CN101440841B - 一种实现五自由度磁悬浮系统轴向磁轴承低功耗悬浮的方法 - Google Patents

一种实现五自由度磁悬浮系统轴向磁轴承低功耗悬浮的方法 Download PDF

Info

Publication number
CN101440841B
CN101440841B CN2008101552282A CN200810155228A CN101440841B CN 101440841 B CN101440841 B CN 101440841B CN 2008101552282 A CN2008101552282 A CN 2008101552282A CN 200810155228 A CN200810155228 A CN 200810155228A CN 101440841 B CN101440841 B CN 101440841B
Authority
CN
China
Prior art keywords
power consumption
low power
displacement signal
signal
compensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008101552282A
Other languages
English (en)
Other versions
CN101440841A (zh
Inventor
王晓刚
邓智泉
赵旭升
梅磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN2008101552282A priority Critical patent/CN101440841B/zh
Publication of CN101440841A publication Critical patent/CN101440841A/zh
Application granted granted Critical
Publication of CN101440841B publication Critical patent/CN101440841B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0476Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets

Abstract

本发明公开了一种实现轴向磁轴承低功耗悬浮的方法,包括:(1)将转子反馈位移信号x,给定参考位置sr以及位移补偿信号rn叠加得到误差信号e;(2)将误差信号e加入PID调节器,得到控制电流im;(3)将控制电流im放大并输入到永磁偏置磁轴承;(4)同时im作为反馈信号,与两级存储单元输出的前一时刻的位移补偿信号ro、再前一时刻的位移补偿信号roo加到低功耗位移补偿模块中,得到位移补偿信号rn;(5)得到rn后,rn与sr、x叠加产生误差信号e。同时rn放入存储单元,作为下一时刻的ro,ro放入下一级存储单元,作为下一时刻的roo。使整个控制流程循环运行。本发明将轴向控制线圈中的控制电流达到最小,实现低功耗。

Description

一种实现五自由度磁悬浮系统轴向磁轴承低功耗悬浮的方法
技术领域
本发明涉及的一种实现五自由度磁悬浮系统轴向磁轴承低功耗悬浮的方法,属五自由度磁悬浮轴承系统控制的方法。
背景技术
目前,五自由度磁悬浮轴承系统均采用两个径向磁悬浮轴承加一个轴向磁悬浮轴承或一个轴向-径向磁悬浮轴承加一个径向磁悬浮轴承结构,提供一个轴向和四个径向的磁悬浮力,使转子在悬浮运行时,稳定悬浮在平衡位置。
磁悬浮轴承按照磁场建立方式的不同可分为主动型、被动型和混合型三种类型。
主动型磁悬浮轴承由通入直流电的偏磁绕组在气隙中建立偏置磁场,由通入大小和方向都受到实时控制的交变电流的控制绕组来在气隙中建立控制磁场,这两个磁场在气隙中的叠加和抵消产生了大小和方向都可以主动控制的磁场吸力,从而实现了转子的稳定悬浮,这种类型的磁悬浮轴承刚度大,可以精密控制,但产生单位承载力所需的体积、重量和功耗也都比较大。
被动型磁悬浮轴承利用磁性材料之间的吸力或斥力来实现转子的悬浮,所需控制器简单,功耗小,但刚度和阻尼也都比较小。
混合型磁悬浮轴承结合了主动型磁悬浮轴承和被动型磁悬浮轴承的特点,采用永磁材料替代偏磁线圈来产生所需的偏置磁场,因此电磁线圈匝数比主动型磁悬浮轴承少得多,较大程度地降低了磁悬浮轴承的功率损耗,减小了产生单位承载力所需的体积和重量,以上特点使其在对体积和功耗有着严格要求的领域有着不可替代的优势。
对于轴向采用上述混合型磁悬浮轴承的五自由度磁悬浮系统,在其轴向自由度PID控制框图中(即PID调节器和磁轴承轴向自由度数学模型组成的反馈系统框图),控制电流由反馈误差信号经过PID调节器产生,位移偏差过大会引起误差信号过大,从而使控制电流饱和。
发明内容
本发明提供一种实现五自由度磁悬浮系统轴向磁轴承低功耗悬浮的方法,实现五自由度磁悬浮系统轴向上的低功耗。
本发明采用如下技术方案:
永磁偏置轴向磁轴承中的控制线圈根据低功耗位移补偿算法产生相应的控制电流,根据轴向所受外力的大小,自适应调节转子轴向的平衡位置,使转子实时悬浮所在位置是磁轴承轴向功率放大器输出功率最小的位置,轴向外力由永磁偏置轴向磁轴承的环型永磁体产生的磁力抵消,实现轴向上的低功耗。
本方法包括以下步骤:
(1)将永磁偏置轴向磁轴承传感器输出的转子反馈位移信号x,控制器中给定转子的悬浮位置即参考位置sr以及低功耗位移补偿算法模块输出的补偿位移信号rn叠加得到误差信号e,e=sr+rn-x;
(2)将误差信号e加入PID调节器,得到控制电流im,控制电流im的离散形式表达式为: i m = k P e n + k I Σ i = 1 n e i + k D ( e n - e n - 1 ) 式中的kP、kI、kD分别是PID调节器的比例、积分、微分系数;
(3)将控制电流im通过功率电路放大输入到永磁偏置轴向磁轴承;
(4)同时控制电流im作为反馈信号,与第一级存储单元输出的前一时刻的位移补偿信号ro、和第二级存储单元输出的再前一时刻的位移补偿信号roo一起加到低功耗位移补偿模块中,利用该模块的算法得到位移补偿信号rn
r n = - ϵ i m k P + ( 1 + 2 ϵi m k D ) r o - ϵi m k D r oo 1 + ϵi m ( k I + k D )
式中的ε是收敛系数,取值范围0.00001~0.01;kP、kI、kD分别是PID调节器的比例、积分、微分系数;
(5)由低功耗位移补偿算法模块得到当前时刻的补偿位移信号rn后,将该低功耗位移补偿算法模块输出的补偿位移信号rn与控制器给定转子的悬浮位置即参考位置sr、永磁偏置轴向磁轴承传感器输出的转子反馈位移信号x叠加产生误差信号e,同时将补偿位移信号rn放入第一级存储单元,作为下一时刻输出的位移补偿信号ro,将补偿位移信号ro放入第二级存储单元,作为下一时刻的第二级存储单元输出的补偿位移信号roo,控制电流im、补偿位移信号ro、补偿位移信号roo作为下一时刻低功耗补偿模块的输入,使整个控制流程循环运行。
与现有技术相比,本发明具有以下优点:轴向外力由永磁偏置轴向磁轴承的环型永磁体产生磁力来平衡,控制电流始终收敛到零,而改变的补偿信号相当于实时调节平衡位置,使转子在轴向总是平衡悬浮在使它输出控制电流最小的位置,使整个系统功耗小,易于实现。
附图说明
图1是永磁偏置轴向磁轴承控制线圈控制电路图
图2是永磁偏置轴向磁轴承控制线圈电流低功耗位移补偿算法控制框图
具体实施方式
永磁偏置轴向磁轴承控制线圈控制电路部分如图1所示,包括信号调理电路、功率电路和控制器。信号调理电路将转子轴向的位移信号经过变化转化为控制器可接收的电压信号,功率电路为永磁偏置轴向磁轴承的轴向控制线圈提供电流,控制器接收轴向位置信号,采用低功耗位移补偿算法,产生相应的控制信号控制功率电路。
永磁偏置轴向磁轴承控制线圈实现轴向低功耗悬浮实现方法如下:永磁偏置轴向磁轴承控制线圈电流低功耗位移补偿算法控制框图如图2所示,低功耗磁轴承轴向自由度负反馈闭环控制系统包括控制器中给定转子的悬浮位置即参考位置、PID调节器、永磁偏置轴向磁轴承、低功耗位移补偿算法、一级存储单元和二级存储单元。
首先结合图2介绍一下控制器中各模块功能。其中给定转子的悬浮位置即参考位置sr,表示控制器中人为设定的一个代表转子最终悬浮位置的信号量,与转子反馈位移信号x以及低功耗位移补偿算法模块输出的补偿位移信号rn叠加得到误差信号e,e=sr+rn-x;PID调节器将误差信号e作为输入信号,进行比例、积分、微分运算,得到控制电流im,控制电流im的离散形式表达式为: i m = k P e n + k I Σ i = 1 n e i + k D ( e n - e n - 1 ) , 式中的kP、kI、kD分别是PID调节器的比例、积分、微分系数;低功耗位移补偿算法模块是以ro、roo、im为输入,采用低功耗位移补偿算法得到补偿位移信号rn
r n = - ϵ i m k P + ( 1 + 2 ϵi m k D ) r o - ϵi m k D r oo 1 + ϵi m ( k I + k D )
式中的ε是收敛系数,取值范围0.00001~0.01,该值与永磁轴向偏置磁轴承和PID调节器的参数有关,太大系统将不稳定,太小则收敛速度慢,一般取0.001;
下面结合图2说明整个控制循环控制的详细流程。在零时刻,即通电一瞬间,图2中的参考位置sr和转子反馈位移信号x有较大误差,且此时ro、roo、rn均为零(初始值为零,且通过低功耗位移补偿算法最终收敛到使控制电流im为零的值),那么得到误差信号e,并经过PID调节器得到零时刻的控制电流信号im,将此时的im、ro、roo作为低功耗位移补偿模块的输入,并得到零时刻的输出rn,一方面将此得到的rn作为第二时刻的位移补偿信号与参考位置sr和转子反馈位移信号x叠加,得到第二时刻的误差信号e,即e=sr+rn-x,并经过PID调节器得到第二时刻的im,另一方面如图2,将此零时刻得到的rn送入第一存储单元,作为第二时刻的ro,而第二时刻的roo仍为零,将所有得到的第二时刻的im、ro、roo作为低功耗位移补偿算法的输入,可以得到第二时刻的输出rn,一方面将此得到的rn作为第三时刻的位移补偿信号与参考位置sr和转子反馈位移信号x叠加,得到第三时刻的误差信号e,即e=sr+rn-x,并经过PID调节器得到第三时刻的im,另一方面如图2,将第二时刻的ro送入第二存储单位作为第三时刻的roo,而第二时刻得到的rn送入第一存储单元作为第三时刻的ro,将所有得到的第三时刻的im、ro、roo作为低功耗位移补偿算法的输入,可以得到低功耗位移补偿算法第三时刻的输出rn。整个程序依照此流程循环进行,最终使rn收敛于使控制电流im为零的值。
需要说明的是,对于目前已有的轴向采用永磁偏置磁轴承、径向采用被动悬浮结构的五自由度磁悬浮轴承系统,该方法同样适用。

Claims (1)

1.一种实现五自由度磁悬浮系统轴向磁轴承低功耗悬浮的方法,其特征在于,包括以下步骤:
(1)将永磁偏置轴向磁轴承传感器输出的转子反馈位移信号x,控制器中给定转子的悬浮位置即参考位置sr以及低功耗位移补偿算法模块输出的补偿位移信号rn叠加得到误差信号e,e=sr+rn-x初始时刻rn为零;
(2)将误差信号e加入PID调节器,得到控制电流im,控制电流im的离散形式表达式为:式中的kP、kI、kD分别是PID调节器的比例、积分、微分系数;
(3)将控制电流im通过功率电路放大输入到永磁偏置轴向磁轴承;
(4)同时控制电流im作为反馈信号,与第一级存储单元输出的前一时刻的补偿位移信号ro初始时刻ro为零和第二级存储单元输出的再前一时刻的补偿位移信号roo初始时刻roo为零一起加到低功耗位移补偿模块中,利用该模块的算法得到补偿位移信号rn
r n = - ϵ i m k P + ( 1 + 2 ϵ i m k D ) r o - ϵ i m k D r oo 1 + ϵ i m ( k I + k D )
式中的ε是收敛系数,取值范围0.00001~0.01;kP、kI、kD分别是PID调节器的比例、积分、微分系数;
(5)由低功耗位移补偿算法模块得到当前时刻的补偿位移信号rn后,将该低功耗位移补偿算法模块输出的补偿位移信号rn与控制器给定转子的悬浮位置即参考位置sr、永磁偏置轴向磁轴承传感器输出的转子反馈位移信号x叠加产生误差信号e,同时将补偿位移信号rn放入第一级存储单元,作为下一时刻输出的补偿位移信号ro,将补偿位移信号ro放入第二级存储单元,作为下一时刻的第二级存储单元输出的补偿位移信号roo,控制电流im、补偿位移信号ro、补偿位移信号roo作为下一时刻低功耗补偿模块的输入,使整个控制流程循环运行。
CN2008101552282A 2008-10-22 2008-10-22 一种实现五自由度磁悬浮系统轴向磁轴承低功耗悬浮的方法 Expired - Fee Related CN101440841B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101552282A CN101440841B (zh) 2008-10-22 2008-10-22 一种实现五自由度磁悬浮系统轴向磁轴承低功耗悬浮的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101552282A CN101440841B (zh) 2008-10-22 2008-10-22 一种实现五自由度磁悬浮系统轴向磁轴承低功耗悬浮的方法

Publications (2)

Publication Number Publication Date
CN101440841A CN101440841A (zh) 2009-05-27
CN101440841B true CN101440841B (zh) 2010-09-29

Family

ID=40725400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101552282A Expired - Fee Related CN101440841B (zh) 2008-10-22 2008-10-22 一种实现五自由度磁悬浮系统轴向磁轴承低功耗悬浮的方法

Country Status (1)

Country Link
CN (1) CN101440841B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108425945A (zh) * 2018-02-12 2018-08-21 北京航空航天大学 一种基于双电平功放永磁偏置混合磁轴承控制系统及无位移传感器检测方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9671257B2 (en) 2011-07-08 2017-06-06 Carl Zeiss Industrielle Messtechnik Gmbh Correcting and/or preventing errors during the measurement of coordinates of a workpiece
JP5240336B2 (ja) * 2011-09-26 2013-07-17 ダイキン工業株式会社 磁気軸受及びそれを用いた圧縮機
CN104660139B (zh) * 2014-11-12 2017-02-22 江苏大学 基于矩阵变换器的交流磁轴承电主轴运行控制方法
CN105333010B (zh) * 2015-12-11 2018-05-18 珠海格力节能环保制冷技术研究中心有限公司 一种磁悬浮轴承控制装置及磁悬浮轴承系统
CN106090012B (zh) * 2016-08-19 2018-11-16 珠海格力电器股份有限公司 磁悬浮轴承的控制方法和装置
CN107448474B (zh) * 2017-07-27 2019-02-05 江苏大学 一种车载飞轮电池用五自由度混合磁轴承
CN111350758B (zh) * 2020-03-12 2021-10-08 南京航空航天大学 一种航空发动机永磁偏置锥形磁轴承振动力主动控制方法
CN112436616B (zh) * 2020-11-04 2022-03-25 南京航空航天大学 一种轴向磁通五自由度磁悬浮电机
CN115978088B (zh) * 2023-03-20 2023-09-26 南昌航空大学 基于自适应偏置和速度观测器的磁悬浮转子振动控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108425945A (zh) * 2018-02-12 2018-08-21 北京航空航天大学 一种基于双电平功放永磁偏置混合磁轴承控制系统及无位移传感器检测方法
CN108425945B (zh) * 2018-02-12 2019-10-25 北京航空航天大学 一种基于双电平功放永磁偏置混合磁轴承控制系统及无位移传感器检测方法

Also Published As

Publication number Publication date
CN101440841A (zh) 2009-05-27

Similar Documents

Publication Publication Date Title
CN101440841B (zh) 一种实现五自由度磁悬浮系统轴向磁轴承低功耗悬浮的方法
CN103026617B (zh) 用于调节他励同步电机的方法和装置
US9293971B2 (en) Active magnetic bearings control system
CN105227028B (zh) 在电功率驾驶系统中利用直接设备修改将当前控制解耦
CN101311571A (zh) 恒流源偏置磁悬浮轴承
CN111740668B (zh) 一种多动子直线电机同步控制系统
CN110657159B (zh) 一种磁悬浮轴承稳定控制方法
CN101795105B (zh) 无轴承永磁同步电机悬浮转子等效扰动电流补偿控制装置
CN105099319B (zh) 控制感应电机的装置
Patel et al. Nonlinear rotor side converter control of DFIG based wind energy system
Sambariya et al. Optimal design of PID controller for an AVR system using monarch butterfly optimization
Ahmed Optimal speed control for direct current motors using linear quadratic regulator
CN111835261B (zh) 基于自适应神经网络的磁悬浮垂直轴风电机组悬浮控制方法
JPWO2009130940A1 (ja) 磁気浮上制御装置
CN110855204B (zh) 一种永磁同步电机转矩周期性脉动抑制控制装置及方法
CN202043069U (zh) 一种五自由度无轴承同步磁阻电机解耦控制器
CN101958685B (zh) 无轴承同步磁阻电机非线性逆解耦控制器及其构造方法
CN102790577A (zh) 一种无轴承永磁同步电机悬浮子系统控制器的构造方法
Boinov et al. Surge control of the electrically driven centrifugal compressor
CN103647481A (zh) 无轴承永磁同步电机径向位置神经网络自适应逆控制器构造方法
CN111173681B (zh) 基于滑模神经网络的磁悬浮垂直轴风电机组悬浮控制方法
CN111092569B (zh) 一种永磁悬浮系统悬浮物的变刚度悬浮控制方法
CN109340260B (zh) 一种五自由度磁悬浮轴承双反互补电励磁控制器
Wang et al. Control Strategy Design of Active Magnetic Levitation Bearing for High-speed Flywheel Energy Storage Device
Ahmed et al. New approach for position control of induction motor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100929

Termination date: 20111022