CN101447905B - 无线通信装置和无线通信方法 - Google Patents

无线通信装置和无线通信方法 Download PDF

Info

Publication number
CN101447905B
CN101447905B CN2009100017158A CN200910001715A CN101447905B CN 101447905 B CN101447905 B CN 101447905B CN 2009100017158 A CN2009100017158 A CN 2009100017158A CN 200910001715 A CN200910001715 A CN 200910001715A CN 101447905 B CN101447905 B CN 101447905B
Authority
CN
China
Prior art keywords
frame
channel
mhz
sta
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009100017158A
Other languages
English (en)
Other versions
CN101447905A (zh
Inventor
宇都宮依子
足立朋子
高木雅裕
中岛徹
旦代智哉
西林泰如
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN101447905A publication Critical patent/CN101447905A/zh
Application granted granted Critical
Publication of CN101447905B publication Critical patent/CN101447905B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • H04W74/0875Non-scheduled access, e.g. ALOHA using a dedicated channel for access with assigned priorities based access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)
  • Radio Transmission System (AREA)

Abstract

一种无线通信装置,用于使用具有第一频率带宽的第一信道和由第一信道与第二通信信道形成的第二信道执行无线通信,该第二通信信道具有与该第一频率带宽相等的频率带宽。第一生成用于声明在指定时段内第一信道的占用的第一声明帧,和第二生成用于声明在生成并发送了该第一声明帧之后在指定时段内第二通信信道的占用的第二声明帧。设置传输定时,以便在所有其它帧中以最高优先级发送该第一和第二声明帧。

Description

无线通信装置和无线通信方法
本申请是2005年11月30日递交的、名称为“无线通信装置和无线通信方法”的发明专利申请No.200510121790.X的分案申请。
技术领域
本申请涉及基于载波侦听状态执行媒体接入控制的无线通信,更特别地,涉及用于允许多个用户共享和使用多个信道的无线通信装置和无线通信方法。
背景技术
媒体接入控制(MAC)是用于确定要通过共享相同的媒体进行通信的多个通信装置应当如何使用该媒体来发送通信数据的控制。通过执行MAC,即使两个或更多个通信装置通过使用相同的媒体同时发送该通信数据,在接收侧的通信装置不能分离该通信数据的情况(所谓的冲突)也减少了。尽管存在具有传输请求的通信装置,但是媒体没有被任何通信装置使用的情况通过MAC也减少了。
在无线通信中,通信装置在发送数据时监视传输数据是困难的,从而使得需要不基于冲突检测的MAC。作为用于无线局域网(LAN)的代表性技术标准的IEEE 802.11适应于具有冲突避免的载波侦听多址接入(CSMA/CA)。
在IEEE 802.11中的CSMA/CA设定一个时段(称为持续时间),直到由从相应的MAC帧以后的一个或多个帧交换构成的一连串序列实现结束MAC帧的头部为止。在持续时间期间与该序列无关并且没有传输权的通信装置通过确定媒体的实际占用状态而等待传输。由此,避免了冲突的发生。相反地,在序列中没有传输权的通信装置认为在除该媒体被实际占用的时段之外不使用该媒体。
IEEE 802.11定义了:类似于前者的MAC层的虚拟载波侦听和类似于后者的物理层的物理载波侦听的组合确定媒体的状态,并且在所产生的确定的基础上执行MAC。
日本专利申请特许公开2003-87856公开了一种用于在无线通信系统中实现可由多个无线LAN系统共享的无线基站的方法,在该无线通信系统中共存有多个在物理层中不同的无线LAN系统。特别地,共享的无线基站接连地生成第一物理层的第一通知信号和第二物理层的第二通知信号,以将它们发送到无线终端,并与第一和第二通知信号同步地在第一和第二物理层之间进行切换。对应于第一物理层的无线终端只能够在从传输第一通知信号的时间开始的一段规定时间内接入,而对应于第二物理层的无线终端只能够在从传输第二通知信号的时间开始的一段规定时间内接入。
常规上采用CSMA/CA的IEEE 802.11已经通过主要改变物理层中的协议而实现了高的通信速率。相对于2.4-GHz频带而言,IEEE802.11(1997年建立,通信速率=2Mbps)已经变为IEEE 802.11b(1999年建立,通信速率=11Mbps),并且此外还已经变为IEEE 802.11g(2003年建立,通信速率=54MHz)。对于5-GHz频带,当前只存在IEEE 802.11a(1999年建立,通信速率=54MHz)作为标准规范。
存在一种用于扩展信道带宽的方法作为用于达到高通信速率的方法。日本专利申请特许公开2003-06323常规地提供了一种用于向在相同频带内共存的不同信道执行MAC的通信系统,在这种情况下扩展了该信道的频带。
日本专利申请特许公开2003-06323描述了这样一种通信系统,其通过MAC实现与其中同时使用的多个信道的宽带通信,以便一个接一个地依次预定多个信道。然而,由于预定用于宽带通信的信道的控制帧也依照与其它控制帧和其它数据帧的信道接入过程相同的信道接入过程进行发送,因此,如果不赢得竞争,则所述的通信系统不能保证用于宽带通信的信道。也就是说,常规的通信系统不能总是无误地开始宽带通信。因此,对于宽带通信的安全开始来说,必要的是向控制帧给予具有高优先级的信道接入权限以预定用于宽带通信的多个信道。
已经提出了一种根据优先级类别的参数执行信道接入的系统,其中该系统响应于数据的种类向数据帧给出了优先级类别,像无线LAN规范的IEEE 802.11e向数据帧给出优先级类别一样。此外,对于控制帧,已经提出了一种用于向控制帧设定对应于一类下列数据帧的优先级类别的系统。例如,在传输RTS/CTS帧时,所提出的系统根据对应于下列数据的类型的优先级类别参数执行信道接入。
然而,还不存在一种用于通过独立于下列数据帧的种类向控制帧设定优先级类别来执行信道接入的系统。特别地,还没有提出基于控制帧是否用于宽带通信的信道预定这样的事实而确定是否应当向控制帧给予信道接入的优先权。
日本专利申请特许公开2003-06323根本没有考虑在信道接入不同频带时引起的切换信道或通信带宽所需要的时间。因此,如果切换信道或通信带宽花费了很长时间,则由日本专利申请特许公开2003-06323公开的系统降低了信道的使用效率。
当上面描述的系统在信道或通信带宽的切换时间彼此不同的终端当中进行通信时,如果源终端没有关于目标终端上的信道或通信带宽的切换时间的信息,则在目标终端上完成信道或通信带宽的切换之前间断性地发送帧。
发明内容
本发明的一个目的是提供一种无线通信装置和无线通信方法,用于确定地设置宽带通信以便有助于提高信道的使用效率。
根据本发明的一个方面的无线通信装置包括无线通信装置,用于使用具有第一频率带宽的第一信道、以及由第一信道和第二通信信道形成的第二信道执行与无线终端的无线通信,第二通信信道具有与第一频率带宽相等的频率带宽,该无线通信装置包括:指示设备,被配置为指示用于声明指定时段内第一信道的占用的第一声明帧的第一生成,和用于声明在生成并发送该第一声明帧之后的指定时段内第二通信信道的占用的第二声明帧的第二生成;发送设备,被配置为分别根据第一生成和第二生成的指示而生成并发送第一声明帧和第二声明帧;和通信设备,被配置为在已经发送了第二声明帧之后使用第二信道与无线终端进行通信,其中指示设备能够设置用于确定多个帧的传输定时的参数,并设置这个参数以便以所有其它帧中的最高优先级发送第一和第二声明帧。
附图说明
图1是关于本发明的第一实施例的第一无线通信装置的框图;
图2是关于本发明的第一实施例的第二无线通信装置的框图;
图3是示出了关于本发明的第一实施例的包括无线通信装置的网络实例的示例图;
图4A和4B是解释本发明第一实施例中第一频带内的第一信道和第二频带内的第二信道的示例图;
图5是解释关于本发明第一实施例的媒体访问控制系统的示例图;
图6是解释关于本发明第一实施例的优先级控制系统的示例图;
图7是示出关于本发明的第二实施例的网络结构的示例图;
图8是解释关于本发明第二实施例的媒体接入系统的示例图;和
图9是示出关于本发明的第三实施例的连接序列实例的示例图。
具体实施方式
一种用于在进行通信之前搜索频率信道的无线通信系统包括IEEE Std.802.11-1999(2003年修订版,包括:ISO/IEC8802-11-1999(E);ANSI/IEEE Std.802.11-1999版;IEEE Std.802-11a-1999;IEEE Std.802.11b-1999;IEEE Std 802.11b-1999;IEEEStd.802.11b-1999/Cor1-2001;和IEEE Std.802.11d-2001)。在下文中,将以IEEE 802.11无线LAN系统为基础解释基本系统配置。IEEE802.11标准规范是一种关于物理(PHY)层和媒体接入控制(MAC)层的标准规范。通过主要关注于MAC层中的处理来解释下面的处理。该IEEE 802.11标准规范还包括被定位为修改和被推荐的实践的标准规范。
(第一实施例)
如图1中所示,根据本发明第一实施例的无线通信装置,通过粗略分类,包括PHY层10、MAC层20和链路层30。在图1中,PHY层10对应于使用带宽不同的两种PHY层协议。也就是说,该PHY层10具有第一PHY层协议处理单元11,用于执行PHY层协议处理以通过使用具有第一通信带宽的第一信道来进行通信,和第二PHY层协议处理单元12,用于执行PHY处理以通过使用具有大于第一通信带宽并与第一通信带宽重叠的第二通信带宽的第二信道来进行通信。第一处理单元11和第二处理单元12在实际安装方面常常彼此共享电路,并且它们不是完全彼此独立的。
在第一处理单元11的处理过程中被处理的协议至少包括例如由IEEE 802.11a定义的PHY协议。由第一处理单元11使用的第一带宽被设置为例如20MHz。该第一处理单元11可以使用所谓的多输入多输出(MIMO)技术,通过该技术在发送侧和接收侧上分别使用多个天线13A-13C中的每一个。MIMO技术是一种很可能会被应用到用于实现IEEE 802.11的更高吞吐量的IEEE 802.11任务组n(TGn)的技术。
第二处理器单元12使用例如单输入单输出(SISO)技术、或MIMO技术、或使用这两种技术。由该第二处理单元12使用的第二通信带宽被设置为例如40MHz。第一通信带宽存在于第二通信带宽内。
MAC层20具有信道接入控制单元21,信道接入控制单元21具有载波侦听单元22、信道状态管理单元23和信道占用/释放控制单元24。
MAC层20控制PHY层10并与该PHY层10交换数据。响应于来自MAC层20的指示,在PHY层10中根据第一PHY层协议和第二PHY层协议之一处理从MAC层20转发到该PHY层10的数据。从天线发送处理后的数据。另一方面,在PHY层10中根据第一PHY层协议和第二PHY层协议之一解码由天线接收的数据。依次转发所解码的数据到MAC层20。
MAC层20不仅转发数据而且还转发控制信号到PHY层10。例如,通过从MAC层20提供给PHY层10的控制信号,控制为将要被处理的数据的信号处理选择第一PHY层协议处理单元11和第二PHY层协议处理单元12之一。该MAC层20还具有网络系统管理单元25,其中该网络系统管理单元25生成信标帧;管理关联(association);并适当地扩展下面描述的网络系统。
载波侦听单元22通过管理载波侦听状态来管理信道的空置/占用(空闲/忙)状态,其中载波侦听状态具有从PHY层10获取的实际载波侦听信息和由MAC层20的协议获得的虚拟载波侦听信息的组合。也就是说,载波侦听单元22不管理信道的单个空闲/忙状态,而是管理第一带宽中一个以上的第一信道和第二带宽中一个以上的第二信道的空闲/忙状态。
信道占用/释放控制单元24生成帧,以控制MAC层20的虚拟载波侦听状态,其是在指定时段内占用信道或释放所占用的信道所必须的。由该控制单元24生成的帧被发送到PHY层10,并通过第一处理单元11和第二处理单元12进行发送。
信道状态控制单元23使载波侦听单元22和信道占用/释放控制单元24、以及PHY层10的第一和第二协议处理单元11、12协同操作,以便执行期望的信道接入控制。
信道状态控制单元23还根据这些帧的优先级为每个帧确定信道接入参数的值,并将该信道接入参数通知给PHY层10。该信道接入参数可以表示在这些帧的传输之前的等待时间或者信道接入的补偿(backoff)时段的最大值。PHY层10根据从MAC层20通知的信道接入参数发送这些帧。
作为如图1中所示的无线通信装置的特定实施例,例如,给出了40-/20-MHz MIMO STA(AP)和40-/20-MHz STA(AP)。该40-/20-MHz MIMO STA(AP)是能够通过20-MHz信道发送和接收SISO、通过20-MHz信道发送和接收MIMO、通过40-MHz信道发送和接收SISO以及通过40-MHz信道发送和接收MIMO的终端(或AP)。该40-/20-MHz STA(AP)是能够通过20-MHz信道发送和接收SISO以及通过40-MHz信道发送和接收MIMO的终端(或AP)。在链路层30方面,假设其具有IEEE 802中定义的通常的链路层的功能。
在图2中所示的另一个无线通信装置与图1中所示的无线通信装置的不同点在于:PHY层10不包括图1中所示的第二PHY协议处理单元12。图2中所示的另一个无线通信装置与图1中所示的通信装置在以下几点上是类似的:第一PHY协议处理单元11的第一通信带宽标称为20-MHz;可以包括或者也可以不包括MIMO技术;以及提供了MAC层20和链路层30。
然而,由于图2中所示的无线通信装置仅仅基于第一处理单元11执行MAC,所以图2中的MAC层20的操作细节部分地不同于图1中所示的通信装置。如果处理单元11不包括MIMO技术,则图2中所示的通信装置可以是对应于IEEE 802.11a、IEEE 802.11b、和IEEE 802.11g中至少之一的现有装置。
图2中所示的通信装置的特定实例包括例如20-MHz MIMOSTA(AP)和20-MHz STA(AP)。该20-MHz MIMO STA(AP)是能够通过20-MHz信道发送和接收SISO以及通过20-MHz信道发送和接收MIMO的终端(或AP)。该20-MHz STA(AP)是能够通过20-MHz信道发送和接收SISO的终端(或AP)。
在图3中示出了包括图1和图2中示出的无线通信装置的网络100的实例。在该网络100中的基站101是对应于40-/20-MHz MIMOAP的AP。终端102-106与基站101建立关联。在这里,终端102是40-/20-MHz MIMO STA_1,终端103是40-/20-MHz MIMOSTA_2,终端104是40-/20-MHz STA,终端105是20-MHz MIMOSTA,以及终端106是20-MHz MIMO STA_1。假设另一个终端107是20-MHz MIMO STA_2并且属于除网络100之外的网络,例如,属于使用20M_ch_b的网络。
图3中所示的网络100具有如图4中示意性示出的、使用X MHz-(X+20)MHz频带的20MHz的信道20M_ch_a和使用X MHz-(X+40)MHz频带的40MHz的信道40M_ch作为通信信道。因此,对于20-MHz和40-MHz信道来说,X MHz-(X+20)MHz频带被重复使用。使用(X+20)MHz-(X+40)MHz频带的20MHz的另一个信道20M_ch_b不会被图3中所示的网络100使用,而是偶尔在其它网络中被使用。
在网络100中,使用了40MHz的信道40M_ch,和在频率方面与该40M_ch重叠的20MHz的两个信道20M_ch_a或20M_ch_b中的任何一个。换句话说,假设属于该网络100的40-/20-MHz MIMOSTA和40-/20-MHz STA不能同时地处理20M_ch_a和20M_ch_b。
第一实施例特别示出了对在图3中所示的这样一种网络中的媒体接入控制系统的考虑。图5示出了为了进行控制所必需的主要帧的交换的以时间顺序的概述。在图5中所示的实例中,作为基站101的40-/20-MHz MIMO AP控制在通过使用20M_ch_a进行通信的时段(20M_ch_a时段)和通过使用40M_ch进行通信的时段(40M_ch时段)之间的切换。在20M_ch_a时段和40M_ch时段内,可以执行PCF(Point Coordination Function,点协调功能)或HCCA(HCFcontrolled Channel Access,HCF控制的信道接入),其中由在终端102至106上执行集中控制轮询的基站101控制媒体接入。也可以执行DCF(Distributed Coordination Function,分布式协调功能)或EDCA(Enchanced Distributed Channel Access,增强的分布式信道接入),其中每个终端102至106平均地执行媒体接入控制。
在图5中,在开始时MAC系统通过使用网络100中的20M_ch_a进行通信,在此之后,经过40M_ch时段返回到20M_ch_a。MAC系统利用20M_ch_a和40M_ch用于在网络100中通信,然而,使用与40M_ch重叠的频率以使用40M_ch的20M_ch_b不被用于进行通信。该20M_ch_b将在与网络100相邻的另一个网络中被使用或者根本不被使用。
在下文中,将通过参考图4和图5描述与该第一实施例相关的操作过程。假设在开始时40-/20-MHz MIMO AP、40-/20-MHz MIMOSTA、40-/20-MHz STA、20-MHz MIMO STA(20M_ch_a)和20-MHzSTA(20M_ch_a)通过20M_ch_a进行操作。假设20-MHz MIMO STA(20M_ch_b)和20-MHz STA(20M_ch_b)通过20M_ch_b进行操作。
在这种情形下,假设40-/20-MHz MIMO AP(图4中的基站101)的信道状态管理单元23确定要开始切换到40M_ch的过程。基于这个确定,40-/20-MHz MIMO AP的信道占用/释放控制单元24生成帧(在下文被称为“Ch_a占用声明(declaration)帧”)F1,以声明在第一指定时段20M_ch_a的占用,并进入用于传输帧F1的等待状态。当20M_ch_a变为空闲状态并且该空闲状态在判优中间帧空间(AIFS)时段期间继续时,40-/20-MHz MIMO AP的载波侦听单元22确定满足空置条件。然后,信道占用/释放控制单元24从载波侦听单元22接收满足空置条件的确定结果,并开始补偿计数器的递减计数。当补偿计数器显示零时,40-/20-MHz MIMO AP通过利用第一PHY层协议处理单元11经由20M_ch_a发送帧F1。
此处,假设最高优先级的值被设置为与在帧F1的传输之前的等待时间对应的AIFS 50和补偿51的补偿计数器的初始值,以便使40-/20-MHz MIMO AP优先于其它终端获得媒体。例如,AIFS 50的值被设置为小于任何其它帧的值,并且用于确定补偿51的补偿计数器的初始值的那些随机数的最大值被设置为小于任何其它帧的值。例如,帧F1的补偿计数器的初始值可以被设置为零(在定义范围内的最小值)。如果该补偿计数器的初始值为零,则补偿51的时段被消除了,并且F1帧被发送,而不在AIFS 50时段结束后执行补偿51的操作。
载波侦听单元22根据AIFS 50的预设值和补偿51的补偿计数器的初始值进行操作。因此,在帧F1的传输之前的等待时间以较高的可能性变得短于其它帧的等待时间,从而使得第一实施例的通信装置能够优先地执行信道接入。
这提出了用以预定用于通过40-MHz进行通信的信道的控制帧优先获得信道接入权。由此,在信标间隔中能够确实地保证40-MHz时段。该通信装置能够避免在中途通过40-Mhz进行通信期间在信道预定过程中由于与其它帧的冲突而导致的中断。因此,该通信装置能够减少由于切换到通过40MHz进行通信而引起的信道效率的恶化。
存在帧F1与其它帧冲突并需要重新传输的可能性。在这种情况下,在IEEE 802系列无线LAN的协议中,补偿计数器的随机数的最大值通常会被增加,以便加宽随机数的选择范围以避免再次冲突,但是,对帧F1来说,即使冲突已经发生了,补偿计数器的随机数的最大值也不会被增加。该随机数的最大值总是保持在一个在第一次传输时间和重新传输时间之间没有区别的固定值。因此,即使帧F1与其它帧相冲突,该通信系统也能够发送具有短于其它帧的补偿的帧F1。因此,40-/20-MHz MIMO AP能够优先于其它帧获得信道接入权。
帧F1可以是控制帧和例如信标帧之类的管理帧。如果使用信标帧代替帧F1,则上面描述的最高优先级适用于信标帧。
图6是解释了关于第一实施例的优先级控制并示出了其它帧和Ch_a占用声明帧F1之间的传输等待时间的比较的图示。在图6中,MIMO AP、STA 1、STA 2和STA 3中的每一个试图在20M_ch_a上发送帧。因为40-/20-MHz MIMO AP试图发送帧F1,所以设置具有最高优先级的AIFS和补偿计数器的值。因此,40-/20-MHz MIMOAP能够在比诸如STA 2、STA 3之类的其它终端的传输时间更早的时间开始帧的传输,并获得信道接入权。
在这种情况下,如图6中所示,如果有终端在该40-/20-MHzMIMO AP开始传输帧60的同时开始帧60的传输,并且帧60与帧F1冲突,那么,通常补偿61的补偿计数器的值在重新传输帧60时会被增加,如STA1所做的那样。然而,对于帧F1而言,补偿计数器的随机数的最大值不会被增加,从而使得40-/20-MHz MIMO AP获得用于重新传输的信道接入权,并成功地发送Ch_a占用声明帧F1_r。
其它已经接收了帧F1(或帧F1_r)的STA将MAC层的载波侦听状态设置为在指定时段内为忙状态,同时把PHY模式从20M_ch_a切换到40M_ch_a。这样,网络100的操作模式被切换为40M_ch。
接下来,如图5中所示,基站101(40-/20-MHz MIMO AP)将PHY模式切换到20M_ch_b。在这个切换之后,40-/20-MHz MIMO AP等待直到空闲状态已经持续经过了AIFS 50时段为止,并发送帧(在下文中被称为“Ch_b占用声明帧”)F2以便声明在指定时段期间20M_ch_b的占用状态。
与帧F1的情况类似,设置作为与发送帧F2sin之前的等待时间对应的AIFS 52的最高优先级类别中的值,以便使40-/20-MHz MIMOAP优先于其它终端获得媒体。例如,AIFS 52的值被设置为小于任何其它帧的值。然后,在发送帧F2之前的等待时间很可能变高,40-/20-MHz MIMO AP能够优先执行信道接入。
这里,在经过了AIFS 52的时段之后,在以与帧F1的情况相似的方式执行补偿之后,可以发送帧F2。如果该补偿象帧F1的情况一样甚至在传输帧F2时被执行,则假设最高优先级类别的值被设置为补偿计数器的初始值。在下述这一点上与帧F1的情况一样:随机数的最大值总是保持在一个在第一次传输时间和重新传输时间之间没有区别的固定值。
其它已经接收了该帧F2的STA将20M_ch_b的MAC层的载波侦听状态设置为在指定时段内为忙状态。因为帧F2通过20M_ch_b进行发送,所以通过20M_ch_a进行操作的20-MHz MIMO STA(20M_ch_a)和20-MHz STA(20M_ch_a)不接收帧F2。
接下来,40-/20-MHz MIMO AP改变PHY模式为40M_ch。在这个切换之后,40-/20-MHz MIMO AP发送帧(在下文中被称为40M_ch释放帧)F3,以在经过了AIFS 53的时段后释放已经被40-/20-MHz MIMO AP占用的40M_ch。在此,由于40-/20-MHzMIMO AP保持40M_ch的媒体,所以40-/20-MHz MIMO AP不用总是必须确认AIFS 53的时段的继续,而是可以确认该继续。
其它已经接收了该帧F3的STA将40M_ch的MAC层的载波侦听状态设置为在指定时段内为空闲状态。在这个时间点上,通过40M_ch进行操作的每个40-/20-MHz MIMO AP、40-/20-MHz MIMOSTA和40-/20-MHz STA分别进  MAC层的载波侦听的空闲状态。在此之后,当通过通常的媒体接入确保媒体的时候,执行40M_ch的帧交换。
接下来,将解释在网络100中从通过利用40-MHz信道(40M_ch)进行通信的模式切换到通过利用20-MHz信道(20M_ch)进行通信的模式的过程。在这里,通过利用40M_ch进行通信的时段被称为“40M_ch时段”,而通过利用20M_ch进行通信的时段被称为“20M_ch时段”。
图5中所示的40M_ch时段54可以自然地用40M_ch时段的占用时段的结束来结束。或者,40-/20-MHz MIMO AP可以发送明确地通知该40M_ch的结束的帧(在下文中被称为40M_ch时段结束帧)F4。帧F4明确地或隐含地开始该40M_ch的新的占用时段,并指示切换到20M_ch_a。
如果40M_ch时段随着时间的过去而结束了,或者如果帧F4被接收了,则40-/20-MHz MIMO AP将PHY模式切换到20M_ch,并发送用于释放20M_ch_b的占用的帧(在下文中被称为Ch_b释放帧)F5。
与帧F1的情况类似,假设设置作为与帧F5的传输之前的等待时间对应的AIFS 55的具有最高优先级类别的值,以便使40-/20-MHzMIMO AP优先于其它终端获得媒体。例如,该AIFS 55的值被设置为短于任何其它帧的值。然后,在传输帧F5之前的等待时间很可能短于其它帧的等待时间,并且40-/20-MHz MIMO AP变得可能优先于其它终端执行信道接入。
已经接收了帧F5的STA将20M_ch_b的MAC层的载波侦听状态设置为空闲状态。借此,20-MHz MIMO STA(20M_ch_b)和20-MHz STA(20M_ch_b)能够在该20M_ch_b中开始帧交换。
接下来,40-/20-MHz MIMO AP将PHY模式切换到20M_ch_a,并发送用于释放20M_ch_a的占用状态的帧(在下文中被称为Ch_a释放帧)F6。
与帧F1的情况类似,假设设置作为与帧F6的传输之前的等待时间对应的AIFS 56的具有最高优先级类别的值,以便使40-/20-MHzMIMO AP优先于其它终端获得媒体。例如,该AIFS 56的值被设置为短于其它帧的值。然后,在传输帧F6之前的等待时间很可能变得比其它帧的等待时间短,并且40-/20-MHz MIMO AP变得可能优先于其它终端执行信道接入。
已经接收了该帧F6的STA将20M_ch_a的MAC层的载波侦听状态设置为空闲状态。借此,40-/20-MHz MIMO STA、40-/20-MHzSTA,20-MHz MIMO STA(20M_ch_a)和20-MHz STA(20M_ch_a)能够分别在该20M_ch_a中开始帧交换。
如上所提到的,通过向用于40-MHz信道预定/释放的控制帧、诸如帧F1、F2、F5和F6给予获得媒体的优先权,网络100的操作模式能够被确实地从40M_ch切换为20M_ch或是从20M_ch切换为40M_ch。
(第二实施例)
上面描述的第一实施例假设了通过接入点(AP)进行集中控制的网络,然而,本发明的第二实施例与第一实施例的不同点是,第二实施例假设了一种只具有多个终端(STA)作为构成要素的分布式控制的网络。在下文中,将着重于与第一实施例的不同点来描述该第二实施例。
图7示出了根据关于本发明的第二实施例的网络结构。图7示出了40-MHz STA_1试图通过利用40-MHz信道而发送帧到40-MHzSTA_2的情形。该20M_ch_a和20M_ch_b工作在不同的基本服务组(BSS)中并且独立地接受媒体接入。在图7中的实例中,连接到40-MHz STA_1的BSS_a使用20M_ch_a,邻近于BSS_a或与之重叠的BSS_b使用20M_ch_b。
在20M_ch_a中,执行通过DCF或EDCA进行的媒体接入。相反地,在20M_ch_b中,执行通过DCF、EDCA、PCF或HCCA进行的媒体接入中的任何之一。在图7中,其中,20M_ch_a和20M_ch_b对应于其中执行DCF或EDCA的情况。
下面将参考图8描述在只具有多个终端(STA)作为构成要素的分布式控制的网络结构中的物理模式和载波侦听状态控制。
首先,40-MHz STA_1执行20M_ch_a的载波侦听,并等待直到20M_ch_a在AIFS时段上变为空闲状态为止。当检测到AIFS时段期间的空闲状态时,40-MHz STA_1开始补偿计数器的递减计数。当补偿计数器到零时,40-MHz STA_1通过使用20M_ch_a发送RTSa帧到40-MHz STA_2,并等待接收来自40-MHz STA_2的帧。RTSa帧是IEEE 802.11中定义的RTS帧之一或其扩展。
其中,假设具有最高优先级类别的值被设置为相当于在传输RTSa帧之前的等待时间的AIFS和补偿计数器的初始值。例如,AIFS值被设置为小于任何其它帧的值,并且用于确定补偿计数器的初始值的随机数的最大值被设置为小于其它任何帧的值。
例如,RTSa帧的补偿计数器的初始值可以是零(界限内的最小值)。如果补偿计数器的初始值为零,则图8中的补偿时段被消除了,并且在AIFS结束之后发送RTSa帧而不必执行补偿的操作。那么,在传输RTSa帧之前的等待时间很可能变得比其它帧的等待时间短,并且使40-MHz STA_1优先于其它终端执行信道接入变得可能。
由于RTSa帧与其它帧的冲突,所以应当考虑出现必须重新传输的情况。通过不从40-MHz STA_2发送下面描述的CTSa帧的响应的事实,检测该RTSa帧与其它帧的冲突。在这种情况下,在IEEE 802.11系列无线LAN的协议中,补偿计数器的随机数中的最大值通常会被增加以避免再次冲突。然而,就RTSa帧而言,40-MHz STA_1不会增加补偿计数器的随机数中的最大值。40-MHz STA_1维持该补偿计数器的随机数中的最大值总是恒定的,其在第一次帧传输时和在帧重新传输时之间没有差别。借此,即使RTSa帧与其它帧相冲突,因为40-MHz STA_1能够在重新传输的时候发送具有短于其它帧的补偿的帧,所以40-MHz STA_1能够优先地获得信道接入权。
当在RTSa帧的接收结束之后已经过去了SIFS时间时,已经接收了RTSa帧的40-MHz STA_2通过利用20M_ch_a向40-MHzSTA_1回复CTSa帧,并开始20M_ch_b的载波侦听。如果40-MHzSTA_2不能立即只处理单个信道,则40-MHz STA_2为20M_ch_b的载波侦听切换PHY层的操作模式。CTSa帧可以是由IEEE 802.11定义的普通CTS。
在数据帧的传输结束的预定时间之前,通过利用20M_ch_a发送的RTSa帧、或已经接收了CTSa帧的每个40-MHz STA和属于BSS_a的每个20-MHz STA被禁止执行传输。假设当40-MHz STA_1从20M_ch_a接收到CTSa帧时,结束为40-MHz STA_1而预定20M_ch_a。
考虑BSS_b以便执行DCF或EDCA。
如果40-MHz STA_1能够马上处理单个信道,则其中接收了CTSa帧的40-MHz STA_1将PHY层的操作模式切换为20M_ch_b。40-MHz STA_1执行该20M_ch_b的载波侦听,并等待直到20M_ch_b在AIFS时段上处于空闲状态为止。如果检测到了AIFS时段的空闲状态,则40-MHz STA_1通过利用该20M_ch_b发送RTSb帧到40-MHz STA_2,并进入来自40-MHz STA_2的帧的接收等待。RTSb帧是由IEEE 802.11定义的RTS帧之一或其扩展。
在这里,假设具有最高优先级类别的值被设置为相当于在传输RTSb帧之前的等待时间的AIFS和补偿计数器的初始值,以便使40-MHz STA_1优先于其它终端获得媒体。例如,该AIFS值被设置为小于任何其它帧的值,并且补偿计数器的随机数的最大值被设置为小于其它任何帧的值。用于确定补偿计数器的初始值的随机数的最大值可以总是被设置为零。在这种情况下,如图8中所示,刚好在经过了AIFS之后发送该RTSb帧而没有补偿操作。借此,在RTSa帧的传输之前的等待时间很可能变得比其它帧的等待时间短,并且使40-MHz STA_1优先于其它终端执行信道接入变得可能。
应当考虑RTSb帧与其它帧冲突以及出现需要重新传输的情况。通过不从40-MHz STA_2发送下面描述的CTSb帧的响应的事实,检测该RTSb帧与其它帧的冲突。在这种情况下,在IEEE 802.11系列无线LAN的协议中,补偿计数器的随机数中的最大值通常会被增加以避免再次冲突。然而,就RTSb帧而言,40-MHz STA_1不会增加补偿计数器的随机数中的最大值。40-MHz STA_1维持该补偿计数器的随机数中的最大值总是恒定的,其在第一次帧传输时和帧重新传输时之间没有差别。借此,即使RTSb帧与其它帧相冲突,因为40-MHzSTA_1能够在重新传输的时候发送具有短于其它帧的补偿的帧,所以40-MHz STA_1能够优先地获得信道接入权。
响应于由作为通信对方的40-MHz STA_2所需要的信道切换时间,40-MHz STA_1可以确定RTSb帧的传输时间。如果40-MHzSTA_2不能马上只处理单个信道,则在传输CTSa之后,40-MHzSTA_2为了该20M_ch_b的载波侦听而将PHY层的操作模式切换为20M_ch_a。假设PHY层的操作模式从20M_ch_a切换为20M_ch_b所需要的时间是例如100微秒(μsec),则40-MHz STA_1将RTSb帧的传输时间设置为100μ秒,其是比CTSa的接收更晚的时间。假设40-MHz STA_1在100μ秒过去之前发送RTSb帧,则因为40-MHzSTA_2没有完成PHY层的操作模式的切换,所以40-MHz STA_2不能接收到该RTSb帧。如果40-MHz STA_1响应于40-MHz STA_2的信道切换时间而发送RTSb帧,则40-MHz STA_2能够避免RTSb帧的接收失败。相反地,如果40-MHz STA_1的信道切换时间比40-MHzSTA_2的信道切换时间长,则40-MHz STA_1可以响应于它自己的终端的信道切换时间而在传输定时发送RTSb帧。
关于通过40-MHz STA_1获得40-MHz STA_2上的信道切换时间信息的方法,将考虑下面的一种方法。例如,40-MHz STA_1和40-MHz STA_2可以分别将与它们自己的终端有关的信道切换时间信息存储到RTSa/CTSa帧内,并分别通过这样的RTSa/CTSa帧,将该信道切换时间信息通知给对方终端。或者,40-MHz STA_1和40-MHzSTA_2可以在40-MHz STA_1发送RTSa帧之前提供用于信道切换信息交换的时段,并彼此交换信道切换时间信息。
此外,还可以考虑这样一种方法,其中诸如40-MHz STA_1和40-MHz STA_之类的每个终端通过周期性地广播它们自己的终端的信道切换时间来通知外围终端,并且每个终端收集所广播的信道切换时间,以便在每个终端上经常将它们存储为观察表。
信道切换时间可以是在ch_a和ch_b之间进行切换所需要的信道切换时间,并且可以是在与在这里使用的单个ch_a或ch_b的通信和与在这里使用的ch_a和ch_b二者的通信之间进行切换(为了改变,即,信道带宽的扩展/缩减)所需要的时间。
在RTSb帧的接收结束之后的SIFS时间时,已经接收了RTSb帧的40-MHz STA_2通过利用20M_ch_b向40-MHz STA_1回复CTSb帧。
在此之后,如果40-MHz STA_2能够马上只处理单个信道,则40-MHz STA_2将PHY层的操作模式切换为40M_ch,以便从预测的40-MHz STA_1接收数据帧。
在数据帧的传输结束的预定时间之前,属于已经接收了CTSb帧的BSS_b的每个20-MHz STA被禁止发送帧。假设当40-MHz STA_1从20M_ch_b接收到CTSb帧时完成了为40-MHz STA_1而进行的20M_ch_b的预定。
因此,40-MHz STA_1确定20M_ch_a和20M_ch_b这二者能被预定,并通过利用20M_ch_a和20M_ch_b这两者为40-MHz信道发送数据帧。在这里,如果40-MHz STA_1能够马上只处理单个信道,则40-MHz STA_1将PHY层的操作模式切换为40M_ch。
如上所述,根据第二实施例,通过将获得媒体的优先权赋予给诸如RTSa帧和RTSb帧之类的、用于40-MHz信道的控制帧,图7中所示的网络的操作模式能够被确实地从20M_ch改变为40M_ch。
虽然40-MHz STA_2还没有通过响应于40-MHz STA_2的信道切换时间而确定由40MHz STA_1传输RTSb帧的传输时间来完成40-MHz STA_2的接收准备,但是第二实施例中的通信装置能够避免RTSb帧的传输。
(第三实施例)
本发明的第三实施例考虑了具有与图1中所示相同结构的网络。更特别地,第三发明涉及用以形成图3中所示的网络(BSS)100的连接控制。
在图3中所示的基站101(40-/20-MHz MIMO AP)中,第一PHY层协议处理单元11通过在网络系统管理单元25的控制下使用信道20M_ch_a而周期性地广播信标帧。另一方面,任何终端102-106能够通过20M_ch_a的被动扫描而接收该信标帧,然后终端102-106识别到基站101、也就是网络100的存在。或者,终端102-106能够通过执行主动扫描而识别到基站101、也就是网络100的存在,以通过利用20M_ch_a由它们自己发送探查(probe)请求帧,并从基站101接收对应于该请求帧的探查响应帧。
作为基站101的40-/20-MHz MIMO AP基本上通过20M_ch_a和40M_ch进行操作,并通过20M_ch_b暂时地执行发送/接收,以便切换到下面描述的40M_ch等。这时,基站101忽略到20M_ch_b的探查请求,并且不做出任何探查响应。
基于包括在所获得的信标帧或由多个信道的扫描而产生的探查响应帧中的信息,终端102-106选择应当与其连接的基站101(网络100)。
特别地,在第三实施例中,将要从40-/20-MHz MIMO AP发送的信标帧或探查响应帧,包括与为了发送信标帧和探查响应帧而在由基站101管理的BSS中允许的、在20M_ch_a和20M_ch_b之间的信道切换时间(信道切换时间阈值T_AP)和/或通信带宽切换时间(通信带宽切换时间阈值)有关的信息(在下文中合起来被称为“接入点信息”)。
终端102-104也参考这种接入点信息选择基站101(网络100)。例如,通过将从基站101广播的接入点信息与它们自己的终端的20M_ch_a和20M_ch_b之间的信道切换时间、或20M_ch和40M_ch之间的通信带宽切换时间进行比较,如果它们自己的终端的切换时间比基站101的切换时间信息长,则40-/20-MHz终端102、103、104不会分别连接到基站101。相反地,如果它们自己的终端的切换时间比基站101的切换时间信息短,则它们分别选择连接到基站101。
假设终端105、106(20-MHz STA)不能理解与包括在来自基站101的信标帧或信标响应帧中的40-/20-MHz信道切换时间有关的信息。因此,该信息不会影响由终端105、106(20-MHz STA)分别执行的对基站101的选择。
图9示出了网络100中的连接序列的实例。通过接收信标/探查响应的信道(在此为20M_ch_a),执行连接序列,其中在信标/探查响应中,终端102-104已经找到了网络100。其中,最初在关联之前执行验证,然而,在图9中和在下面的说明中取消了验证。
作为基站101的40-/20-MHz MIMO AP周期性地广播信标(40-/20-MHz MIMO 4x)70,该信标为指示支持40-MHz信道和20-MHz信道的信标帧。信标帧70包括由基站101管理的BSS中允许的信道切换时间的阈值信息T_AP。终端102-106(40-/20-MHzMIMO STA,40-/20-MHz STA和20-MHz STA)接收广播的信标帧(40-/20-MHz MIMO 4x)70,将该允许的信道切换时间的阈值与它们自己的终端所需要的信道切换时间进行比较,并且如果它们自己的终端的信道切换时间小于从基站101广播的阈值,则选择连接到网络100。
根据这个选择,终端102-104(40-/20-MHz MIMO STA,40-/20-MHz STA)发送关联请求到基站101(40-/20-MHz MIMO AP)。在其中接收了作为连接请求的关联请求的基站101(40-/20-MHzMIMO AP)向终端101-104回复该关联请求,然后完成终端101-104到BSS的连接。
作为连接请求的关联请求可以包括关于请求该连接的那些终端的40-/20-MHz信道切换信息。在其中接收了作为连接请求的关联请求的基站101(40-/20-MHz MIMO AP)将从每个终端102-104和109通知的40-/20-MHz信道切换时间信息与作为在由基站101管理的BSS中允许的信道切换时间的上限值的阈值进行比较,其中关联请求包括终端的40-/20-MHz信道切换时间信息。在已经发送了关联请求的终端102-104和109中的、信道切换时间小于阈值的那些终端(图9中除终端109之外的终端102-104)被允许进入由基站101管理的BSS,并且基站101发送关联响应到终端102-104,以便完成终端102-104到BSS的连接。相反地,在已经发送了关联请求的终端102-104和109中的、具有大于阈值的信道切换时间的终端(图9中的终端109)被拒绝进入由基站101管理的BSS。基站101通过不对从终端102-104和109发送到基站101的关联请求做出响应,来拒绝终端102-104和109到BSS的连接。
在每个终端102-104和109一起发送它们自己的终端的40-/20-MHz信道切换时间信息的策略被采纳的情况下,从基站101广播的信标帧不必包括与由基站101管理的BSS中允许的信道切换时间有关的阈值信息。这是由于基站101自己能够根据该关联请求中描述的这些终端的20-/40-MHz信道切换时间信息选择要被允许连接到该BSS的终端,而不会由基站101通知信道切换时间的上限值。
如上面所提到的,限制需要长达信道切换时间或者通信带宽切换时间的终端通过基站进入BBS,以便能够避免由于长的信道切换时间或通信带宽切换时间而导致的信道使用效率的降低。
对本领域技术人员来说很容易出现另外的优点和修改。因此,本发明在其较宽的方面并不局限于这里所示和描述的具体细节和典型实施例。因此,可以做出各种修改而不脱离由附加的权利要求及其等价内容所定义的一般发明概念的精神和范围。

Claims (2)

1.一种无线通信装置,用于使用具有第一频率带宽的第一信道和具有第一信道与第二通信信道两者的第二信道执行无线通信,该第二通信信道具有与该第一频率带宽相等的频率带宽,所述无线通信装置包括:
生成设备,被配置为生成用于声明在指定时段内第一信道被占用的第一帧、和用于声明在指定时段内第二通信信道被占用的第二帧;和
发送设备,被配置为在发送第一帧之后发送第二帧,
其中,所述无线通信装置被配置为在已经发送了第二帧之后使用第二信道进行通信;
其中,在发送第一帧之前的第一等待时间和在发送第二帧之前的第二等待时间之中,至少第二等待时间不包括作为随机时段的补偿时段,并且
其中,在所有帧中以最高优先级发送第一帧和第二帧。
2.一种无线通信方法,用于使用具有第一频率带宽的第一信道和具有第一信道与第二通信信道两者的第二信道执行无线通信,该第二通信信道具有与该第一频率带宽相等的频率带宽,所述无线通信方法包括如下步骤:
生成用于声明在指定时段内第一信道被占用的第一帧;
发送第一帧;
生成用于声明在指定时段内第二通信信道被占用的第二帧;
发送第二帧;以及
使用第二信道进行通信;
其中,在发送第一帧之前的第一等待时间和在发送第二帧之前的第二等待时间之中,至少第二等待时间不包括作为随机时段的补偿时段,并且
其中,在所有帧中以最高优先级发送第一帧和第二帧。
CN2009100017158A 2004-11-30 2005-11-30 无线通信装置和无线通信方法 Active CN101447905B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004347778A JP4421459B2 (ja) 2004-11-30 2004-11-30 無線通信装置及び無線通信方法
JP2004347778 2004-11-30
JP2004-347778 2004-11-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA200510121790XA Division CN1849005A (zh) 2004-11-30 2005-11-30 无线通信装置和无线通信方法

Publications (2)

Publication Number Publication Date
CN101447905A CN101447905A (zh) 2009-06-03
CN101447905B true CN101447905B (zh) 2012-04-18

Family

ID=36567330

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2009100017158A Active CN101447905B (zh) 2004-11-30 2005-11-30 无线通信装置和无线通信方法
CNA200510121790XA Pending CN1849005A (zh) 2004-11-30 2005-11-30 无线通信装置和无线通信方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA200510121790XA Pending CN1849005A (zh) 2004-11-30 2005-11-30 无线通信装置和无线通信方法

Country Status (3)

Country Link
US (1) US7701962B2 (zh)
JP (1) JP4421459B2 (zh)
CN (2) CN101447905B (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4253321B2 (ja) * 2005-11-09 2009-04-08 株式会社東芝 無線通信装置及び無線通信方法
US7975036B2 (en) * 2006-05-11 2011-07-05 The Mitre Corporation Adaptive cross-layer cross-node optimization
JP2008042432A (ja) * 2006-08-04 2008-02-21 Ricoh Co Ltd 無線通信端末
JP2008072563A (ja) * 2006-09-15 2008-03-27 Hitachi Ltd 無線通信装置
WO2008057882A2 (en) * 2006-11-07 2008-05-15 Conexant Systems, Inc. Systems and methods for management of wireless clients
JP4284354B2 (ja) * 2006-12-26 2009-06-24 株式会社東芝 無線通信装置
JP4836840B2 (ja) * 2007-03-15 2011-12-14 株式会社東芝 無線通信基地局装置
JP4734385B2 (ja) * 2008-08-18 2011-07-27 株式会社東芝 無線通信装置及び無線通信方法
KR101497153B1 (ko) * 2008-12-22 2015-03-02 엘지전자 주식회사 무선랜 시스템에서의 기본서비스세트 부하 관리 절차
JP5329244B2 (ja) * 2009-01-16 2013-10-30 株式会社東芝 無線端末および無線通信方法
US8605568B2 (en) 2009-04-14 2013-12-10 Texas Instruments Incorporated PHY layer options for body area network (BAN) devices
JP2010263488A (ja) * 2009-05-08 2010-11-18 Sony Corp 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
WO2011053026A2 (ko) 2009-10-28 2011-05-05 한국전자통신연구원 무선 통신 시스템에서 파워 세이빙 방법
CA2696037A1 (en) 2010-03-15 2011-09-15 Research In Motion Limited Advertisement and dynamic configuration of wlan prioritization states
WO2012002757A2 (en) * 2010-06-30 2012-01-05 Lg Electronics Inc. Method and apparatus for transmitting management information in wireless local area network system
US8345547B2 (en) * 2010-08-23 2013-01-01 Intel Corporation Channel access mechanism for wide channels used in overlapping networks
CN102387538B (zh) * 2010-09-02 2015-06-10 中兴通讯股份有限公司 一种资源竞争方法和站点
CN102387592B (zh) * 2010-09-02 2015-10-21 中兴通讯股份有限公司 一种资源竞争方法和站点
EP2469958B1 (en) 2010-12-21 2017-11-01 Innovative Sonic Corporation Method and apparatus for improving wait time in a wireless communication system
CN103299686B (zh) * 2011-01-10 2016-08-17 Lg电子株式会社 在无线局域网系统中发送管理信息帧的方法和设备
CN102761356B (zh) * 2011-04-29 2015-01-21 华为技术有限公司 无线局域网中多用户传输数据的方法及装置
US8750180B2 (en) 2011-09-16 2014-06-10 Blackberry Limited Discovering network information available via wireless networks
US9204299B2 (en) 2012-05-11 2015-12-01 Blackberry Limited Extended service set transitions in wireless networks
US10812964B2 (en) 2012-07-12 2020-10-20 Blackberry Limited Address assignment for initial authentication
US9137621B2 (en) 2012-07-13 2015-09-15 Blackberry Limited Wireless network service transaction protocol
CN108174431B (zh) * 2012-07-18 2020-12-04 Kt株式会社 在无线局域网系统中的主动扫描方法
KR20150045429A (ko) * 2012-08-16 2015-04-28 엘지전자 주식회사 무선랜에서 채널 액세스 방법 및 장치
US9301127B2 (en) 2013-02-06 2016-03-29 Blackberry Limited Persistent network negotiation for peer to peer devices
EP3169133B1 (en) * 2014-07-11 2021-04-21 Sony Corporation Information processing device, information processing method, and program
EP3240323B1 (en) * 2015-01-15 2020-10-21 Huawei Technologies Co. Ltd. Data transmission method and apparatus
WO2016129932A1 (ko) 2015-02-10 2016-08-18 주식회사 윌러스표준기술연구소 복수의 채널을 이용하는 무선 통신 방법 및 무선 통신 단말
US9860349B2 (en) * 2015-03-25 2018-01-02 Newracom, Inc. Method for transmitting and receiving frame, and wireless device implementing the same method
EP3398179B1 (en) * 2015-12-28 2020-11-04 Newracom, Inc. Multiple network allocation vector operation
US10367761B2 (en) * 2016-04-25 2019-07-30 Intel IP Corporation Coordinated channel switch timing and transmissions in neighborhood awareness networks
US11363657B1 (en) * 2019-05-16 2022-06-14 Marvell Asia Pte Ltd WiFi network operation with channel aggregation
US11818799B1 (en) 2019-05-30 2023-11-14 Marvell Asia Pte Ltd Data unit aggregation in a wireless network with multiple channel segments
US11838221B2 (en) * 2022-01-13 2023-12-05 Verizon Patent And Licensing Inc. Systems and methods for multi-cloud virtualized instance deployment and execution
CN114916089B (zh) * 2022-05-11 2024-05-28 南方电网科学研究院有限责任公司 一种节点数据传输方法、无线传输系统及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1360444A (zh) * 2000-12-22 2002-07-24 西门子信息通讯网络公司 移动站共享的无线电信道上调度分组数据发送许可的过程
JP2002223479A (ja) * 2001-01-29 2002-08-09 Mitsubishi Materials Corp 無線データ通信システム、基地局、移動局およびプログラム
JP2003087856A (ja) * 2001-06-28 2003-03-20 Sony Corp 無線基地局、無線端末、通信方法およびプログラム
CN1457575A (zh) * 2001-03-06 2003-11-19 松下电器产业株式会社 无线局域网系统及其避免信号冲突方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535395A (en) * 1992-10-02 1996-07-09 Compaq Computer Corporation Prioritization of microprocessors in multiprocessor computer systems
JP3484390B2 (ja) 2000-02-21 2004-01-06 日本電信電話株式会社 無線パケット優先制御方法
EP1338125A2 (en) * 2000-11-03 2003-08-27 AT & T Corp. Tiered contention multiple access (tcma): a method for priority-based shared channel access
US6466069B1 (en) * 2000-11-21 2002-10-15 Conexant Systems, Inc. Fast settling charge pump
JP3744365B2 (ja) * 2001-03-06 2006-02-08 Kddi株式会社 無線lanシステム及びその周波数チャネル切替方法
US7136361B2 (en) * 2001-07-05 2006-11-14 At&T Corp. Hybrid coordination function (HCF) access through tiered contention and overlapped wireless cell mitigation
US7352728B2 (en) * 2002-03-07 2008-04-01 Koninklijke Philips Electronics N.V. Fast channel switching scheme for IEEE 802.11 WLANs
JP3717913B2 (ja) * 2002-12-27 2005-11-16 三洋電機株式会社 無線装置
US7321762B2 (en) 2003-03-26 2008-01-22 Conexant Systems, Inc. Mechanism for reserving multiple channels of a single medium access control and physical layer
US8027326B2 (en) * 2004-01-12 2011-09-27 Xocyst Transfer Ag L.L.C. Method and system for high data rate multi-channel WLAN architecture
WO2005096752A2 (en) * 2004-04-01 2005-10-20 Devicescape Software, Inc. Multi channel throughput enhancement
US7672268B2 (en) * 2004-06-18 2010-03-02 Kenneth Stanwood Systems and methods for implementing double wide channels in a communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1360444A (zh) * 2000-12-22 2002-07-24 西门子信息通讯网络公司 移动站共享的无线电信道上调度分组数据发送许可的过程
JP2002223479A (ja) * 2001-01-29 2002-08-09 Mitsubishi Materials Corp 無線データ通信システム、基地局、移動局およびプログラム
CN1457575A (zh) * 2001-03-06 2003-11-19 松下电器产业株式会社 无线局域网系统及其避免信号冲突方法
JP2003087856A (ja) * 2001-06-28 2003-03-20 Sony Corp 無線基地局、無線端末、通信方法およびプログラム

Also Published As

Publication number Publication date
CN101447905A (zh) 2009-06-03
US20060114928A1 (en) 2006-06-01
JP2006157733A (ja) 2006-06-15
JP4421459B2 (ja) 2010-02-24
US7701962B2 (en) 2010-04-20
CN1849005A (zh) 2006-10-18

Similar Documents

Publication Publication Date Title
CN101447905B (zh) 无线通信装置和无线通信方法
US7430195B2 (en) Wireless communication system and wireless communication apparatus
US9843935B2 (en) Wireless communication system, wireless communication apparatus and wireless communication method and computer program
JP4266192B2 (ja) 無線通信装置及び無線通信方法
US7274707B2 (en) Coexistence of stations capable of different modulation schemes in a wireless local area network
KR101710395B1 (ko) 무선랜 시스템에서 다중 채널 운영 방법 및 장치
EP1289194B1 (en) Communication apparatus of a radio lan system and signal collision avoidance method for a radio lan system
US8515438B2 (en) Radio communication method and radio communication terminal accommodating apparatus
US20040022219A1 (en) Wireless system containing a first network and a second network
EP1760948A1 (en) Apparatus and method for wireless communication
WO2005041487A1 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
CN100550800C (zh) 无线通信方法和设备
JP2004266557A (ja) 時分割マルチセクタ無線lan装置
US20140119307A1 (en) Access method based on carrier sensing in communication system
JP4247199B2 (ja) 無線通信装置
JP2006245908A (ja) 無線lanシステムおよび通信装置
JP4734385B2 (ja) 無線通信装置及び無線通信方法
Lo et al. An efficient scheduling mechanism for IEEE 802.11 e MAC enhancements
TW202418863A (zh) 用於超高可靠性(uhr)的協調空間重用(c-sr)框架
Pang et al. Client-centric heterogeneous access in cognitive WLANs
JP2017028438A (ja) 無線通信方法および無線通信システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant