfaces.Site-specific variants of subtilisin BPN′withenhanced surface stability.J Biol Chem 1994,269:23538-23543.
126.Brode PF,3rd,Erwin CR,Rauch DS,Barnett BL,ArmpriesterJM,Wang ES,Rubingh DN:Subtilisin BPN′variants:increased hydrolyticactivity on surface-bound substrates via decreased surface activity.Biochemistry 1996,35:3162-3169.
127.Egmond MR,Antheunisse WP,van Bemmel CJ,Ravestein P,deVlieg J,Peters H,Branner S:Engineering surface charges in a subtilisin:the effects on electrophoretic and ion-exchange behaviour.Protein Eng1994,7:793-800.
128.Huang W,Wang J,Bhattacharyya D,Bachas LG:Improving theactivity of immobilized subtilisin by site-specific attachment to surfaces.Anal Chem 1997,69:4601-4607.
129.Bryan P,Alexander P,Strausberg S,Schwarz F,Wang L,GillilandG,GallagherDT:Energetics of folding subtilisin BPN′.Biochemistry 1992,31:4937-4945.
130.Bryan P,Wang L,Hoskins J,Ruvinov S,Strausberg S,Alexander P,Almog O,Gilliland G,Gallagher TD:Catalysis of a proteinfolding reaction:Mechanistic implications of the 2.0
Figure A200480025223D0053113042QIETU
 structure of thesubtilisin-prodomain complex.Biochemistry 1995,34:10310-10318.
131.Bryan PN:Subtilisin Engineered for facile folding:Analysis ofuncatalyzed and prodomain-catalyzed folding.In Intramolecularchaperones and protein folding.Edited by Shinde U,Inouye M:R.G.Landes;1995:85-112.
132.Gallagher TD,Bryan P,Gilliland G:Calcium-free subtilisin bydesign.Proteins:Str.Funct.Gen.1993,16:205-213.
133.Gallagher TD,Gilliland G,WangL,Bryan P:Theprosegment-subtilisin BPN′complex:crystal structure of a specific foldase.Structure 1995,3:907-914.
134.Gallagher TD,Gilliland G,Bryan P:Crystal structure analysisof subtilisin BPN′mutants engineered for studying thermal stability.Edited by Bott R,Betzel C.New York:Plenum Press;1996.
135.Ruan B,Hoskins J,Wang L,Bryan PN:Stabilizing the subtilisinBPN′prodomain by phage display selection:how restrictive is the aminoacid code for maximum protein stability?[In Process Citation].Protein Sci1998,7:2345-2353.
136.Ruan B,Hoskins J,Bryan PN:Rapid Folding of Calcium-FreeSubtilisin by a Stabilized Prodomain Mutant.Biochemistry 1999,38:8562-8571.
137.Ruvinov S,Wang L,Ruan B,Almog O,Gilliland G,EisensteinE,Bryan P:Engineering the independent folding of the subtilisin BPN′prodomain:Analysis of two-state folding vs.protein stability.Biochemistry 1997,36:10414-10421.
138.Strausberg S,Alexander P,Wang L,Schwarz F,Bryan P:Catalysis of a protein folding reaction:Thermodynamic and kineticanalysis of subtilisin BPN′interactions with its propeptide fragment.Biochemistry 1993,32:8112-8119.
139.Strausberg S,Alexander P,Wang L,Gallagher DT,Gilliland G,Bryan P:An engineered disulfide crosslink accelerates the refolding rate ofcalcium-free subtilisin by 850-fold.Biochemistry 1993,32:10371-10377.
140.Wang L,Ruvinov S,Strausberg S,Gallagher TD,Gilliland G,Bryan P:Prodomain mutations at the subtilisin interface:Correlation ofbinding energy and the rate of catalyzed folding.Biochemistry1995:15,415-415,420.
141.Wang L,Ruan B,Ruvinov S,Bryan PN:Engineering theindependent folding of the subtilisin BPN′prodomain:correlation ofprodomain stability with the rate of subtilisinfolding.Biochemistry 1998,37:3165-3171.
142.Eder J,Rheinnecker M,Fersht AR:Folding of subtilisin BPN′:Characterization of a folding intermediate.Biochemistry 1993,32:18-26.
143.Eder J,Rheinnecker M,Fersht AR:Folding of subtilisin BPN′:Role of the pro-sequence.J.Mol.Biol.1993,233:293-304.
144.Kobayashi T,Inouye M:Functional analysis of theintramolecular chaperone.Mutational hot spots in the subtilisinpro-peptide and a second-site suppressor mutation within the subtilisinmolecule.J Mol Biol 1992,226:931-933.
145.Hu Z,Zhu X,Jordan F,Inouye M:A covalently trapped foldingintermediate of subtilisin E:spontaneous dimerization of a prosubtilisin ESer49 Cys mutant in vivo and its autoprocessing in vitro.Biochemistry1994,33:562-569.
146.Li Y,Inouye M:Autoprocessing of prothiolsubtilisin E in whichactive-site serine 221 is altered to cysteine.J.Biol.Chem.1994,269:4169-4174.
147.Li Y,Hu Z,Jordan F,Inouye M:Functional analysis of thepropeptide of subtilisin E as an intramolecular chaperone for proteinfolding.Refolding and inhibitory abilities of propeptide mutants.J BiolChem 1995,270:25127-25132.
148.Shinde U,Inouye M:Folding mediated by an intramolecularchaperone:autoprocessing pathway of the precursor resolved via asubstrate assisted catalysis mechanism.J Mol Biol 1995,247:390-395.
149.Shinde U,Inouye M:Propeptide-mediated folding in subtilisin:the intramolecular chaperone concept.Adv Exp Med Biol 1996,379:147-154.
150.Li Y,Inouye M:The mechanism of autoprocessing of thepropeptide of prosubtilisin E:intramolecular or intermolecular event?JMol Biol 1996,262:591-594.
151.Shinde UP,Liu JJ,Inouye M:Protein memory through alteredfolding mediated by intramolecular chaperones[published erratum appearsin Nature 1998 Mar 12;392(6672):210].Nature 1997,389:520-522.
152.Jain SC,Shinde U,Li Y,Inouye M,Berman HM:The crystalstructure of an autoprocessed Ser221Cys-subtilisin E-propeptide complexat 2.0A resolution.J Mol Biol 1998,284:137-144.
153.Shinde U,Fu X,Inouye M:A pathway for conformationaldiversity in proteins mediated by intramolecular chaperones.J Biol Chem1999,274:15615-15621.
154.Volkov A,Jordan F:Evidence for intramolecular processing ofprosubtilisin sequestered on a solid support.J Mol Biol 1996,262:595-599.
155.Hu Z,Haghjoo K,Jordan F:Further evidence for the structureof the subtilisin propeptide and for its interactions with mature subtilisin.JBiol Chem 1996,271:3375-3384.
156.Schulein R,Kreft J,Gonski S,Goebel W:PreprosubtilisinCarlsberg processing and secretion is blocked after deletion of amino acids97-101 in the mature part of the enzyme.Mol Gen Genet 1991,227:137-143.
157.Berger A,Schechter I:Mapping the active site of papain withthe aid of peptide substrates and inhibitors.Philos Trans R Soc Lond BBiol Sci 1970,257:249-264.
158.Perona JJ,Craik CS:Structural basis of substrate specificity inthe serine proteases.Protein Sci 1995,4:337-360.
159.Khan AR,James MN:Molecular mechanisms for the conversionof zymogens to active proteolytic enzymes.Protein Sci 1998,7:815-836.
160.Agard DA:To fold or not to fold.Science 1993,260:1903-1904.
161.Baker D,Shiau AK,Agard DA:The role of pro regions inprotein folding.Curr Opin Cell Biol 1993,5:966-970.
162.Baker D,Agard D:Kinetics versus thermodynamics in proteinfolding.Biochemistry 1994,33:7505-7509.
163.Baker D:Metastable states and folding free energy barriers.NatStruct Biol 1998,5:1021-1024.
164.Inouye M:Intramolecular chaperone:the role of the pro-peptidein protein folding.Enzyme 1991,45:314-321.
165.Shinde U,LI Y,Chatterjee S,Inouye M:Folding pathwaymediated by an intramolecular chaperone.Proc.Natl.Acad.Sci.USA1993,90:6924-6928.
166.Shinde U,Inouye M:Intramolecular chaperones and proteinfolding.TIBS 1993,18:442-446.
167.Bryan PN:Prodomains and protein folding catalysis.Chem Rev2002,102:4805-4816.
168.Wong S,Doi R:Determination of the signal peptide cleavagesite in the preprosubtilisin of Bacillus subtilis.J.Biol.Chem.1986,261:10176-10181.
169.Power SD,Adams RM,Wells JA:Secretion and autoproteolyticmaturation of subtilisin.Proc Natl Acad Sci U S A 1986,83:3096-3100.
170.Silen JL,McGrath CN,Smith KR,Agard DA:Molecularanalysis of the gene encoding alpha-lytic protease:evidence for apreproenzyme.Gene 1988,69:237-244.
171.Silen JL,Agard DA:The alpha-lytic protease pro-region doesnot require a physical linkage to activate the protease domain in vivo.Nature 1989,341:462-464.
172.Winther JR,Sorensen P:Propeptide of carboxypeptidase Yprovides a chaperone-like function as well as inhibition of the enzymaticactivity.Proc Natl Acad Sci U S A 1991,88:9330-9334.
173.Zhou Y,Lindberg I:Purification and characterization of theprohormone convertase PC1(PC3).J Biol Chem 1993,268:5615-5623.
174.Baier K,Nicklisch S,Maldener I,Lockau W:Evidence forpropeptide-assisted folding of the calcium-dependent protease of thecyanobacterium Anabaena.Eur J Biochem 1996,241:750-755.
175.Fabre E,Nicaud JM,Lopez MC,Gaillardin C:Role of theproregion in the production and secretion of the Yarrowia lipolyticaalkaline extracellular protease.J Biol Chem 1991,266:3782-3790.
176.Fabre E,Tharaud C,Gaillardin C:Intracellular transit of a yeastprotease is rescued by trans-complementation with its prodomain.J BiolChem 1992,267:15049-15055.
177.Chang YC,Kadokura H,Yoda K,Yamasaki M:Secretion ofactive subtilisin YaB by a simultaneous expression of separate pre-pro andpre-mature polypeptides in Bacillus subtilis.Biochem Biophys ResCommun 1996,219:463-468.
178.Baardsnes J,Sidhu S,MacLeod A,Elliott J,Morden D,WatsonJ,Borgford T:Streptomyces griseus protease B:secretion correlates withthe length of the propeptide.J Bacteriol 1998,180:3241-3244.
179.van den Hazel HB,Kielland-Brandt MC,Winther JR:Thepropeptide is required for in vivo formation of stable active yeastproteinase A and can function even when not covalently linked to themature region.J Biol Chem 1993,268:18002-18007.
180.Cawley NX,Olsen V,Zhang CF,Chen HC,Tan M,Loh YP:Activation and processing of non-anchored yapsin 1(Yap3p).J Biol Chem1998,273:584-591.
181.Fukuda R,Horiuchi H,Ohta A,Takagi M:The prosequence ofRhizopus niveus aspartic proteinase-I supports correct folding andsecretion of its mature part in Saccharomyces cerevisiae.J Biol Chem1994,269:9556-9561.
182.Nirasawa S,Nakajima Y,Zhang ZZ,Yoshida M,Hayashi K:Intramolecular chaperone and inhibitor activities of a propeptide from abacterial zinc aminopeptidase.Biochem J 1999,341(Pt 1):25-31.
183.Marie-Claire C,Ruffet E,Beaumont A,Roques BP:Theprosequence of thermolysin acts as an intramolecular chaperone whenexpressed in trans with the mature sequence in Escherichia coli.J Mol Biol1999,285:1911-1915.
184.Cao J,Hymowitz M,Conner C,Bahou WF,Zucker S:Thepropeptide domain of membrane tyPe 1-matrix metalloproteinase acts as anintramolecular chaperone when expressed in trans with the maturesequence in COS-1 cells.J Biol Chem 2000,275:29648-29653.
185.Ventura S,Villegas V,Sterner J,Larson J,Vendrell J,Hershberger CL,Aviles FX:Mapping the pro-region of carboxypeptidaseB by protein engineering.Cloning,overexpression,and mutagenesis of theporcine proenzyme.J Biol Chem 1999,274:19925-19933.
186.Wetmore DR,Hardman KD:Roles of the propeptide and metalions in the folding and stability of the catalytic domain of stromelysin(matrix metalloproteinase 3).Biochemistry 1996,35:6549-6558.
187.Yamamoto Y,Watabe S,Kageyama T,Takahashi SY:Proregionof Bombyx mori cysteine proteinase functionsas an intramolecularchaperone to promote proper folding of the mature enzyme.Arch InsectBiochem Physiol 1999,42:167-178.
188.Sauter NK,Mau T,Rader SD,Agard DA:Structure ofalpha-lytic protease complexed with its pro region.Nat Struct Biol 1998,5:945-950.
189.McPhalen CA,James MNG:Structural comparison of twoserine proteinase-protein inhibitor complexes:Eglin-C-SubtilisinCarlsberg and CI-2-Subtilisin novo.Biochemistry 1988,27:6582-6598.
190.McPhalen CA,Schnebli HP,James MN:Crystal and molecularstructure of the inhibitor eglin from leeches in complex with subtilisinCarlsberg.FEBS Lett 1985,188:55-58.
191.Henrich S,Cameron A,Bourenkov GP,Kiefersauer R,Huber R,Lindberg I,Bode W,Than ME:The crystal structure of the proproteinprocessing proteinase furin explains its stringent specificity.Nat StructBiol 2003,10:520-526.
192.Holyoak T,Wils on MA,Fenn TD,Kettner CA,Petsko GA,Fuller RS,Ringe D:2.4 A resolution crystal structure of the prototypicalhormone-processing protease Kex2 in complex with an Ala-Lys-Argboronic acid inhibitor.Biochemistry 2003,42:6709-6718.
193.Estell DA,Graycar TP,Miller JV,Powers DB,Burnier JP,NgPG,Wells JA:Probing steric and hydrophobic effects on enzyme-substrateinteractions by protein engineering.Science 1986,233:659-663.
194.Bryan PN:Protein engineering of subtilisin.Biochim BiophysActa 2000,1543:203-222.
195.Hedstrom L:Serine protease mechanism and specificity.ChemRev 2002,102:4501-4524.
196.Craik CS,Roczniak S,Largman C,Rutter WJ:The catalytic roleof the active site aspartic acid in serine proteases.Science 1987,237:909-913.
197.Sprang S,Standing T,Fletterick RJ,Stroud RM,Finer-Moore J,Xuong NH,Hamlin R,Rutter WJ,Craik CS:The three-dimensionalstructure of Asn102 mutant of trypsin:role of Asp102 in serine proteasecatalysis.Science 1987,237:905-909.
序列表
<110>马里兰大学生物技术研究中心
Figure A200480025223D00631
<120>用于亲和纯化的工程蛋白酶及融合蛋白的加工
     (Engineered Proteases for Affinity Purification and Processing of Fusion Proteins)
<130>SCT060453-66
<140>Not yet assigned
<150>US 60/493,032
<151>2003-08-06
<160>3
<170>PatentIn version 3.2
<210>1
<211>30
<212>PRT
<213>解淀粉芽孢杆菌
<400>1
Figure A200480025223D00632
<210>2
<211>77
<212>PRT
<213>解淀粉芽孢杆菌
<400>2
Figure A200480025223D00633
<210>3
<211>275
<212>PRT
<213>解淀粉芽孢杆菌
<400>3
Figure A200480025223D00634
Figure A200480025223D00641

Claims (44)

1.编码融合蛋白的核酸构建物,其中该构建物包括可操作连接到前结构域蛋白编码序列的目的蛋白的编码序列,其中前结构域蛋白具有与其相应的蛋白酶或其变体增加的亲和力。
2.权利要求1的核酸构建物,其中相应的蛋白酶是枯草芽孢杆菌蛋白酶或其变体。
3.权利要求2的核酸构建物,其中前结构域蛋白还包括对枯草芽孢杆菌蛋白酶或其变体提高结合亲和力的氨基酸序列。
4.权利要求1的核酸构建物,其中前结构域蛋白包括P1-P4氨基酸序列的替换序列,包括用氨基酸残基F或Y置换P4,任一氨基酸残基置换P3,A或S置换P2,以及M、F、Y、H或L置换P1。
5.权利要求2的核酸构建物,其中前结构域蛋白是枯草芽孢杆菌蛋白酶的前结构域。
6.权利要求5的核酸构建物,其中前结构域蛋白包括在C末端用氨基酸残基F或Y置换P4,任一氨基酸残基置换P3,A或S置换P2以及M、F、Y、H或L置换P1。
7.融合蛋白,包括可操作连接到前结构域蛋白的靶蛋白,其中前结构域蛋白被修饰以显示对枯草芽孢杆菌蛋白酶或其变体增加的亲和力。
8.权利要求7的融合蛋白,其中前结构域蛋白是枯草芽孢杆菌蛋白酶前结构域蛋白。
9.权利要求8的融合蛋白,其中枯草芽孢杆菌蛋白酶前结构域蛋白包括置换P1至P4氨基酸的氨基酸序列FKAM。
10.权利要求7的融合蛋白,其中前结构域蛋白包括用作同源序列的各种氨基酸残基EEDKL(F/Y)QS(M/L/Y)。
11.权利要求7的融合蛋白,其中靶蛋白是金黄色葡萄球菌蛋白AB结构域;蛋白AB突变体A219;链球菌蛋白GB结构域;链球菌蛋白Ga结构域;蛋白GB突变体G311;大肠杆菌假定的Yab;牛转导素的α亚单位;甲烷杆菌(M.thermautotrophicus)CDC6;链霉亲和素;亲和素;Taq聚合酶;碱性磷酸酶;RNase;DNase;限制性内切酶;过氧化物酶;内-1,4-β葡聚糖酶;内-1,3-β-葡聚糖酶;几丁质酶;β和α葡萄糖苷酶;β和α葡苷酸酶;淀粉酶;葡萄糖基转移酶;磷酸转移酶;氯霉素-乙酰转移酶;β-内酰胺酶;荧光素酶;酯酶;脂肪酶;蛋白酶;细菌素;抗生素;酶抑制剂;生长因子;激素;受体;膜蛋白;核蛋白;转录因子;翻译因子或核酸修饰酶。
13.一种生产结合枯草芽孢杆菌蛋白酶的融合蛋白的方法,该方法包括:
提供编码融合蛋白的核酸构建物,其中该融合蛋白包括前结构域蛋白和目的第二蛋白,其中前结构域蛋白被修饰以高亲和力结合枯草芽孢杆菌蛋白酶或其变体;
用核酸构建物转染宿主细胞;以及
在适合表达融合蛋白的条件下培养转化的宿主细胞。
14.权利要求13的方法,其中前结构域蛋白是枯草芽孢杆菌蛋白酶的前结构域。
15.权利要求14的方法,其中前结构域蛋白通过用氨基酸序列FKAM、FKAY或FKAF替换P4至P1的氨基酸而进行修饰。
16.权利要求15的方法,其中所述目的第二蛋白是金黄色葡萄球菌蛋白AB结构域;蛋白AB突变体A219;链球菌蛋白GB结构域;链球菌蛋白Ga结构域;蛋白GB突变体G311;大肠杆菌假定的Yab;牛转导素的α亚单位;甲烷杆菌CDC6;链霉亲和素;亲和素;Taq聚合酶;碱性磷酸酶;RNase;DNase;限制性内切酶;过氧化物酶;内-1,4-β葡聚糖酶;内-1,3-β-葡聚糖酶;几丁质酶;β和α葡萄糖苷酶;β和α葡苷酸酶;淀粉酶;葡萄糖基转移酶;磷酸转移酶;氯霉素-乙酰转移酶;β-内酰胺酶;荧光素酶;酯酶;脂肪酶;蛋白酶;细菌素;抗生素;酶抑制剂;生长因子;激素;受体;膜蛋白;核蛋白;转录因子;翻译因子或核酸修饰酶。
17.权利要求13的方法,其中宿主细胞包括来自大肠杆菌;芽孢杆菌,沙门氏菌,假单孢菌;酿酒酵母,毕赤氏酵母,克鲁弗氏酵母,假丝酵母,裂殖酵母或CHO细胞的细胞。
18.一种从融合蛋白纯化并从其中分离目的蛋白的方法,该方法包括:
将包括连接到目的蛋白的前结构域蛋白的融合蛋白与有效量的枯草芽孢杆菌蛋白酶或其变体在适合形成枯草芽孢杆菌蛋白酶或其变体与融合蛋白的前结构域蛋白之间的结合复合物的条件下接触;
将结合复合物温育足够的时间,以使枯草芽孢杆菌蛋白酶或其变体从结合复合物切割目的蛋白;和
回收目的蛋白。
19.权利要求18的方法,其中枯草芽孢杆菌蛋白酶被修饰以特异性结合到蛋白酶前结构域融合蛋白。
20.权利要求19的方法,其中枯草芽孢杆菌蛋白酶包括突变Q2K,S3C,P5S,K43N,A73L,Δ75-83,E156S,G166S,G169A,S188P,Q206C,N212G,K217L,N218S,T254A,Q271E,Y104A,G128S和氨基酸位置32、155或221的至少一个另外的突变。
21.权利要求19的方法,其中前结构域蛋白是枯草芽孢杆菌蛋白酶前结构域,并通过用氨基酸序列FKAM、FKAY或FKAF替换P4至P1的氨基酸而进行修饰。
22.权利要求21的方法,其中目的蛋白是金黄色葡萄球菌蛋白AB结构域;蛋白AB突变体A219;链球菌蛋白GB结构域;链球菌蛋白Ga结构域;蛋白GB突变体G311;大肠杆菌假定的Yab;牛转导素的α亚单位;甲烷杆菌CDC6;链霉亲和素;亲和素;Taq聚合酶;碱性磷酸酶;RNase;DNase;限制性内切酶;过氧化物酶;内-1,4-β葡聚糖酶;内-1,3-β-葡聚糖酶;几丁质酶;β和α葡萄糖苷酶;β和α葡苷酸酶;淀粉酶;葡萄糖基转移酶;磷酸转移酶;氯霉素-乙酰转移酶;β-内酰胺酶;荧光素酶;酯酶;脂肪酶;蛋白酶;细菌素;抗生素;酶抑制剂;生长因子;激素;受体;膜蛋白;核蛋白;转录因子;翻译因子或核酸修饰酶。
23.权利要求20的方法,其中枯草芽孢杆菌蛋白酶被固定在固相基质上。
24.权利要求21的方法,其中枯草芽孢杆菌蛋白酶的前结构域被突变以使枯草芽孢杆菌蛋白酶的结合亲和力提高到大于109M-1
25.权利要求19的方法,其中枯草芽孢杆菌蛋白酶包括突变Q2K,S3C,P5S,K43N,A73L,Δ75-83,E156S,G169A,S188P,Q206C,N212G,K217L,N218S,T254A,Q271E,Y104A,G128S和氨基酸位置32或221的至少一个另外的突变。
26.权利要求20的方法,其中枯草芽孢杆菌蛋白酶是S189,S190,S194,S196,S197或S198。
27.权利要求25的方法,其中枯草芽孢杆菌蛋白酶是S199,S201或S202。
28.一种检测测试样品中目的物质存在的分析方法,包括:
(a)温育测试样品,其可以含有目的物质和足够量的蛋白酶前结构域融合蛋白,其中蛋白酶前结构域融合蛋白包括:
(i)能够以高亲和力结合到枯草芽孢杆菌蛋白酶或其变体的蛋白酶前结构域,和
(ii)能够在允许目的物质与第二蛋白结合的温育条件下结合目的物质的第二蛋白;
(b)将用于步骤(a)的蛋白酶前结构域融合蛋白与枯草芽孢杆菌蛋白酶或其变体接触,其中枯草芽孢杆菌蛋白酶或其变体以有效量在溶液中结合融合蛋白或固定在固相上以形成枯草芽孢杆菌蛋白酶/前结构域融合蛋白结合复合物;
(c)将枯草芽孢杆菌蛋白酶/前结构域融合蛋白结合复合物温育足够的时间,以使枯草芽孢杆菌蛋白酶或其变体从结合复合物切割第二蛋白
(d)回收结合到目的物质的第二蛋白。
29.权利要求28的方法,还包括引入能够结合到目的物质的可检测的标记物;以及测定标记物存在与否,以提供测试样品中是否存在目的物质的指示。
30.权利要求29的方法,其中可检测的标记物在从结合复合物分离第二蛋白之前或回收第二蛋白之后引入。
31.权利要求28的方法,其中测试样品是血液,尿,精液,唾液,粘液,眼泪或阴道分泌物。
32.权利要求31的方法,其中目的物质是抗体。
33.权利要求32的方法,其中第二蛋白是与抗体具有亲和力的抗原性受体。
34.权利要求31的方法,其中目的物质是抗原。
35.权利要求34的方法,其中第二蛋白是与抗体具有亲和力的抗体。
36.权利要求28的方法,其中枯草芽孢杆菌蛋白酶被修饰为特异性结合到蛋白酶前结构域融合蛋白。
37.权利要求36的方法,其中枯草芽孢杆菌蛋白酶包括突变Q2K,S3C,P5S,K43N,A73L,Δ75-83,E156S,G166S,G169A,S188P,Q206C,N212G,K217L,N218S,T254A,Q271E,Y104A,G128S和氨基酸位置32、155或221的至少一个另外的突变。
38.权利要求28的方法,其中蛋白酶前结构域蛋白是枯草芽孢杆菌蛋白酶前结构域并通过用氨基酸序列FKAM、FKAY或FKAF替换P4至P1的氨基酸而进行修饰。
39.药物递送系统,包含枯草芽孢杆菌蛋白酶与目的药物相连形成融合产物,其中融合产物被进一步复合到枯草芽孢杆菌蛋白酶或其变体上以形成药物递送复合物。
40.权利要求39的药物递送系统,其中目的药物被直接或通过接头部分结合到枯草芽孢杆菌蛋白酶前结构域蛋白。
41.权利要求39的药物递送系统,其中目的药物从药物递送复合物中缓慢释放。
42.权利要求41的药物递送系统,其中药物递送产物被包含在组合物中,并经肠胃外,口服,局部或吸入给药。
43.权利要求41的药物递送系统,其中的组合物包括固体、凝胶、液体或气溶胶。
44.权利要求41的药物递送系统,其中枯草芽孢杆菌蛋白酶包括突变Q2K,S3C,P5S,K43N,A73L,Δ75-83,E156S,G166S,G169A,S188P,Q206C,N212G,K217L,N218S,T254A,Q271E,Y104A,G128S和氨基酸位置32、155或221的至少一个另外的突变。
45.权利要求41的药物递送系统,其中枯草芽孢杆菌蛋白酶前结构域蛋白通过用氨基酸序列FKAM、FKAY或FKAF替换P4至P1的氨基酸残基而进行修饰。
CN200480025223.8A 2003-08-06 2004-06-29 用于亲和纯化的工程蛋白酶及融合蛋白的加工 Expired - Lifetime CN101454452B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US49303203P 2003-08-06 2003-08-06
US60/493,032 2003-08-06
PCT/US2004/021049 WO2005017110A2 (en) 2003-08-06 2004-06-29 Engineered proteases for affinity purification and processing of fusion proteins

Publications (2)

Publication Number Publication Date
CN101454452A true CN101454452A (zh) 2009-06-10
CN101454452B CN101454452B (zh) 2014-01-01

Family

ID=34193161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200480025223.8A Expired - Lifetime CN101454452B (zh) 2003-08-06 2004-06-29 用于亲和纯化的工程蛋白酶及融合蛋白的加工

Country Status (7)

Country Link
US (2) US7824885B2 (zh)
EP (1) EP1651751B1 (zh)
JP (2) JP5639324B2 (zh)
CN (1) CN101454452B (zh)
AU (1) AU2004265613B2 (zh)
CA (1) CA2534629C (zh)
WO (1) WO2005017110A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107002110A (zh) * 2014-10-10 2017-08-01 恩细贝普有限公司 用具有改善的合成水解比的枯草杆菌蛋白酶变体的肽片段缩合和环化

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888093B2 (en) 2002-11-06 2011-02-15 Novozymes A/S Subtilase variants
WO2005017110A2 (en) * 2003-08-06 2005-02-24 University Of Maryland Biotechnology Institute Engineered proteases for affinity purification and processing of fusion proteins
DE102005037659A1 (de) * 2005-08-05 2007-02-22 Henkel Kgaa Verwendung von Esterasen zur Spaltung von Kunststoffen
CA2680563A1 (en) * 2007-03-12 2008-09-18 Danisco Us Inc. Modified proteases
WO2008124015A1 (en) * 2007-04-09 2008-10-16 The Regents Of The University Of California Methods for purifying adeno-associated virus virions
JP5278940B2 (ja) * 2007-11-12 2013-09-04 独立行政法人産業技術総合研究所 安定な抗体結合性タンパク質
US20120270241A1 (en) * 2009-09-23 2012-10-25 Bryan Philip N Systems and methods for evolving enzymes with desired activities
CN103180442A (zh) * 2010-11-05 2013-06-26 旭硝子株式会社 裂殖酵母属酵母的转化体及其制造方法
US10456118B2 (en) 2010-11-24 2019-10-29 In Hindsight Llc Biological sample collection, storage, and transport system and method
JP6629830B2 (ja) * 2014-07-15 2020-01-15 バリタセル リミテッド 試料中の抗体濃度を測定する方法
CN116445593A (zh) 2016-08-10 2023-07-18 格里尔公司 测定一生物样品的一甲基化图谱的方法
CN112368388B (zh) * 2018-10-31 2024-01-02 青岛蔚蓝生物集团有限公司 一种生产具有蛋白酶抗性的洗涤用酶的方法
CN112760305B (zh) * 2021-01-25 2022-04-29 浙江工业大学 一种栖热腔菌磷酸酶突变体及其应用

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371008A (en) * 1984-05-29 1994-12-06 Genencor International, Inc. Substrate assisted catalysis
US5801038A (en) * 1984-05-29 1998-09-01 Genencor International Inc. Modified subtilisins having amino acid alterations
US5371190A (en) * 1984-05-29 1994-12-06 Genencor International, Inc. Substrate assisted catalysis
US4980288A (en) * 1986-02-12 1990-12-25 Genex Corporation Subtilisin with increased thermal stability
US4990452A (en) 1986-02-12 1991-02-05 Genex Corporation Combining mutations for stabilization of subtilisin
US5013657A (en) * 1988-04-12 1991-05-07 Bryan Philip N Subtilisin mutations
US5260207A (en) * 1987-04-06 1993-11-09 Enzon Labs Inc. Engineering of electrostatic interactions at metal ion binding sites for the stabilization of proteins
US5116741A (en) * 1988-04-12 1992-05-26 Genex Corporation Biosynthetic uses of thermostable proteases
US5246849A (en) * 1988-04-12 1993-09-21 Enzon, Inc. Thermally stable serine proteases
US5567601A (en) * 1993-06-01 1996-10-22 University Of Maryland Subtilisin mutants lacking a primary calcium binding site
US5470733A (en) * 1993-06-01 1995-11-28 University Of Maryland Calcium free subtilisin mutants
AU7870394A (en) * 1993-09-15 1995-04-03 Procter & Gamble Company, The Subtilisin bpn' variants with decreased adsorption and increased hydrolysis
CA2286861A1 (en) 1997-04-25 1998-11-05 Sembiosys Genetics Inc. Method for cleavage of fusion proteins
US7531325B2 (en) * 1997-04-25 2009-05-12 Sembiosys Genetics Inc. Method for cleavage of fusion proteins
IL129427A0 (en) * 1999-04-13 2000-02-17 Yeda Res & Dev Preparation of biologically active molecules
US6541234B1 (en) * 2000-09-11 2003-04-01 University Of Maryland Biotechnology Institute Calcium free subtilisin mutants
US6541235B1 (en) * 2000-09-29 2003-04-01 University Of Maryland Biotechnology Institute Calcium free subtilisin mutants
DK1373296T3 (da) * 2001-03-23 2012-01-09 Procter & Gamble Proteiner, der frembringer et ændret immunogent respons, og fremgangsmåder til fremstilling og anvendelse deraf
BR0215383A (pt) * 2001-12-31 2006-11-28 Genencor Int proteases que produzem resposta imunogênica alterada e métodos de fabricação e uso das mesmas
US20040146938A1 (en) * 2002-10-02 2004-07-29 Jack Nguyen Methods of generating and screening for proteases with altered specificity
WO2005017110A2 (en) * 2003-08-06 2005-02-24 University Of Maryland Biotechnology Institute Engineered proteases for affinity purification and processing of fusion proteins

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107002110A (zh) * 2014-10-10 2017-08-01 恩细贝普有限公司 用具有改善的合成水解比的枯草杆菌蛋白酶变体的肽片段缩合和环化

Also Published As

Publication number Publication date
US20060134740A1 (en) 2006-06-22
JP2012050459A (ja) 2012-03-15
CN101454452B (zh) 2014-01-01
WO2005017110A2 (en) 2005-02-24
US20110008869A1 (en) 2011-01-13
EP1651751B1 (en) 2015-11-18
AU2004265613A1 (en) 2005-02-24
EP1651751A2 (en) 2006-05-03
CA2534629A1 (en) 2005-02-24
AU2004265613B2 (en) 2010-12-09
CA2534629C (en) 2016-01-19
WO2005017110A3 (en) 2008-10-30
JP5639324B2 (ja) 2014-12-10
US7824885B2 (en) 2010-11-02
AU2004265613A2 (en) 2005-02-24
US8241885B2 (en) 2012-08-14
EP1651751A4 (en) 2009-07-22
JP2007517492A (ja) 2007-07-05

Similar Documents

Publication Publication Date Title
Schulz et al. Der p I, a major allergen of the house dust mite, proteolytically cleaves the low‐affinity receptor for human IgE (CD23)
JP2012050459A (ja) 融合タンパク質のアフィニティ精製およびプロセッシングのための修飾されたプロテアーゼ
Krysan et al. Quantitative characterization of furin specificity: energetics of substrate discrimination using an internally consistent set of hexapeptidyl methylcoumarinamides
EP1792181B1 (en) Diagnostic and screening methods and kits associated with proteolytic activity
Hooper Families of zinc metalloproteases
Paetzel et al. Signal peptidases
Knop et al. Vacuolar/lysosomal proteolysis: proteases, substrates mechanisms
US7335504B2 (en) Engineered enzymes and uses thereof
CA2413857A1 (en) Pd-l2 molecules: pd-1 ligands and uses therefor
Leytus et al. Activation of plasminogen to plasmin by a protease associated with the outer membrane of Escherichia coli.
Schultheiss et al. Esterase autodisplay: enzyme engineering and whole-cell activity determination in microplates with pH sensors
Bristol et al. Propeptide processing during factor IX biosynthesis. Effect of point mutations adjacent to the propeptide cleavage site.
Stafslien et al. Characterization of the streptococcal C5a peptidase using a C5a-green fluorescent protein fusion protein substrate
CA2964467A1 (en) Methods for generating engineered enzymes
WO2000056871A3 (de) Zellen, die ein amyloidvorlauferprotein und ein a-sekretase coexprimieren und deren anwendungen in testverfahren und diagnostik
US6566062B1 (en) Method for identifying a nucleic acid
US20040038375A1 (en) Method for screening highly active proteases and inhibitors
Gul'nik et al. Proteinases of Legionella: phenylalanineaminopeptidase of L. pneumophila
Sharipova Late stages of protein secretion in bacilli
EP1017843B1 (de) Verfahren zur bestimmung von wirksubstanzen
Carson Recombinant expression of Streptomyces griseus genes and their variants in Bacillus subtilis and Escherichia coli
Semets Studies on extracellular enzyme production by bacilli
Keiler Substrate specificity, active-site residues, and function of the Tsp protease

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20140101

CX01 Expiry of patent term