CN101424552B - 超声波流量计 - Google Patents

超声波流量计 Download PDF

Info

Publication number
CN101424552B
CN101424552B CN2008101833356A CN200810183335A CN101424552B CN 101424552 B CN101424552 B CN 101424552B CN 2008101833356 A CN2008101833356 A CN 2008101833356A CN 200810183335 A CN200810183335 A CN 200810183335A CN 101424552 B CN101424552 B CN 101424552B
Authority
CN
China
Prior art keywords
fluid
flow
eyelet
ultrasonic
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008101833356A
Other languages
English (en)
Other versions
CN101424552A (zh
Inventor
岩永茂
梅景康裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN101424552A publication Critical patent/CN101424552A/zh
Application granted granted Critical
Publication of CN101424552B publication Critical patent/CN101424552B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

一种超声波流量计,包括:测量流动通道(6),被测量的流体通过其中流动;超声波换能器(8)和(9),分别设置在沿测量流动通道(6)彼此相对的上游端和下游端;上游孔眼(11)和下游孔眼(12),用于使超声波换能器(8)和(9)暴露于该测量流动通道(6);第一流体抑制器(15),至少邻近下游孔眼(12),用于减少被测量的流体流入孔眼(12);第二流体抑制器(16),被设置在测量流动通道(6)的上游端并相对于孔眼(11)和(12),用于减少被测量的流体流入孔眼(11)和(12);测量控制部件(19),用于测量超声波换能器(8)和(9)之间的超声波的传播时间;及计算部件(20),用于根据该测量控制部件(19)的信号计算流量。为下游孔眼(12)设置的第一流体抑制器(15)包括具有至少一个超声波传输孔(22)的孔眼密封部件(21)。因此,有可能稳定超声波换能器之间的流体,以便增强超声波的接收水平,从而提高测量精度和对流量测量的上限值,并减少对于超声波换能器的驱动输入。

Description

超声波流量计
本申请是申请号为00805166.6(国际申请号为PCT/JP00/01689)的中国专利申请的分案申请,该中国专利申请的申请日为2000年3月17日,发明名称为“超声波流量计”。
技术领域
本发明涉及一种超声波流量计,它采用超声波测量气体或液体的流量和(或)流速。
背景技术
在现有技术中已经出现了这类超声波流量计,如日本专利公开号11—351926之专利所公开的。如图44,一种超声波流量计包括测量管1,用于允许流体从一端流动方向另一端,上游超声波换能器(upstream ultrasonictransducer)2a和下游(downstream超声波换能器2b。上游超声波换能器2a和下游超声波换能器2b经过其间有相对测量管1的中心线有预定角度的测量管1相对。上游超声波换能器2a和下游超声波换能器2b分别装于测量管1的凹处3a和3b。流体波动抑制部件5在测量管1的入口端4。流入测量管1的流体由流体波动抑制部件5调整以减少测量部件的倾斜度和/或抑制涡流的产生,因此,减少因反射和/或折射流变化界面的超声波导致的超声波接收电平的变化,因此避免测量精度的退化。
另一已知的例子为日本专利公开号为63—26537之专利。如图45,一对超声波换能器2a和2b分别相对布置在测量管1的表面的上游端和下游端。超声波换能器2a和2b分别装于测量管1的凹处3a和3b,在每个凹处3a和3b的空穴处有大容量的超声波传输部件3c,以阻止流体进入凹处3a和3b,提供高精度的流量测量。
采用如图44所述的常规结构,可由在测量管1的入口端4流体波动抑制部件5调整流入测量管1的流体以减少测量部件的倾斜度和/或抑制涡流的产生,因此,减少因反射和/或折射流变化界面的超声波导致的超声波接收电平的变化,减少测量失真。然而,测量管1中的流速增加时,流入凹处3a和3b的流体产生涡流,增加对超声波换能器2a和2b的干扰。因此,反射和/或折射涡流变化界面的超声波增加,从而降低了超声波接收电平。因此,难以减少超声波换能器2a和2b的驱动输入。
采用如图45所述的常规结构,每个凹处3a和3b的空穴处有大容量的超声波传输部件3c,通过大容量的超声波传输部件3c可能会导致超声波的传播损耗,因此,降低了超声波输出或超声波接收灵敏度。另外,超声波通过大容量的超声波传输部件3c这个固体,降低了其中的直线特性,难于向对面的超声波换能器发射超声波。因此,难以减少流量计的功耗,因此不能用做只用很小的电量就长期使用(例如10年)的装置,例如家用测量燃气(例如城市煤气或液化石油气)流量的流量计。
本发明解决了上述问题。本发明的目的在于减少在超声波换能器之间产生的流体扰动或旋涡,以增强超声波接收电平,从而提高测量精度和对流量测量的上限值,并通过减少对超声波换能器的驱动输入减少功耗。
发明内容
本发明的一种超声波流量计包括:测量流动通道,被测量流体通过其中流动;超声波换能器,分别设置在沿测量流动通道彼此相对的上游端和下游端;上游孔眼和下游孔眼,用于使超声波换能器暴露于测量流动通道;第一流体抑制器,至少邻近下游孔眼,用于减少被测量的流体流入该孔眼;第二流体抑制器,设置在测量流动通道的上游端并相对于孔眼,用于减少被测量的流体流入孔眼;测量控制部件,用于测量超声波换能器之间的超声波的传播时间;及计算部件,用于根据该测量控制部件的信号计算流量,其中,为下游孔眼设置的第一流体抑制器包括具有至少一个超声波传输孔的孔眼密封部件。因此,可以稳定超声波换能器之间的流体,以便增强超声波接收电平,从而提高测量精度和和对流量测量的上限值,并通过增强超声波接收电平,及通过设置流体抑制器改善超声波的衰减,减少对超声波换能器的驱动输入。
本发明的另一种超声波流量计包括:测量流动通道,被测量的流体通过其中流动;超声波换能器,分别设置在沿测量流动通道彼此相对的上游端和下游端;上游孔眼和下游孔眼,用于使超声波换能器暴露于该测量流动通道;第一流体抑制器和第二流体抑制器,对于向前流动的反向流动的被测量流体,用于减少被测量的流体流入孔眼;测量控制部件,用于测量超声波换能器之间的超声波的传播时间;及计算部件,用于根据该测量控制部件的信号计算流量,其中,为下游端的孔眼在流体向前流动时设置的第一流体抑制器是具有至少一个超声波传输孔的孔眼密封部件;第二流体抑制器被设置在测量流动通道的入口端和出口端。因此,即使当流体有波动和产生瞬时逆流时,如同在向前流动时的情况一样,可以减少被测量的流体流入孔眼,并显著地减少超声波换能器之间的流体扰动,从而提高测量精度和和对流量测量的上限值。
本发明的另一种超声波流量计包括:测量流动通道,被测量的流体通过其中流动;超声波换能器,分别设置在沿测量流动通道彼此相对的上游端和下游端;用于使每个超声波换能器暴露于测量流动通道的孔眼;传播通道流动调节器,沿上游超声波换能器和下游超声波换能器之间的超声波传播通道而设置,并具有暴露于流体的调节部件;测量控制部件,用于测量超声波换能器之间的超声波的传播时间;计算部件,用于根据该测量控制部件的信号计算流量。因此,直接设置在超声波传播通道之上游端的传播通道流动调节器的调节部件促进了在从超声波传播通道的上游端到下游端所通过的整个区域的流体扰动。因此,在超声波传播通道中,在沿宽度方向的超声波传播通道所通过的整个区域,从靠近上游孔眼的区域到靠近下游孔眼,不论流量的大小,超声波传播通道的整个宽度方向的整个区域,流体状况被均衡地扰动,因此,可减少在整个流量测量范围的修正系数中的变化,避免因修正系数导致的误差,并提高测量精度。因此,即使当流体的流动粘滞度变化导致雷诺数变化时,测量精度也是稳定的,所实现的测量装置可以承受流体温度之变化或流体成分之变化,从而提高了该装置的实用性。
本发明的另一种超声波流量计包括:测量流动通道,被测量的流体通过其中流动;超声波换能器,分别设置在沿测量流动通道彼此相对的上游端和下游端;用于使每个超声波换能器暴露于该测量流动通道的孔眼;传播通道流动调节器,沿上游超声波换能器和下游超声波换能器之间的超声波传播通道而设置,具有暴露于流体的调节部件;流体抑制器,用于减少被测量的流体流入孔眼;测量控制部件,用于测量超声波换能器之间的超声波的传播时间;及计算部件,用于根据该测量控制部件的信号计算流量。因此,直接设置在超声波传播通道之上游端的传播通道流动调节器的调节部件促进了在从超声波传播通道的上游端到下游端所通过的整个区域的流体扰动。因此,在超声波传播通道中,在沿宽度方向的超声波传播通道所通过的整个区域,从靠近上游孔眼的区域到靠近下游孔眼,不论流量的大小,超声波传播通道的整个宽度方向的整个区域,流体状况被均衡地扰动,因此,可减少在整个流量测量范围的修正系数中的变化,避免因修正系数导致的误差,并提高测量精度。此外,可以为开口通入测量流动通道的孔眼设置流体抑制器,以减少流入孔眼中的流体,从而显著地减少沿超声波换能器之间的超声波传播通道的流体扰动,并提高对于流量测量的上限值。
在一实施例中,为上游孔眼设置的第一流体抑制器是导流器。因此,可减少通过对于上游孔眼的超声波传送孔的超声波之传播损耗,从而减少对超声波换能器的驱动输入,并减少流入上游孔眼的流体,因此稳定沿超声波传播通道的流体扰动,并提高测量精度。
在一实施例中,为上游孔眼设置的第一流体抑制器是具有至少一个超声波传输孔的孔眼密封部件。因此,可以显著地减少流入上游孔眼和下游孔眼的流体,从而提高对于流量测量的上限值并提高测量精度,即使是对伴有反向流动的流体。而且,通过明显减少由于孔眼导致的流体扰动,可实现具有期望的S/N特性的超声波发射/接收。因此,可减少发送输出和驱动输入,从而减少功耗。
在一实施例中,为上游孔眼设置的孔眼密封部件的孔径比大于为下游孔眼设置的孔眼密封部件的孔径比。因此,可减少超声波的传播损耗,从而改善对流量测量的上限值和对反向流体的测量精度,通过减少对超声波换能器的驱动输入减少功耗。
在一实施例中,传播通道流动调节器被设置在相对于超声波传播通道的上游端和下游端上。因此,超声波传播通道由上游和下游传播通道流动调节器环绕,因此可以使由超声波传播通道的上游端和下游端的扰动状况均衡,从而进一步稳定了修正系数,改善了测量精度。另外,由下游传播通道流动调节器减少了流动状况对沿测量流动通道的下游端的影响。因此,不论测量装置的下游端的管道情况如何,可实现稳定的测量,从而改进了测量装置的安装自由度。另外,对沿测量流动通道的正向流和反向流取得同样效果,即使对于波动流体也可稳定修正系数,从而提高测量精度。
在一实施例中,设置在相对于超声波传播通道的上游端和下游端上的传播通道流动调节器通过连接器部件而结合在一起。因此避免并稳定了传播通道流动调节器间的距离偏移或上游调节部件和下游调节部件间的位置偏移,因此,减少了测量装置的变化。另外,该连接部件加固了传播通道流动调节器,可减少调节部件的尺寸或厚度。因此,可以使超声波传播通道中的流动状况变得均匀或减少测量流动通道中的压力损失。
在一实施例中,设置在相对于超声波传播通道之上游端和下游端上的传播通道流动调节器与流体抑制器被结合在一起。因此,可以确定上游和下游传播通道流动调节器与流体抑制器之间的位置关系,如距离,从而稳定了流动状况。因此,可减少超声波传播通道中的流动状况的变化,实现稳定及变化很小的测量。通过这种结合,还可以进一步增加传播通道流动调节器的机械强度,防止长期使用后的变形,从而改善其耐用性和可靠性。
在一实施例中,流体抑制器是为下游孔眼设置的第一流体抑制器。因此,该流体抑制器的设置是由于在该下游孔眼周围易发生旋涡,这是因为下游孔眼以相对流动方向的锐角方向延伸。因此,可以减少流入该孔眼的流体,以便有效地减少超声波换能器间的流体扰动,增加对流量测量的上限值。
在一实施例中,流体抑制器是为上游孔眼和下游孔眼设置的第一流体抑制器。因此,能有效减少孔眼中的扰动,这种扰动构成超声波传播通道中的总流动扰动的主要部分,从而增加测量精度和对流量测量的上限值。
在一实施例中,流体抑制器是第二流体抑制器,该第二流体抑制器是通过为沿超声波传播通道设置的传播通道流动调节器配置流体抑制部件而得到的。因此,通过结合流体抑制器和传播通道流动调节器,可减少对流入孔眼的流体的抑制中的变化,从而增加了可靠性和为提供小型超声波传播通道创造条件。因此,可减小测量流动通道的尺寸。
在一实施例中,流体抑制器包括为孔眼设置的第一流体抑制器和第二流体抑制器,第二流体抑制器是通过为传播通道流动调节器配置流体抑制部件而得到的。因此,孔眼中的扰动通过第一流体抑制器和第二流体抑制器的倍增效应而被减小,通过结合流体抑制器和传播通道流动调节器,可减小在对流入孔眼中的流体的抑制中之变化。因此,可增加了测量精度和可靠性。另外,可以提供小型的超声波传播通道。因此,可减小测量流动通道的尺寸。
在一实施例中,第一流体抑制器是具有至少一个超声波传输孔的孔眼密封部件。因此,通过用孔眼密封部件覆盖孔眼,可进一步增强对被测量的流体流入孔眼的抑制效果,因此减少和稳定孔眼中的流体。
在一实施例中,第一流体抑制器包括具有至少一个超声波传输孔的孔眼密封部件和设置在孔眼附近的导流器。因此,可进一步增强抑制被测量的流体流入孔眼的效果,因此增加测量精度。另外,通过提供导流器,可减少例如灰尘等外来物质附着在孔眼密封部件上。因此,孔眼密封部件的选择主要基于超声波的传输而不需太多地考虑孔眼密封部件的阻塞,从而增加选择的自由度。另外,可增强超声波传输能力,以减少功耗,或进一步增加灵敏度,实现具有期望精度的测量装置。
在一实施例中,为上游孔眼设置的孔眼密封部件的孔径比大于为下游孔眼设置的孔眼密封部件的孔径比。因此,可减少超声波的传播损耗,提高对流量测量的上限值和对反向流的测量精度,通过减少对超声波换能器的驱动输入减少功耗。
在一实施例中,孔眼密封部件是倾斜的网状结构的网状部件,具有相对水平方向的倾斜。因此,该结构相对于水平方向倾斜,这样可以促进附着在倾斜网状部分上细小微粒(例如灰尘)的沉积,从而减少这种细小颗粒的沉积量和防止该网状部件的阻塞。因此,保证超声波在其中的传输和维持长时间的稳定的测量精度,改善可靠性和耐用性。
在一实施例中,导流器被设置在孔眼的上游端和下游端。因此,对于沿测量流动通道的正向流和反向流,均可进一步改进测量精度,抑制流入孔眼的流体,防止外来物质进入孔眼。因此,即使对于伴有反向流的波动流体,可维持长时间的稳定的测量精度,增加可靠性和耐用性。
在一实施例中,根据被测量的流体的类型,改变传播通道流动调节器和超声波传播通道间的距离。因此,可以普遍地使用测量流动通道,而不管被测量的流体的类型,仅改变传播通道流动调节器,因此,改善了方便性,维持稳定的测量精度,而与被测流体无关。由于可以普遍使用测量流动通道,可以降低成本。
在一实施例中,传播通道流动调节器的调节部件为网状部件之结构。因此,减少传播通道流动调节器相对流动方向的安装空间,因此,减少了测量流动通道的尺寸。
在一实施例中,传播通道流动调节器的调节部件为网格部件之结构,其壁面沿流动方向延伸。因此,可由沿流动方向延伸的壁面调整流动方向,进一步均衡超声波传播通道中的流速分布,改进测量精度。
在一实施例中,根据沿测量流动通道的横切面的位置,改变传播通道流动调节器的两相邻调节部件的间隔。因此,可根据沿测量流动通道的横切面的位置优化每个调节部件的大小,而同时保持减小的调节部件沿流动方向的长度。因此,可进一步均衡超声波传播通道中的流速分布和减小调节部件沿流动方向的长度,因此,由于对流速分布的均衡,减少压力损失并改进测量精度。
在一实施例中,测量流动通道沿垂直于流动方向之方向的横截面含有矩形。通过用矩形截面,可增加相对于总测量横截面面积的测量面积,从而为从超声波传播通道的上游端到下游端在同样情况下的流体测量创造条件。另外,可增加沿超声波传播通道的流动的二维性,为实现对流体的平均流速的高精度测量创造条件。另外,通过提供第二流体抑制器进一步增加流动的二维性。
在一实施例中,测量流动通道沿垂直于流动方向的方向的横截面含有长宽比小于2的矩形。因此,不需要增加长宽比以产生二维流动,可根据流动通道的高度自由设置横截面之规格,以减少反射波的干扰,因此,为提高超声波发送/接收的灵敏度创造条件。另外,通过调整测量截面,可减少测量流动通道中的压力损失,因此,沿测量横截面接触流体的长度被减小,而不必过分平滑测量横截面。
在一实施例中,孔眼开口通入测量流动通道中,并具有沿基本上垂直于测量流动通道中流动方向的方向延伸的边的形状。因此,可相对测量流动通道的高度方向均衡地进行超声波的发送/接收,并缩小测量流动通道中沿流动方向的孔眼的孔径尺寸。因此,可进一步减少孔眼引起的流体扰动,进一步提高测量精度。
在一实施例中,设置在测量流动通道的上游端上的引入部设有非均匀流动抑制器,它具有带小孔的通道开口。因此,不论流动通道的形状或测量流动通道的管道结构上游如何,可向测量流动通道提供稳定的流体,减少超声波换能器间的流体扰动。因此,可进一步增加对流量测量的上限值,进一步改进测量精度。另外,不论流动通道的形状或测量流动通道的管道结构上游如何,都可以实现稳定测量,增加测量装置的安装自由度。
在一实施例中,设置在测量流动通道之上游端的引入部和设置在测量流动通道之下游端的出口部都配置有非均匀流动抑制器,它具有带小孔的通道开口。因此,可以提供稳定的流体进入测量流动通道,即使是当被测流体含伴有反向流的波动流、或被测流体在上游端有波动源时。因此,可以减小超声波换能器之间的流体波动,进一步提高对流量测量的上限值,并进一步提高测量精度。此外,可以实现稳定的测量,而与流动通道之形状、管道结构、或波动源、测量流动通道之上游或下游都无关,从而进一步改善该测量装置在安装中的自由度。
在一实施例中,引入部或出口部的横截面积大于测量流动通道的横截面积。因此,可增加非均匀流动抑制器的安装截面积,减少非均匀流动抑制器引起的压力损失,因此,避免压力损失的增大。另外,可以增大引入部或出口部的横截面面积,即使当在上游端和下游端上的管道结构或流动通道的形状变化时,为该测量装置的安装创造条件,不需改变引入部或出口部的形状。因此,增加测量装置的安装自由度。
在一实施例中,非均匀流动抑制器的的通道开口的孔径尺寸小于第二流体抑制器的的通道开口的孔径尺寸。因此,即使在上游或下游连接端口的设置有位置偏移时,流体可在测量流动通道均匀流动,因此增加测量精度。另外,即使被测量的流体有波动时,由于通道开口的小孔,可减小流入测量流动通道的流体的波动,因此,即使对于波动流也可以改进测量精度。另外,由于非均匀流动抑制器的的通道开口的孔径尺寸小,可减少进入测量部件的污物/灰尘的量,增加沿测量流动通道的测量操作之可靠性。
在一实施例中,另一种超声波流量计包括:测量流动通道,被测量的流体通过其中流动;超声波换能器,分别设置在沿测量流动通道彼此相对的上游端和下游端;上游孔眼和下游孔眼,用于使每个超声波换能器暴露于该测量流动通道;其中,至少一个孔眼包括沿超声波传播方向延伸的多个隔离通道。因此,由于超声波通过在隔离通道内的流体传播,对灵敏度的降低很小。另外,由于通道的隔离,可保持超声波的直线性,实现所要求的接收和发送。另外,沿流动通道的侧面所设的孔眼内的孔流通道被分为小部分,因此涡流不太可能出现,可减少流入孔眼的流体。因此,即使波动发生,也可正确测量流量。
在一实施例中,至少一个孔眼包括沿超声波传播方向延伸的多个隔离通道。因此,通过流体抑制器,可减少流入孔眼的流体,和改进对测量的上限值。另外,由于超声波通过在隔离通道的流体传播,灵敏度的减少很小。另外,由于通道的隔离,可保持超声波的直线性,实现其所要求的接收和发送。另外,沿流动通道的侧面所设的孔眼内的孔流通道被分为小部分,因此涡流不太可能出现,可进一步减少流入孔眼的流体。因此,即使波动发生,也可正确测量流量。
在一实施例中,每个隔离通道设有沿超声波换能器之振动面延伸的入口表面和沿测量流动通道的壁面延伸的出口表面。因此,由于超声波可以直角进入隔离通道而在一个直通道中穿行,超声波传播通道无反射、衰减很小。另外,由于出口是相对于流动通道的壁面的平滑表面,在沿流动通道的壁面的外围层中的流动中无扰动。另外,由于将出口表面调整为辐射表面,可有效辐射超声波。
在一实施例中,一个孔眼的每一个隔离通道与另一孔眼的对应的一个隔离通道共线延伸。因此,发送表面和接收表面沿超声波传播方向相互对准,可减少由于相对孔眼的隔离通道中的隔板导致的反射衰减。
在一实施例中,每个隔离通道的纵向剖面的一边长于用于发送/接收的超声波的半波长。因此,减少了隔离表面的粘滞影响,可提供小衰减的隔离通道。
在一实施例中,每个隔离通道的纵向剖面的一边不是用于发送/接收的超声波的半波长的整数倍。因此,可抑制横向谐振,实现有效传播。
在一实施例中,孔眼的隔离通道和对应的一个超声波换能器的振动面之间的距离是超声波的半波长的整数倍。因此,可在半波长提供谐振,从而提供有效的辐射。
在一实施例中,隔离通道的每个分隔部分的厚度小于用于发送/接收的超声波的波长。因此可避免超声波的反射,提供有效的超声波发送/接收。
在一实施例中,隔离通道是通过将蜂窝状网格安装在孔眼而构成。因此。通过使用网格,可在纵向和横向划分每个孔眼。
在一实施例中,隔离通道中的一个隔离通道在孔眼的中部有开口。因此,孔眼对准超声波换能器的中部,提供有效的发送/接收。
在一实施例中,每个隔离通道的通道长度短于用于发送/接收的超声波的波长。因此,可提供很小衰减的超声波传播通道。
在一实施例中,隔离通道是通过在孔眼中沿垂直于超声波传播方向之方向设置一个网状部件而构成。因此,通过用网状部件对孔眼进行划分,可减少通道长度。
在一实施例中,每一个隔离通道包括在沿其长度的某一点上的一个连通部件,用于使该隔离通道与相邻的一个隔离通道连通。因此,可减少由于隔板引起的衰减。
附图说明
图1是截面图,描绘根据本发明的实施例1的超声波流量计的结构;
图2是截面图,描绘图1所示的第一流体抑制器;
图3是截面图,描绘另一第一流体抑制器;
图4是超声波流量计的结构的截面图,描绘了另一第一流体抑制器;
图5是截面图,描绘根据本发明的实施例1的另一第一流体抑制器;
图6是前视图,描绘图4所示的孔眼密封部件的另一例;
图7是图1所示的沿线A-A的截面图,描绘测量流动通道;
图8是前视图,描绘图6所示的孔眼;
图9是截面图,描绘根据本发明的实施例2的超声波流量计的结构;
图10是平面图,描绘根据本发明的实施例2的引入部;
图11是图9所示的沿线B-B的截面图,描绘测量流动通道;
图12是超声波流量计的结构的截面图,描绘另一非均匀流动抑制器;
图13是截面图,描绘根据本发明的实施例3的超声波流量计的结构;
图14是截面图,描绘根据本发明的实施例3的另一第一流体抑制器;
图15是截面图,描绘根据本发明的实施例4的超声波流量计的结构;
图16是前视图,描绘根据本发明的实施例4的沿流动方向观察的传播通道流动调节器;
图17描绘在没有图15的传播通道流动调节器时的修正系数特性;
图18描绘在有根据本发明之实施例4的传播通道流动调节器时的修正系数特性;
图19是截面图,描绘根据本发明的实施例4的另一传播通道流动调节器;
图20是一种超声波流量计的结构的截面图,描绘根据本发明的实施例4的另一传播通道流动调节器;
图21是立体图,描绘根据本发明的实施例4的另一传播通道流动调节器;
图22是图20所示的沿线A-A的截面图,描绘传播通道流动调节器;
图23是截面图,描绘设置传播通道流动调节器的位置;
图24是立体图,描绘另一传播通道流动调节器;
图25是立体图,描绘另一传播通道流动调节器;
图26是前视图,描绘沿流动方向观察的另一传播通道流动调节器;
图27是截面图,描绘根据本发明的实施例5的超声波流量计的结构;
图28是截面图,描绘根据本发明的实施例5的流体抑制器;
图29是截面图,描绘根据本发明的实施例5的另一流体抑制器;
图30是截面图,描绘根据本发明的实施例5的另一流体抑制器;
图31是截面图,描绘根据本发明的实施例5的另一流体抑制器;
图32是一种超声波流量计的截面图,描绘根据本发明的实施例5的另一示例;
图33是立体图,描绘根据本发明的实施例5的流体抑制器和传播通道流动调节器的另一示例;
图34是截面图,描绘根据本发明的实施例6的超声波流量计的流动通道;
图35是截面图,描绘根据本发明的实施例6的孔眼单元;
图36是截面图,描绘根据本发明的实施例6的相互相对的超声波换能器间的位置关系;
图37是前视图,描绘根据本发明的实施例6的第一隔离通道的出口表面;
图38是前视图,描绘根据本发明的实施例6的第二隔离通道的出口表面;
图39是前视图,描绘根据本发明的实施例6的第三隔离通道的出口表面;
图40是前视图,描绘根据本发明的实施例6的隔离通道的出口表面;
图41是截面图,描绘根据本发明的实施例6的隔离通道的连通部件;
图42是截面图,描绘根据本发明的实施例6的隔离通道的另一示例;
图43是前视图,描绘图42所示的隔离通道的出口表面;
图44描绘常规的超声波流量计的结构;及
图45描绘另一种常规的超声波流量计的结构。
具体实施方式
以下将结合附图说明本发明的实施例。
(实施例1)
图1的剖面图说明根据本发明的实施例1的超声波流量计之结构。在图1中,参考编号6是由流动通道壁7环绕的测量流动通道,参考编号8和9是上游和下游超声波换能器,分别安装在流动通道壁7上并经由振动传导抑制器10以使得彼此相对。上游超声波换能器8和下游超声波换能器9的相互之间被隔开的距离为L、相对于测量流动通道6的流向的倾斜角为θ。参考编号11和12是上游孔眼和下游孔眼,用于使超声波换能器8和9分别暴露于测量流动通道6。孔眼11和12都被以凹陷结构设置在流动通道壁7中。参考编号13是一个超声波传播通道(由双点划链线表示),沿着该通道,从彼此相对的超声波换能器8和9之一发射出来的超声波被直接传播到超声波换能器8和9中的另一个,而不受壁面的反射。参考编号14是为上游孔眼11而设的第一流体抑制器,用于减少流入该上游孔眼11的被测量的流体,参考编号15是为下游孔眼12而设的第一流体抑制器,用于减少流入该下游孔眼12的被测量的流体。参考编号16是设置在超声波传播通道13之上游端的第二流体抑制器,用于减少流入上游和下游孔眼11和12的被测量的流体。该第二流体抑制器16被安装在凹陷处7a内,该凹陷处7a设置在流动通道壁7中。
图2说明了为下游孔眼12所设置的第一流体抑制器。参考编号21是一个孔眼密封部件,它具有很多超声波传输孔22,能传送超声波从中通过。该孔眼密封部件21是横跨超声波传播通道13而设置,以便覆盖孔眼12并且在与测量流动通道表面6a之同一平面上延伸,因此阻止被测量的流体流入孔眼12。在此,孔眼密封部件21是网状或类似物,具有很多超声波传输孔22,能传送超声波从中通过,它直接被设置在对应于孔眼12的测量流动通道6的测量流动通道表面6a之一部分中,并与测量流动通道表面6a在同一平面上,以便不会扰乱流体流动。
图3说明为上游孔眼11而设置的第一流体抑制器14。该第一流体抑制器14从流动通道壁7突出,并包括平滑突出结构的导流器14a和设置在该导流器14a的上游端的引导面14b,并具有平滑增长的突出高度。
第二流体抑制器16具有一个方向调节部件16a和一个波动抑制部件16b,方向调节部件16a用于调节被测量流体的流动方向,波动抑制部件16b用于使流动速度分布均匀或减少流体流动的波动。该方向调节部件16a包括用于将测量流动通道6的横截面划分为小部分的间壁。波动抑制部件16b沿流动方向的长度较小并具有很多沿测量流动通道6之横截面的微小传输通道。
参考编号17是一个上游弯管部,它与设置在沿测量流动通道6之上游端的一个控制阀(未示出)相连通,参考编号18是一个下游弯管部,它与设置在沿测量流动通道6之下游端的一个出口(未示出)相连通。通过采用弯管部17和18,将该流动通道设置在一个小的结构中。参考编号19是一个连接超声波换能器8和9的测量控制部件,用于实现超声波的发送和接收,参考编号20是一个计算部件,用于根据测量控制部件19发出的信号计算流动速度,以便计算出流量。
以下将说明利用超声波的流量测量操作。利用测量控制部件19的功能,超声波沿着测量流动通道6的超声波传播通道13而在超声波换能器8和9之间、穿过测量流动通道6被发送和接收。特别是,测量出传播时间T1,即从上游超声波换能器8发出的超声波由下游超声波换能器9接收所需要的时间量。还要测量出传播时间T2,即从下游超声波换能器8发出的超声波由上游超声波换能器9接收所需要的时间量。
计算部件20根据所测量的传播时间T1和T2并按照以下所示的计算式,计算出流量。
在此,用V表示沿测量流动通道6之长度方向所测量的流体之流速,用于θ表示流动方向与超声波传播通道之间的夹角,用L表示超声波换能器8和9之间的距离,用C表示通过被测量之流体的声速,根据以下计算式计算出流速V。
T1=L/(C+Vcos θ)
T2=L/(C—Vcos θ)
通过将T1之倒数减去T2之倒数的计算式,可以从中除去声速C,从而可以获得以下的计算式:
V=(L/2cos θ)((1/T1)—(1/T2))
由于已知θ和L的值,由T1和T2之值可以计算出流速V。考虑到空气流速的测量,其中角θ=45度,距离L=70毫米,声速C=340米/秒,流速V=8米/秒。那么,T1=2.0×10-4秒及T2=2.1×10-4秒。因此,即时的测量是可能实现的。
下一步,由测量流动通道6沿着垂直于流动方向的横截面之面积S,按如下表达式可获得流量Q:
Q=KVS
其中,K是一个修正系数,它是由于通过横截面S的流速分布而被确定的。
因此,通过计算部件20获得流速。
下一步,将描述该超声波流量计的测量流动通道及其测量操作。被测量的流体进入测量流动通道6并具有不均匀的流动或流体波动,这是由于通过控制阀(未示出)增大/减小在流动通道中所设置的横截面面积,该控制阀设置在测量流动通道6的上游端,或是由于通过弯管部17。然后,通过设置在超声波传播通道13之上游端的第二流体抑制器16之方向调节部件16a,调节方向而使得流体不容易流入孔眼11和12,使得在测量流动通道6中的流动被调整并减小流动扰动,同时,由波动抑制部件16b减小由于波动流体或类似情况引起的流体中的波动而导致的扰动,以便进一步抑制流体流入孔眼11和12。然后,流体进入超声波传播通道13。波动抑制部件16b可以是一个网状部件、泡沫部件(foamed member)、微孔板、非编织织物或类似物,具有较大的孔径比,可被设置以沿流动方向具有小的厚度。因此,通过波动抑制部件16b可以减小压力损耗,因此,可以减小在流体中沿测量流动通道的波动,并不增加压力损耗。而且,可以减小在一个流速高的区域中流体的波动,以便抑制在超声波的传播时间中的波动,从而可以增大对于流量或流速测量的上限值,并进一步提高测量精度。
下一步,孔眼12被开在下游超声波换能器9之前,其中容易发生强涡流,因为孔眼12相对于该测量流动通道是以一个锐角之方向延伸,沿测量流动通道6之测量流动通道表面6a设置有孔眼密封部件21(例如是网状物),它具有很多能从中传送超声波的超声波传输孔22,它沿测量流动通道6之测量流动通道表面6a而设置,为使由第二流体抑制器16调整的流体与测量流动通道表面6a共面,以便不会扰乱流体。因此,可以进一步增加抑制被测量之流体流入下游孔眼12的效果、并显著地减小超声波传播通道13中的旋涡或流体扰动。另一方面,对于上游孔眼11,由导流器14a组成第一流体抑制器14,该导流器14a以凹陷结构设置在孔眼11之上游端附近,以便进一步减少流体流入孔眼11,如图3中的箭头所示,从而减小流体扰动(例如旋涡)并使流体稳定。由于上游孔眼11延伸之方向相对于测量流动通道6呈钝角,任何涡流的强度小于因下游孔眼12而引发的涡流,因此,其中不利的影响很小,可以不必设置第一流体抑制器14。然而,通过对上游孔眼14提供第一流体抑制器14,可以使流体进一步稳定。而且,第一流体抑制器14可以与流动通道壁7整体成型,以便简化结构并降低成本。
因此,超声波在超声波换能器8与9之间沿着超声波传播通道13被发送和接收,通道13中的流体是稳定的。因此,可以提高超声波接收水平,从而实现高精度流速测量,并减小因流体中的波动导致的超声波之衰减,因而提高对于流量测量的上限值。
而且,由于通过对流体的稳定可以改善超声波接收水平,可以减少对于超声波传输的功率消耗。另外,当孔眼密封部件21只是为下游孔眼12而设置时,可以减少通过孔眼密封部件21的超声波之衰减量,并通过减少为超声波换能器8和9而输入的驱动能量,降低功率消耗。因此,当采用电池驱动该设备(例如用于家庭的煤气表)时,可能只需要一个很小电量的电池就可以在长时间内连续使用该煤气表。
图4是一种超声波流量计的剖面图,说明了另一种第一流体抑制器。与图1至3中所示实施例之部件和功能相同的部件和功能采用相同的参考编号,并不再做详细说明,而不同于上述实施例的部件将集中在以下进行描述。对于下游孔眼12,具有超声波传输孔22的孔眼密封部件21a(如图1的实施例的部件)被设置作为第一流体抑制器15。同样地,对于上游孔眼11,具有超声波传输孔22的孔眼密封部件21b(如图1的实施例的部件)被设置作为第一流体抑制器14。这两个孔眼密封部件21a和21b被设置的位置与测量流动通道表面处于同一平面。因此,通过为上游孔眼11和下游孔眼12分别设置孔眼密封部件21a和21b,可以抑制流体流入孔眼,以便避免旋涡或流体扰动,从而改善测量精度,即使是对于具有瞬间倒流的波动流体的测量也实现了精度的提高。而且,在孔眼11和12中的流体扰动可以被显著地降低,可以减少由于任何扰动导致的超声波之折射和(或)反射,从而实现具有所要求的信噪比(S/N)性能的超声波发射和接收,并减少发射输出,从而降低驱动输入,因此降低了功率消耗。
以下未参照附图,描述孔眼密封部件21a和21b的另一实施例。由于上游孔眼11相对于测量流动通道6的延伸方向呈钝角,涡流的强度较小。因此,即使设置在上游孔眼11中孔眼密封部件21b之孔径比大于设置在下游孔眼12中孔眼密封部件21a之孔径比,也可以期望有流体抑制效果。因此,在这个实施例中,上游孔眼密封部件21b具有的孔径比大于下游孔眼密封部件21a之孔径比。由于上游孔眼密封部件21b的每一个超声波传输孔的面积较大,超声波的传播损耗小于下游孔眼密封部件21a的传播损耗。因此,当具有相同孔径比的孔眼密封部件被用在上游端和下游端时,由此可以降低超声波的传播损耗,从而通过降低用于超声波换能器的驱动输入而可以降低功率消耗。
图5说明了为下游孔眼12设置的第一流体抑制器15的另一实施例。参考编号23是一个导流器,它设置在下游孔眼12之上游端附近,包括孔眼密封部件21。该导流器23是以板或叶片的结构设置,它调整流体的方向,使得被测量的流体不流入孔眼12。因此,孔眼12配置有孔眼密封部件21和导流器23作为第一流体抑制器15。
对于孔眼12,由导流器23调整流体的方向,以便减少流向下游孔眼12的流体的量。即使有少量流体流向下游孔眼12,由孔眼密封部件21阻止流体流入孔眼12,以便避免在孔眼12中的流体扰动(例如旋涡),并因此稳定超声波传播通道13中的流体,从而进一步改善测量精度。而且,由于采用导流器23可以减少到达孔眼密封部件21的流量,即使是当待测量的流体中含有细小颗粒的外来物质(例如灰尘)时,可以减少外来物质在孔眼密封部件21上的附着。因此,主要可以考虑超声波的传输能力而选择孔眼密封部件21的规格,从而改善了在该选择中或其中设置的自由度。而且,可以进一步提高超声波的传送能力,以提高灵敏度,从而降低功率消耗或提高精度。对于上游孔眼11可以采用相似的结构,以便进一步改善测量精度。
图6说明了孔眼密封部件的另一实施例。参考编号24是一个网状部件,它含有布置在网状结构中的超声波传输孔22。该网状部件24沿测量流动通道表面6a设置在孔眼12上作为孔眼密封部件21。在此,沿测量流动通道6而被测量的流体的流动方向基本上是水平的,沿着测量流动通道表面6a设置孔眼11和12,它基本上是垂直的。对于这种测量流动通道的设置,网状部件24是由倾斜的网状部分25构成,该部分25具有相对于水平方向为α的角度,使得沿水平方向没有设置网状部分。
当被测量的流体带着细小颗粒的外来物质(例如包含在其中的灰尘)流动时,这种外来物质可能会附着在设置在下游孔眼12中的网状部件24上。然而,由于该网状部件24是由倾斜的网状部分25构成,该网状部分25相对于水平方向具有一个斜度,所附着的细小颗粒的外来物质很容易沿着该斜度滑下来。因此,可以避免因附着的细小颗粒的外来物质的沉积而导致该网状部件24的阻塞,以确保超声波的传送,从而对流量和流速继续进行稳定的测量。虽然上述的说明是针对下游孔眼12,也同样适用于上游孔眼11。
图7说明了图1中所示的测量流动通道沿线A—A的剖面图。沿垂直于流体的方向的该测量流动通道6的横截面具有一个矩形,其宽度为W并沿超声波换能器8和9相互相对设置的端面,其高度为H。该测量流动通道6是由流动通道壁7构成,流动通道壁7是通过将具有凹陷的流动通道壁7b和具有凸出部的流动通道壁7c相互紧密配合而获得。由于横截面为矩形,在测量流动通道6内实现了二维流动,由第二流体抑制器16抑制了在该矩形横截面的每一个角落部分中可能产生的流体波动,因此可以促进该测量流动通道6内的二维流动。而且,因为在超声波换能器之间的测量流动通道6的高度H是不变的,可以增大超声波传播所通过的测量区域相对于该流动通道的总横截面面积的比率,从而为实现对流体的平均流速进行高精度测量创造条件。
可以理解的是,这里所采用的矩形横截面也包括大体上的矩形,其中在矩形横截面的每一个角中具有圆形部分(拐角R),以便确保制造设备(例如当流动通道壁7是通过压铸法形成时所采用的金属模)的耐用性。
图8说明了孔眼12的孔形,该孔眼12沿图7中所示的测量流动通道6的测量流动通道表面6a而设置并具有矩形横截面。沿测量流动通道表面6a的孔眼12之孔形具有一个矩形,其一边12a在基本上垂直于流体之方向(由图中箭头所示)之方向上通过测量流动通道6延伸,其另一边12b在基本上平行于流体之方向的方向上延伸。
因此,在测量流动通道6中,孔眼12具有沿流体之方向上对任意高度的一个恒定长度,如图中以D所指示,因此,可以相对于高度方向H均衡地发送和接收超声波,并因此实现穿过测量流动通道6的同样的测量,从而实现高精度测量。而且,这个沿流动方向的孔眼的长度D是小于当该孔眼具有圆形或含相同面积之弧形部分时所导致的长度,因此可以进一步减小测量流动通道6中的流体扰动和(或)流入孔眼12的流体,从而改善测量精度。虽然上述描述是针对下游孔眼12,应该理解的是,沿测量流动通道表面6a的上游孔眼11之孔形也可以是矩形,以便进一步改善测量精度。
如上所述,在本发明的超声波流量计中,通过至少是为下游孔眼而设置的第一流体抑制器15,减少被测量的流体流入孔眼12,因而可以显著地降低超声波换能器8和9之间的流体扰动,因此提高测量精度和对流量测量的上限值。该第一流体抑制器15可以是孔眼密封部件21,它具有超声波传输孔22,以便进一步增大抑制被测量流体流入孔眼之效果,从而稳定孔眼中的流体。而且,虽然通过超声波传输孔22可以保证超声波的传播,孔眼密封部件21只能是为下游孔眼12而设置,以便进一步减少超声波的衰减,从而减少对于超声波换能器的驱动输入和功率消耗,并改善测量精度。
为下游孔眼11而设置的第一流体抑制器14包括具有超声波传输孔22的孔眼密封部件21b。因此,可以显著地降低流体流入上游和下游孔眼的流入量,从而提高对流量测量的上限值,即使对于伴有逆流的流体也可以提高测量精度。
为上游孔眼11而设置的孔眼密封部件21b的孔径比大于为下游孔眼12而设置的孔眼密封部件21a的孔径比。因此,可以降低超声波的传播损耗,从而可以提高对流量测量的上限值和对于逆流的测量精度,并通过减少对超声波换能器的驱动输入而降低功率损耗。
第一流体抑制器15包括具有超声波传输孔22的孔眼密封部件21和设置在孔眼11或12附近的导流器。因此,可以进一步加强抑制被测量的流体流入孔眼之效果,从而进一步改善测量精度。而且,通过采用导流器的构造,可以减少外来物质(例如灰尘)附着在孔眼密封部件上。因此,对孔眼密封部件的选择主要是考虑到超声波的传送能力,而不必太关注孔眼密封部件的阻塞,因此,提高了该选择的自由度。而且,可以进一步提高超声波传送能力以便降低功率消耗,或进一步提高灵敏度以便实现具有所需测量精度的装置。
孔眼密封部件21是一种具有相对于水平方向之斜度的斜向网状结构(mesh pattern)的网状部件。因此,该网状结构相对于水平方向是倾斜的,以便可以促进附着在倾斜网状部分25上的细小颗粒(例如灰尘)沉淀下去,从而减少这种细小颗粒的沉积量。因此,可以确保超声波传播而通过其中,并长时间维持稳定的测量精度,从而改善耐用性和可靠性。
测量流动通道6沿垂直于其中的流体之方向的横截面具有矩形。因此,通过采用矩形横截面,可以增加相对于总测量横截面面积的测量面积,从而便于从超声波传播通道13的上游端到下游端在相同条件下测量流体。而且,可以提高沿测量流动通道6的流体的二维性(two-dimensiona1ity),从而便于对流体的平均流速进行高精度测量。此外,通过设置第二流体抑制器16,可以进一步增大流体的二维性。
孔眼11和12中的每一个的开口进入测量流动通道6,其形状是具有一个沿基本上垂直于流体通过测量流动通道6之方向的方向延伸的边。因此,可以相对于测量流动通道6之高度方向而均衡地发送/接收超声波,并缩短在测量流动通道中沿流动方向的孔眼之孔径长度。因此,可以进一步减小因该孔眼导致的流体扰动,从而进一步改善测量精度。
弯管部分17和18是在测量流动通道6的宽度W方向被弯曲的,这种情况在本发明的实施例中做了说明。然而,应该理解的是,弯管部分17和18可以选择在测量流动通道6的高度H方向或任何其它方向上而被弯曲,该弯管部分17和18可以不同的角度弯曲。此外,抑制流体流入孔眼之效果已被描述为第一流体抑制器14和15和功能。然而,应该理解的是,也可以期望第一流体抑制器14和15具有夹带(entrainment)抑制效应,以抑制当孔眼中的流体由于其粘滞性而被流过测量流动通道的流体夹带走时而产生的旋涡。
(实施例2)
图9的横截面图说明根据本发明的实施例2的超声波流量计之结构。在图9中,那些与图1至图8所示的实施例中相同的部件和功能采用相同的参考编号,并不再做详细说明,不同于上述实施例中的部件将集中说明如下。
参考编号26是一个设置在引入部27中的非均匀流动抑制器,该引入部27是测量流动通道6的一个入口并具有很多细小的通道开口26a。当流入引入部27的流体在其流速分布中具有偏差时,在该流体被送入测量流动通道6之前,该非均匀流动抑制器使流速分布均匀。参考编号28是一个阀门单元,它与弯管部分17的上游端相连接,并具有一个连接口29,它对引入部27是开放的。该阀门单元28设有控制阀门32,它具有一个阀座30和相对于阀座30的阀门部件31。参考编号33是一个设置在阀座30之上游端的流体入口,流体通过该入口流入。参考编号34是一个出口单元,它与弯管部分18的下游端相连接,并具有一个流体出口35,流体通过该出口流出。参考编号36是一个弹簧,用于使阀门部件31偏向于阀座30,参考编号37是一个驱动部件,例如螺线管或电动机,用于驱动阀门部件31打开或关闭该控制阀32。
下一步将说明该超声波流量计的操作。当控制阀32被打开时,被测量的流体通过流体入口33流入,流过阀座30和连接口29,并流入引入部27。流入引入部27的流体具有在流动方向和(或)流速分布中被降低的均匀性,并具有不均匀性(例如波动),这是由于流体入口33的管道结构上游和(或)通过弯曲通道的通路的影响,该弯曲通道通过阀门单元28。然而,当流体流过设置在引入部27中的非均匀流动抑制器26的细小通道开口26a时,在流动方向和(或)流速分布中的不均匀性得到改善,流体的波动被减小,从而提供稳定的流体流入测量流动通道6。如上所述,在测量流动通道6中,由第二流体抑制器16的方向调节部件16a使得通过测量流动通道6之横截面的流体的流速分布变得均匀,流体在方向上被调整,使得流体流入孔眼11和12的可能性更小,而由波动抑制部件16b进一步减小流体波动。然后,流体流入超声波传播通道13。此外,第一流体抑制器14和15的设置位置分别靠近上游和下游孔眼11和12的上游端之上,以便减少流入孔眼11和12的流体。因此,通过在超声波换能器8和9之间沿超声波传播通道13发送和接收超声波,可以实现高精度的流速测量,流体在超声波传播通道13中被进一步稳定,而与上游管道结构无关。此外,通过减小因流体中的波动而导致的超声波衰减,可以进一步增大对于流量测量的上限值。
图10是说明引入部27的平面图。非均匀流动抑制器26的设置位置跨过引入部27的整个区域。参考编号29a表示连接口29的第一孔径位置(由双点划链线表示),其中,控制阀32沿图的左右方向设置(如图9中所示),连接口29被设置在图的左边,参考编号29b表示连接口29的第二孔径位置(由双点划链线表示),其中,控制阀32沿图9的前后方向设置,连接口29被设置在该图的反面。将引入部27的横截面面积Sa设为大于测量流动通道6的横截面面积Sb,该横截面被定义为一个宽度为W、高度为H的矩形(参见图11)(Sa>Sb),从而增大对于非均匀流动抑制器26的安装面积,使得第一孔径位置29a和第二孔径位置29b都可以被设置在引入部27中。因此,可以减少因非均匀流动抑制器26导致的被测量流体的压力之损耗。此外,即使当第一和第二孔径位置29a和29b相对于引入部27、对于阀门单元28的各种配置/结构而有位置偏差时,在流体流入测量流动通道6之前,通过非均匀流动抑制器26的细小通道开口26a,可以使流体分布均匀。因此,对于测量流动通道6的流动通道结构和(或)管道结构上游中的变化,例如阀门单元28,可以确保测量精度,从而可以改善安装中的自由度。
此外,如图11中所示,非均匀流动抑制器26的通道开口26a(每一个具有一个小孔)的孔径尺寸Ta被设置为小于第二流体抑制器16的波动抑制部件16b的通道开口16c(每一个具有一个小孔)之孔径尺寸Tb(Ta<Tb)。因此,非均匀流动抑制器26与第二流体抑制器16相比,其功能更强,能够使流体波动或流速分布中的偏差变得均匀。因此,通过设置非均匀流动抑制器26,可以提供更稳定的流体进入测量流动通道6。因此,即使是当流体从上游端流入所通过的连接口29在位置上有偏差时,通过使流体以更均匀的方式流入测量流动通道6,可以实现加大精度的测量。即使当进入的流体有波动时,可以使流体的波动被减小,使得可以提高测量精度,即使是对于波动的流体。另外,非均匀流动抑制器26的通道开口26a的孔径尺寸被设置为小于第二流体抑制器16的波动抑制部件16b的通道开口16c的孔径尺寸,从而可以减少进入测量流动通道6的外来物质量(例如污物或灰尘),以便确保正常的测量操作并提高可靠性。而且,非均匀流动抑制器26的横截面面积Sa被设置为大于测量流动通道6的横截面面积Sb,因此可以降低被测量流体之压力中的损耗,并且即使是当非均匀流动抑制器26上附着有外来物质时,避免测量指标的退化。
图12说明非均匀流动抑制器26的另一种实施例。在引入部27中设置有第一非均匀流动抑制器26b,在测量流动通道6的下游端上的出口部38中设置有第二非均匀流动抑制器26c。第二非均匀流动抑制器26c包括很多细小通道开口26d,作为第一非均匀流动抑制器26b。采用这一结构,当在测量流动通道6的上游端有流体波动或流体偏差时,第一非均匀流动抑制器26b提供上述之减小波动的效果和抑制非均匀流体的效果。当在测量流动通道6的下游端有流体波动或流体偏差时,第二非均匀流动抑制器26c提供减小波动的效果和抑制非均匀流体的效果。因此,可以提高测量精度和实现稳定的测量,而不必关注测量流动通道6的流动通道的结构和(或)管道结构上游或下游,从而进一步改善在安装测量设备方面的自由度。而且,即使当由波动产生瞬间逆流时,可以实现加大精度的测量,并实现稳定的测量,而与波动源的位置无关。另外,第二非均匀流动抑制器26c的通道开口26d的孔径尺寸可以被设置为小于第二流体抑制器16的通道开口16c的孔径尺寸,及(或)出口部38的横截面面积可被设置为大于测量流动通道6的横截面面积,以便提供上述的效果,如带有引入部27,第二非均匀流动抑制器26c被设置在出口部38。因此,可以改善测量精度、安装中的自由度和(或)该装置阻止外来物质的可靠性。
如上所述,在根据本发明之实施例2的超声波流量计中,非均匀流动抑制器26包括通道开口26a,每一个开口有一个细小的孔,非均匀流动抑制器26设置在引入部27中,引入部27设置在测量流动通道6的上游端。因此,可以提供稳定的流体进入测量流动通道6中,而与在测量流动通道6之上游端上流动通道结构和(或)管道结构无关,以便减少超声波换能器8和9之间的流体扰动。因此,可以进一步增大对该测量的上限值和进一步提高测量精度。而且,可以实现稳定的测量,而与测量流动通道6之上游端上的流动通道结构和(或)管道条件无关,从而改善该测量装置之安装中的自由度。
非均匀流动抑制器26b和26c具有通道开口26a和26d,每一个开口具有一个细小的孔,非均匀流动抑制器26b和26c分别被设置在引入部27和测量流动通道6的上游端上的出口部38中,该引入部27被设置在测量流动通道6的上游端。因此,对于具有伴有逆流的波动流体的被测流体,或是对于在下游端具有波动源的被测流体,都可以提供稳定的流体通过测量流动通道6,以便减小超声波换能器8和9之间的流体扰动。因此,可以进一步增大对于该测量的上限值,并进一步提高测量精度。而且,可以实现稳定的测量,而无关于测量流动通道6的流动通道结构、管道条件、和(或)波动源、上游或下游,从而进一步改善该测量装置的安装中的自由度。
引入部27或出口部38的横截面面积可以被设置为大于测量流动通道6的横截面面积。因此,可以增大非均匀流动抑制器26的安装横截面面积,以便减小因非均匀流动抑制器26导致的压力损耗,从而避免增大压力损耗。另外,可以增大引入部27或出口部38的横截面面积,从而便于该测量装置的连接,不用改变引入部或出口部的形状,即使是当上游端或下游端上的流动通道或管道结构之形状被改变时。因此,可以实现在其装配中具有加大的自由度的一种测量装置。
非均匀流动抑制器26的通道开口的孔径尺寸小于设置在第二流体抑制器16中的通道开口的孔径尺寸。因此,即使当上游或下游连接口的设置有位置偏移时,流体同样能够在测量流动通道内流动,从而为使测量具有增大的测量精度创造条件。而且,即使当被测量的流体有波动时,可以提供流体进入测量流动通道,由于通道开口具有小孔径尺寸,流体中的波动被减小,从而改善了测量精度,即使是对于波动的流体。此外,由于非均匀流动抑制器的通道开口具有小孔径尺寸,可以减小进入该测量装置的污物和(或)灰尘量,从而提高沿测量流动通道的测量操作的可靠性。
在本实施例中已经说明了弯管部17和18在测量流动通道6的宽度W方向被弯曲的情况。然而,应该理解的是,弯管部17和18也可以选择在测量流动通道6的高度H方向或任何其它方向被弯曲,弯管部17和18可以被弯曲不同的角度。
(实施例3)
图13的剖面图说明了根据本发明的实施例3的超声波流量计的结构。在图13中,与图1至12中所示的实施例的部件和功能相同的部件和功能具有相同的参考编号,并不再详细说明,不同于上述实施例的部件将被集中说明如下。
参考编号39是第一流体抑制器,用于减少流入孔眼11的被测流体,而不管被测流体沿测量流动通道6向前流或向后流。第一流体抑制器39包括设置在孔眼11之上游端附近的导流器40a和设置在孔眼11之下游端附近的导流器40b。参考编号41是第二流体抑制器,它被设置在超声波传播通道13的下游端上。该第二流体抑制器41包括一个用于被测流体的流动方向的方向调节部件41a和一个用于使流速分布均匀或减小流体波动的波动抑制部件41b。上述的第一流体抑制器15包括具有超声波传输孔22的孔眼密封部件21,它是为下游孔眼12而设置。该第二流体抑制器16包括方向调节部件16a和波动抑制部件16b,它被设置在超声波传播通道13的上游端。
以下将描述该超声波流量计的测量流动通道中的流体状况及其测量操作。首先,在被测流体向前流动并通过测量流动通道6之情况下,即使非均匀流体或波动流体进入测量流动通道6,由第二流体抑制器16或第一流体抑制器39或15(如实施例1所述)阻止这样的流体流入孔眼11和12。因此,该流体在超声波传播通道13中被稳定,从而可以提高测量精度和(或)对于该测量的上限值。
其次,当波动导致瞬间逆流或改变了流体之方向时,或是由于错误的管道连接导致流体反向流动时,反向的流体可能进入测量流动通道6。即使是这种情况,第一流体抑制器15或39或第二流体抑制器41对这样的反向流动起作用,如同对向前的流体一样,以阻止该流体进入孔眼11和12。因此,即使当波动流体引起瞬间反向流动时,可以减少被测流体流入孔眼,如同对向前的流体一样,并显著地减小超声波换能器8和9之间的流体扰动,从而提高测量精度和对于流量测量的上限值。而且,即使对于反向流动,可以实现增大精度的测量,并提高安装的自由度,从而改善便利性。
以上已描述的一种情况是,第一流体抑制器39包括导流器40a和40b的凸出部,导流器40a和40b沿一个表面设置,在该表面中,孔眼11是开放的,并分别靠近孔眼11的上游端和靠近孔眼11的下游端。然而,应该理解的是,该凸出部可被设置在环绕孔眼11和(或)孔眼12(未示出)之周围的位置。而且,通过采用以上参照图2或图5所述的孔眼密封部件,可以提供第一流体抑制器39,以便即使对于较强的反向流动也可以提高测量精度并提高方便性。
图14第一流体抑制器的另一实施例。以下说明的情况是第一流体抑制器是为下游孔眼12而设置的。参考编号23是一个导流器,它设置于靠近孔眼12之上游端的位置上,其中包括孔眼密封部件21,参考编号42是一个导流器,它设置在靠近孔眼12之下游端的位置上。每一个导流器23和42是以板或叶片之结构而被设置并调节流体流动方向,使得被测流体不流入孔眼12。因此,在这个实施例中,第一流体抑制器包括孔眼密封部件21和导流器23和42,它们分别被设置在孔眼11和(或)孔眼12的上游或下游。
在此,对于向前流动并通过测量流动通道6的流体,由设置在孔眼12之上游端上的导流器23调节其流动方向,以便减少流入孔眼12的流体量。对于反向流动并通过测量流动通道6的流体,由设置在孔眼12之下游端上的导流器42调节其流动方向,以便减少流入孔眼12的流体量。如果还有流体流入孔眼12,即使是少量的,由孔眼密封部件21阻止其流入孔眼12,以便阻止在孔眼12中的流体扰动(例如旋涡),并因此稳定超声波传播通道13中的流体,对于向前流动的流体或反向流动的流体都是如此,从而进一步改善测量精度。
由于通过导流器23和42可以减少流到孔眼密封部件21的流体量,即使当被测流体中包含有细小颗粒外来物质(例如灰尘)时,可以减少外来物质在孔眼密封部件21上的附着。因此,对于孔眼密封部件21之规格的选择主要是考虑到超声波传送能力,从而改善该选择或其中设置的自由度。而且,可以进一步提高超声波传送能力,以提高灵敏度,从而减少功率损耗或提高精度。孔眼密封部件21和导流器23和42也可以是为上游孔眼11而设置,如为下游孔眼12一样,以便对于孔眼11提供相似的效果。而且,可以进一步改善对于反向流体的测量精度,因此可以提高超声波的传送能力,以便提高灵敏度并减少功率消耗或提高测量精度。
如上所述,采用根据本发明之实施例3的超声波流量计,即使当流体有波动并引起瞬间反向流动时,可以减少流入孔眼的被测流体,如在向前的流体中之情况,并显著地减小超声波换能器之间流体扰动,从而提高测量精度和对流量测量的上限值。而且,即使对于反向流体,可以实现更高精度的测量,并提高安装的自由度,从而改善方便性。
导流器被设置在孔眼的上游端和下游端。因此,对于沿测量流动通道的正向流体和反向流体,都可以进一步改善测量精度,抑制流体流入孔眼,并阻止外来物质进入该孔眼。因此,即使对于具有反向流体的波动流体,可以长时间维持稳定的测量精度,从而改善耐用性和可靠性。
在本实施例中说明了弯管部17和18在测量流动通道6之宽度W方向上被弯曲的情况。然而,应该理解的是,弯管部17和18可以选择在测量流动通道6之高度H方向或任何其它方向上被弯曲,弯管部17和18可以不同角度而被弯曲。
(实施例4)
图15的剖视图说明了根据本发明之实施例4的超声波流量计的结构。在图15中,与图1至14中所示的实施例的部件和功能相同的部件和功能具有相同的参考编号,并不再详细说明,不同于上述实施例的部件将被集中说明如下。
参考编号43是设置在超声波传播通道13之上游端上的传播通道流动调节器。传播通道流动调节器43被设置在基本上平行于超声波传播通道13之位置并与超声波传播通道13稍有间隔,以便不会对超声波的传播带来干扰,超声波传播通道13延伸而斜穿测量流动通道6。
图16说明了传播通道流动调节器43,可以看到是沿流体之方向并通过测量流动通道6。传播通道流动调节器43被设置在测量流动通道6中,它具有圆形横截面。参考编号13a是一个超声波传播通道,如在测量流动通道6的剖面图中所示,该图是沿垂直于图15之图面的方向截取的(测量流动通道6的高度方向)。传播通道流动调节器43沿高度方向的宽度大于超声波传播通道13a沿着以双点划链线表示的高度方向之宽度,并设有很多被暴露于流体的调节部件44。
以下将描述该超声波流量计的操作。被测流体进入测量流动通道6并带有由于在流体通道中横截面面积的增减、或是由于通过弯管部17而导致的非均匀流体或流体波动,这种增减是由设置在测量流动通道6之上游端上的控制阀(未示出)提供的。然后,由传播通道流动调节器43的调节部件44促进(facilitate)了流体的扰动,传播通道流动调节器43直接设置于超声波传播通道13的上游,以延伸所有的路线,从上游超声波换能器8之附近到下游超声波换能器9附近,因此,在通过超声波传播通道13的整个区域同样促进了流体扰动。在这一方式,在超声波传播通道13中从上游端到下游端,流体状况中的波动被减小,以便促进在超声波传播通道13中对平均流速的测量。特别是当流速较小(当流量较小时)并因而流体流入测量流动通道6作为层流时,超声波传播通道13中的传播通道流动调节器43促进了流体扰动。因此,这种流体扰动和当流速较大时(当流量较大时)在超声波传播通道13中导致的流体扰动之间的差别是小的,流体流入测量流动通道6作为扰动的流体。因此,可以在从小流量到大流量的宽流量范围上、稳定地扰动在超声波传播通道13中的流体。而且,传播通道流动调节器43的设置位置是斜穿测量流动通道6,因此,与当传播通道流动调节器43被设置在延伸并垂直于测量流动通道6的位置时所获得的长度相比,在测量流动通道6内的传播通道流动调节器43可以具有更大的长度。因此,可以提供具有较大孔径比的传播通道流动调节器43,所实现的测量装置具有减小的压力损耗。
采用这种结构的测量流动通道6,如上所述,根据超声波传播时间T1和T2而得到流速V,由测量流动通道6的横截面面积S和修正系数K得到流量。修正系数K基本上是在过渡区中变化,其中流量区的过渡是层流区到扰流区,如图17所示,没有传播通道流动调节器43沿超声波传播通道13延伸。因此,当在所测量的流量中发生ΔQm的误差时,例如,修正系数K大体上改变ΔK1,从而导致增大流量测量误差。这一误差的发生可能是由于雷诺数(Reynolds number)的变化导致的流体状况的波动,雷诺数的变化是由于流动粘滞度的改变,而这种改变是由于流体温度的变化或流体的成分比率的变化。特别是在测量流体(例如城市煤气或液化石油气LPG)的流量、而流体中因季节或地区的变化而导致气体成分的变化时,需要考虑这一误差。
然而,当传播通道流动调节器43沿超声波传播通道13而设置时,如在本实施例中一样,可以减小在流速较小的层流区中的修正系数K和扰流区中的修正系数之间的差,如图18所示,因为在超声波传播通道13中从上游端到下游端同样可以扰动流体。而且,修正系数中的变化在过渡区是较小的,在过渡区中,流体从层流过渡到扰流(disturbed flow)。因此,修正系数是平均的。所以,即使当在所测量的流量中出现了误差ΔQm时,修正系数的变化可以是足够小的,例如ΔK2(K2<K1),从而便于提高测量精度。这是当温度发生变化或流体的成分有变化时的优点。因此,可以进一步提高测量精度,特别是当测量燃气(城市煤气或液化石油气)的流量时,这种成分的变化和温度的变化是可能发生的。
在以上所说明的例子中,传播通道流动调节器43从入口端43a到出口端43b的长度基本上是不变的并跨过测量流动通道6的宽度W方向。然而,如在图19所示的传播通道流动调节器43的另一实施例中,只有更接近超声波传播通道13的出口端43b可以沿超声波传播通道13延伸,而入口端43a不沿超声波传播通道13延伸。在超声波传播通道13中从上游端到下游端同样也将促进扰动。因此,应该理解的是,从入口端43a到出口端43b的长度可以根据沿宽度方向的位置而变化。而且,虽然传播通道流动调节器43只是在对应于超声波传播通道13的测量流动通道6的圆形横截面之一部分上延伸,应该理解的是,传播通道流动调节器43可以选择其设置是通过该横截面的高度H方向延伸,以促进修正系数K的稳定性。而且,虽然传播通道流动调节器43的出口端43b的设置基本上平行于本实施例中的超声波传播通道13而延伸,应该理解的是,传播通道流动调节器43设置为任何其它的布局,只要它被设置在相对于测量流动通道6的宽度W方向之大致相同的位置,从超声波传播通道13的上游端到下游端,传播通道流动调节器43沿出口端43b可设有一些凹陷部或凸出部。
图20说明了超声波流量计的结构,其中说明了传播通道流动调节器的另一实施例。在图20中,与图1至19中所示的实施例的部件和功能相同的部件和功能具有相同的参考编号,并不再详细说明,不同于上述实施例的部件将被集中说明如下。
参考编号45是一个传播通道流动调节器,它被设置在超声波传播通道13的下游端。该下游传播通道流动调节器45的设置基本上平行于超声波传播通道13并与超声波传播通道13稍有间隔,以便不对超声波的传播产生干扰,超声波传播通道13延伸并斜穿测量流动通道6。参考编号46是一个调节部件,它被设置在下游传播通道流动调节器45中并受流体的影响。因此,超声波传播通道13被上游传播通道流动调节器43和下游传播通道流动调节器45环绕。
以下将说明该超声波流量计的操作。通过传播通道流动调节器43的调节部件44在穿过超声波传播通道13中的宽度W方向均衡地促进流体扰动,传播通道流动调节器43直接设置在穿过测量流动通道6之宽度W方向的超声波传播通道13的上游。而且,该下游传播通道流动调节器45与上游传播通道流动调节器43组合在一起环绕超声波传播通道13,以便对超声波传播通道13中的流体提供一个反向压力。因此,可以进一步使流体状况均匀及稳定,并进一步稳定修正系数。而且,由于下游管道结构的变化、或由于被测流体被使用的状况,会导致波动或类似情况并对超声波传播通道13中的流体状况产生影响,而这些影响可以被减小,所以可以实现稳定的流量测量。即使当发生反向流动,仍可能维持稳定的修正系数并改善测量精度。
图21说明传播通道流动调节器47的立体图,传播通道流动调节器47是通过组合上游传播通道流动调节器43和下游传播通道流动调节器45而得到的。参考编号48是一个连接部件,用于将上游传播通道流动调节器43和下游传播通道流动调节器45连接并组合起来,参考编号49是一个超声波传送窗口,其中有一个开放的孔,以便不妨碍超声波传送。
传播通道流动调节器47是由连接部件48连接并结合在一起,因此可以避免上游调节部件44和下游调节部件46彼此相对的位置偏移。这样就可以通过减小超声波传播通道13中流体状况的变化来稳定流体,从而使测量的波动很小。而且,通过连接部件48可以加固传播通道流动调节器47之结构,从而可以减小每一个传播通道流动调节器43和45的厚度或尺寸,包括调节部件44和45。因此,可以使超声波传播通道13中的流体状况变得均匀,而无关于穿过测量流动通道6的横截面的位置。而且,通过减小调节部件44和46的厚度或尺寸,可以增大被测流体所流过的孔径面积,从而可以减小测量流动通道中的压力损耗。而且,由于采用连接部件48加固了传播通道流动调节器43和45,可以长时间使用而不会变形,从而提高了耐用性和可靠性。虽然以上已经说明的情况是,连接部件48的设置是在传播通道流动调节器47的拐角延伸,应该理解的是,连接部件48可被设置在任何其它适于加固的位置,只要它不妨碍超声波的传播。
图22的剖面图说明了根据实施例4的测量流动通道6沿线A—A的另一横截面。参考编号50是界定测量流动通道6的流动通道壁,它具有矩形横截面,其宽度为W,高度为H。调节部件44和46的设置是穿过该矩形横截面。
以下将描述关于矩形横截面的测量操作。超声波传播通道13通过超声波传播通道13的宽度W方向延伸,因此相对于矩形横截面的高度H方向,可以加大测量面积的比率。沿高度H方向的测量面积的比率在穿过宽度W方向从上游端到下游端可以是恒定不变的。因此,可以实现对超声波传播通道13中流体之平均流速的高精度测量。对于在超声波传播通道13中的流体,在一个宽流量范围内从上游端到下游端,由传播通道流动调节器43和45和调节部件44和46均衡地促进流体扰动,从而可以高精度测量平均流速。因此,不必采用增大矩形横截面的长宽比(W/H)来提高测量精度之方法,以便增大其中的平滑性(flatness),以在测量流动通道6中产生稳定的二维流动。共同界定横截面之高度H的上表面和下表面反射超声波,为了减小所反射的超声波之影响,可以确定高度H。因此,可以根据流动通道的高度H自由地设置横截面的规格,以便减小反射波的干扰,从而有利于增大超声波发送或接收的灵敏度。而且,可以通过减小修正系数中的变化来提高测量精度。
此外,可以采用平滑性较小且长宽比小于2的矩形横截面,以便减小沿横截面接触被测流体的长度,从而减少该测量流动通道中的压力损耗。应该理解的是,这里所采用的矩形横截面也包括大体上的矩形,其中在该矩形横截面的每一个角中有一个圆形部分(拐角R),以便确保制造设备(例如当流动通道壁7是通过压铸法形成时所采用的金属模)的耐用性。
图23说明在本实施例中传播通道流动调节器43或45与超声波传播通道13之间的距离。在上游传播通道流动调节器43与超声波传播通道13之间的距离是Gu,在下游传播通道流动调节器45与超声波传播通道13之间的距离是Gd。
在传播通道流动调节器43或45与超声波传播通道13之间的距离被优化,以便对于各种被测流体在一个宽流量范围内稳定对于测量值的修正系数,从而在超声波传播通道13中从上游端到下游端均衡地扰动流体分布。例如,当雷诺数较小时,可以减小距离Gu和(或)Gd,当雷诺数较大时,可以增大距离Gu和(或)Gd。雷诺数与流动粘滞度的倒数成正比。因此,对于粘滞度较小的流体,增大距离Gu和(或)Gd,对于粘滞度较大的流体,减小距离Gu和(或)Gd。例如,丙烷气的流动粘滞度为4.5mm2/s(300°K),甲烷气的流动粘滞度为17.1mm2/s(300°K)。因此,对于丙烷气要增大距离Gu和(或)Gd,对于甲烷气要减小距离Gu和(或)Gd。在这种情况下,传播通道流动调节器43或45应该被设置在离超声波传播通道13的距离尽可能大的位置,以便减少通过超声波传播通道13而传播并由传播通道流动调节器43或45反射的超声波之量,该超声波影响流速测量。然而,为了从超声波传播通道13的上游端到下游端均衡地扰动该流体的流动,应该优化该距离。应该理解的是,距离Gu和距离Gd不必具有相同的值,而是可以被设为不同的值,根据传播通道流动调节器43的调节部件44的形状和(或)孔径尺寸、与传播通道流动调节器45的调节部件46形状和(或)孔径尺寸之间的差别,改变距离Gu和距离Gd之间的关系。应该理解的是,当调节部件44和46的形状和(或)孔径尺寸根据流体的类型而被改变时,该距离和粘滞度之间的关系可以是不同于以上之所述。
因此,只通过改变传播通道流动调节器、而不需改变测量流动通道6的形状和尺寸,就可以对不同的流体实现高精度测量,从而提高对用户的方便性。而且,通过采用各种用于不同情况的通用部件,可以提供一种低成本的测量设备。
图24的立体图说明了传播通道流动调节器的另一个实施例。参考编号51是传播通道流动调节器43的调节部件。调节部件51是由一个网状部件构成,例如线网或是在流动方向具有较小厚度的织物。也可以在传播通道流动调节器45中设置如调节部件51的类似部件(未示出)。应该理解的是,可以单独采用网状部件构成传播通道流动调节器,不需采用传播通道流动调节器的外框架44a。
由于调节部件51是由在流动方向具有较小厚度的网状部件构成,可以减小传播通道流动调节器43或45沿流动方向的尺寸,以便使它可被安装在一个小空间中,从而减小测量流动通道的尺寸。对于覆盖超声波传播通道13的网状部件,采用不易反射超声波的材料,并结合采用具有大孔径比的网状部件,所具有的优点是减少了由传播通道流动调节器43或45的超声波反射,从而减小了反射波对测量精度的干扰之影响,因而实现高精度测量。
图25的立体图说明了传播通道流动调节器的另一实施例。参考编号52是传播通道流动调节器43的调节部件。调节部件52包括网格部件53,它具有很多沿流动方向延伸的壁面52a。在传播通道流动调节器45(未示出)中也可以设置如调节部件52的类似部件。
由于壁面52a沿流动方向延伸,可以调节流过传播通道流动调节器43的流体之方向。特别是通过减少流入孔眼11和12的流体,可以减少涡流的产生,孔眼11和12直接设置在超声波换能器8和9之前,从而可以减少因涡流而导致超声波的衰减,从而为使测量达到更大的流量范围创造条件。而且,可以将每一壁面52a朝向一个方向,使得在超声波传播通道13中的流速分布更加均衡,所以可以进一步均衡在超声波传播通道13中的流速分布,从而改善测量精度。
图26是传播通道流动调节器的另一实施例在沿流动方向观察时的前视图。参考编号54表示设置在传播通道流动调节器43中的调节部件,其中,根据沿测量流动通道6的横切面的位置,可以改变两个相邻调节部件之间的间距,以便改变每一通孔55的横截面面积。这里,通孔55a的位置是沿传播通道流动调节器43之横截面之外围,它的横截面面积可被设置为大于传播通道流动调节器43的中间部分内的通孔55b的横截面面积。特别是,通孔55的横截面面积朝着传播通道流动调节器43的相应端之方向并沿宽度W方向或高度H方向增大。在传播通道流动调节器45(未示出)中也可以设置如调节部件54的类似部件。
以下将对操作进行描述。当没有设置传播通道流动调节器43时,难以获得均匀的流速分布,因为沿测量流动通道6的壁面流动的流体的流速因流体的粘滞性而降低,而流过测量流动通道6之中部的流体具有较大的流速。然而,在这一例子中,设置有传播通道流动调节器43,同时通孔55的横截面面积在测量流动通道6的横截面之中部被减小,以致于减小了流速。通孔55的横截面面积在沿外围被增大,使得其通道阻力小于中部的阻力,从而抑制了流速的降低。因此,在超声波传播通道13中的流速分布是均匀的。因此,在斜穿测量流动通道6而延伸的超声波传播通道13中,流速从上游端到下游端是均匀的,所以,在超声波传播通道13中所测量的平均流速值能够与穿过测量流动通道6的横截面所测量的平均流速值在宽流量范围内从层流范围到扰流范围都充分地一致,从而稳定流量系数的改变,并提高测量精度。
如上所述,在根据实施例4的超声波流量计中,传播通道流动调节器43被直接设置在超声波传播通道13的上游,并沿超声波传播通道13的整个区域从其上游端到下游端延伸,从而促进了穿过超声波传播通道13之整个区域的流体的扰动(disturbance)。因此,因流量变化引起的修正系数之特性在整个流量测量范围可以被稳定,从而改善测量精度。即使当流体的物理特性值改变时,可以维持测量精度,从而提高了实用性和方便性。而且,通过传播通道流动调节器43穿过测量流动通道6的斜向设置,可以增大其孔径比,从而降低测量装置的压力损耗。而且,通过传播通道流动调节器43穿过测量流动通道6的斜向设置,可以确保调节部件44的设置位置可穿过较大面积。因此,可以不增大压力损耗,以减小相邻调节部件44之间的间距,并增大调节部件44的数量,从而增强流动扰动促进效应。
因此,由上游和下游传播通道流动调节器43和45环绕超声波传播通道13,从而可以使得从超声波传播通道13之上游端到下游端的扰动状况变得均匀,从而进一步稳定修正系数和进一步提高测量精度。而且,通过下游传播通道流动调节器45减小沿测量流动通道6的流动状况对下游端的影响。因此,可以实现稳定的测量,而无关于测量流动通道6之下游端的管道状况,从而改善该测量装置的安装中的自由度。而且,对于沿测量流动通道向前的流动和反向的流动,都获得相同的效果,所以,即使对于波动流或反向流,都可以稳定修正系数,从而提高测量精度。
上游和下游传播通道流动调节器43和45被结合起来。因此,可以阻止并稳定在传播通道流动调节器之间距离中的偏移、或上游调节部件与下游调节部件之间的位置偏移,从而使得测量装置的误差降低。而且,连接部件加固了传播通道流动调节器,因而可以减小调节部件的尺寸和厚度。因此,可以使超声波传播通道中的流动状况变得均匀、或减小测量流动通道中的压力损耗。
通过只改变传播通道流动调节器离开超声波传播通道13的距离,可以普遍地采用测量流动通道,而与被测流体的类型无关,从而改善方便性。而且,可以维持稳定的测量精度,而与被测流体的类型无关。此外,由于可以普遍地采用测量流动通道,可以降低成本。
在一个实施例中,调节部件可以被设置为网状部件的结构。因此,可以减小传播通道流动调节器相对于流动方向的安装空间,从而减小测量流动通道的尺寸。
在一个实施例中,调节部件可以被设置为网格部件的结构,其壁面沿流动方向延伸,以调节流动方向,从而进一步使得在超声波传播通道中的流速分布变得均匀,并因此提高测量精度。
根据沿测量流动通道之横切面的位置,可以改变两个相邻调节部件之间的间距。因此,根据沿测量流动通道之横切面的位置,可以优化每一个调节部件的尺寸,同时维持调节部件沿流动方向之减小的长度。因此,可以进一步使超声波传播通道中的流速分布变得均匀,并减小调节部件沿流动方向的长度,由于流速分布的均匀,从而减小压力损耗,同时提高了测量精度。
通过对测量流动通道采用矩形横截面,可以增大相对于总测量横截面面积的测量面积,从而为在相同情况下从超声波传播通道的上游端到下游端的测量创造条件,因而便于对流体的平均流速进行高精度测量。
通过对沿超声波传播通道而设置的传播通道流动调节器和对测量流动通道采用矩形横截面,没有必要增大该横截面的长宽比以产生二维流动,可以根据流动通道的高度来自由地设置横截面的规格,以便减小反射波的干扰,从而为增大超声波的传送/接收的灵敏度创造条件。而且,通过调整测量横截面,可以减少测量流动通道中的压力之损耗,以便减小沿该测量横截面接触流体的长度,而不需使测量横截面过于光滑。
在本实施例中已经描述的情况是,弯管部17和18是在测量流动通道6的宽度W方向被弯曲的。然而,应该理解的是,也可以选择在测量流动通道6的高度H方向或任何其它方向上弯曲弯管部17和18,弯管部17和18可以被弯曲成不同的角度。
(实施例5)
图27为示出根据本发明实施例5的超声波流量计的结构的横截面图。在图27中,与在图1-26中所示的实施例中相同的元件和功能部件具有相同的参考编号,以下将不再详细描述,在以下的描述中,将着重于详细地描述不同于上述实施例中的部件。
参考编号56为一流体抑制器(influent suppressor),用于减少流入孔眼11和22的被测流体流入量。该流体抑制器56被设置于上述传播通道流动调节器43的下游端(downstream side),所述传播通道流动调节器43被设置于超声波传播通道13的上游端。该流体抑制器56包括由孔眼密封部件21形成的第一流体抑制器57,该孔眼密封部件21具有很多能够从中传送超声波的超声波传输孔22,如图28的放大示意图所示。孔眼密封部件21延伸穿过超声波传播通道13,并与孔眼11和12的测量流动通道表面6a共面,以便降低流入孔眼11和12的流体的量。
图29示出该流体抑制器的另一实施例。第一流体抑制器58包括导流器58a和引导面58b。所设置的导流器58a从上游孔眼11的最接近的上游端上的流动通道壁7突出。引导面58b具有一平滑上升的高度,位于导流器58a的上游端。第一流体抑制器58使靠近测量流动通道表面6a流过的流体偏离壁面,以使流体不进入孔眼11。当传播通道流动调节器和超声波传播通道间的距离较小时,可将导流器58a、引导面58b和传播通道流动调节器43整体地形成在一起,以便提供第二流体抑制器。
在图30中,参考编号60为通过向流体抑制部件60b提供导流器60a来获得一第二流体抑制器,所述导流器位于接近测量流动通道表面6a的传播通道流动调节器59的侧面。由此,传播通道流动调节器59和第二流体抑制器60被结合在一起。
以下将描述被测流体流经超声波流量计的状态。首先,被测流体带有非均匀的流体或流体波动进入测量流动通道6,该非均匀流体或波动是由通过设置在测量流动通道6之上游端的控制阀(未示出)所提供的流动通道横截面面积的上升/下降引起的,和/或是由于通过弯管部17所引起的。接着,由紧靠该超声波传播通道13所设置的传播通道流动调节器43的调节部件44促进(facilitate)该流体的扰动。传播通道流动调节器43被设置在紧靠超声波传播通道13的上游,以从上游超声波换能器8的附近向下游超声波换能器9的附近全方向地延伸,由此易于使该流体扰动在跨越超声波传播通道13的整个面积上变得均衡。这样,流体状况在从上游端到下游端的超声波传播通道13上的变化被降低,以利于在超声波传播通道13上对平均流动速度的测量。特别是,当该流动速度较小(流量小)时,且因此该流体作为层流而流入测量流动通道6时,由传播通道流动调节器43来促进超声波传播通道13中的该流体扰动。于是,当该流动速度较大(流量大)时,且因此该流体作为扰流而流入测量流动通道6时,该流体扰动和造成超声波传播通道13的流体扰动的差较小。由此,有可能在从一较小流量到较大流量的较宽的范围内稳定地扰动超声波传播通道13中的流体。此外,传播通道流动调节器43被设置为斜向延伸穿过测量流动通道6。由此,该传播通道流调节器43在测量流动通道6内所具有的长度可长于当传播通道流调节器43被设置为沿测量流动通道6正交地延伸时所获得的长度。于是,可以向传播通道流动调节器43提供一大的孔径比,并实现压力损失降低的测量装置。
以下将描述孔眼附近的流动。首先,当仅将为下游孔眼12而设置的第一流体抑制器57或58用作流体抑制器时,可有效地降低流入下游孔眼的流体,因为下游孔眼相对于该流体成锐角的方向延伸,所以在该孔眼周围易于出现强漩涡,以有效地降低超声波换能器之间的流体扰动,由此提高了对流量测量的上限值。特别是,当孔眼密封部件21为第一流体抑制器57时,有可能进一步升高该抑流效果并降低孔眼中的流量。此外,与该孔眼密封部件21被提供用于两孔眼11和12的情况相比,可降低超声波衰减的量,由此可以降低对超声波换能器的驱动输入并降低该功率消耗。
接着,当该流体抑制器是为上游和下游孔眼11和12设置的第一流体抑制器时,孔眼中的扰动可被有效地降低,该扰动占所述超声波传播通道中的总流体扰动的主要部分,由此可能提高测量精度和对流量测量的上限值。特别是,当孔眼密封部件21为第一流体抑制器57时,可有效地降低对于在测量流动通道中顺流或逆流的流体扰动。可以理解,当为上游孔眼11提供包括导流器58a的第一流体抑制器58并向下游孔眼12提供包括孔眼密封部件21的第一流体抑制器57时,有可能进一步降低超声波换能器间的流体扰动,并降低该超声波衰减的量,由此降低用于该超声波换能器的功率消耗。
此外,当流体抑制器为通过向传播通道流动调节器提供流体抑制部件而获得的第二流体抑制器时,有可能抑制流入该孔眼的流量。此外,通过将传播通道流动调节器与流体抑制器结合,可降低对流入该孔眼的流体流动之抑制中的改变,从而提高可靠性。此外,可提供小型超声波传播通道,由此降低该测量流动通道的尺寸。
于是,该超声波被沿超声波传播通道13在超声波换能器8和9之间发射和接收,在超声波传播通道13中,流体被稳定。于是,有可能实现高精度的流动速度的测量,并降低由于流量的变化而造成的超声波的衰减,由此提高对流量测量的上限值。如果没有第一流体抑制器57或58或第二流体抑制器60,则在该测量流动通道6中的强流动可能会流入孔眼12,由此会产生强漩涡,因为该下游孔眼12沿与测量流动通道6成锐角的方向延伸,因此,由于在该流体的一部分中的流速的波动可能会引起对流速测量精度的下降,且/或对测量的上限值可能会被由一漩涡而引起的超声波衰减而降低,同样对于上游孔眼11,在没有第一流体抑制器57或58或第二流体抑制器60的情况下,会出现流体的流入。然而,该流量很小,因为孔眼11沿与测量流动通道6成锐角的方向延伸,这里所述漩涡的强度小于在下游孔径12的周围所产生的漩涡的强度。可以理解,有可能通过提供用于上游孔眼11的第一流体抑制器57或58或第二流体抑制器来进一步地稳定流体。
以下将描述基于超声传播时间T1和T2获得流量时所使用的修正系数K。传播通道流动调节器43被设置在紧靠超声波传播通道13的上游的位置,并沿该超声波传播通道13的整个区域从上游端延伸到其下游端,由此有利于横穿该超声波传播通道13的整个区域的流体的扰动。由此,该修正系数K被稳定,且对于上述参照图17和18的情况中的流速的改变来说,其变化有所下降。因为由于流量的变化引起的修正系数之特性被稳定,所以即使在流体的物理特性值变化时,仍保持其测量精度,由此提高了实用性和便利性。此外,通过明显地降低超声波换能器间的流体的扰动,可进一步提高横穿整个测量范围的超声波接收水平,由此进一步提高了测量精度。此外,可降低流入孔眼11和12的流体的流量,以便显著地降低超声波换能器间的流体扰动,由此增加对流量测量的上限值。
当孔眼密封部件为相对于水平方向倾斜的网状结构的网状部件时,或当导流器被设置在该孔眼的上游端和下游端时,可稳定修正系数并提高测量的精确度。此外,还可提供在以上实施例1中所述的效果,由此进一步提高了可靠性。
图31示出了流体抑制器的另一实施例。其包括具有孔眼密封部件21的第一流体抑制器57,该孔眼密封部件21具有超声波传输孔22,还包括具有流体抑制部件62a的第二流体抑制器62,该流体抑制部件62a被设置在测量流动通道表面6a附近的传播通道流动调节器61的侧面。于是,可进一步提高抑制被测量流体的流入该孔眼的效果,从而进一步提高测量的精确度。此外,有可能通过提供导流器来降低外来物质的附着,比如粘着到该孔眼密封部件的灰尘。于是,可主要考虑超声波透射率来选择该孔眼密封部件,而不用过多地考虑孔眼密封部件的堵塞,从而增加该选择的自由度。此外,有可能进一步增加超声透射率,以降低功率消耗,或进一步提高灵敏度,以便实现具有所期望的测量精度的装置。此外,该第二流体抑制器62可被处理为一适用于被测流体的流量或物理特性值的形状,作为传播通道流动调节器61的一部分,由此,易于其普遍地使用该测量流动通道6本身。此外,由第一和第二抑制器的倍增效果可降低该孔眼中的扰动,且可通过传播通道流动调节器和流体抑制器的结合来降低对流体流入该孔眼的抑制的变化。由此,可提高测量的精确度和可靠性。此外,可提供小型化的超声波传播通道,以降低该测量流动通道的尺寸。
图32和33示出传播通道流动调节器和流体抑制器的另一实施例。超声波传播通道13由上游传播通道流动调节器43和下游传播通道流动调节器45所围绕,且还提供有流体抑制器56。如图33所示,传播通道流动调节器43和45通过连接部件48被连接并结合在一起。此外,流体抑制器56被固定于超声波传送窗口49上。流体抑制器56为网状,如覆盖于孔眼11和12的孔眼密封部件21。
在该结构中,由于由下游传播通道流动调节器45所施加的反向压力,在该超声波传播通道13中的流量被均衡和稳定。此外,可通过降低来自波动等因素对超声波传播中的流体状况的影响来实现稳定的流量测量,所述波动等因素是由于下游管道结构的变化或被测流体的使用情况而产生的。
此外,流体抑制器56被提供用于孔眼11和12,于是可提高对流量测量的上限值。
此外,传播通道流动调节器43和45被连接在一起,其又进一步地与作为流体抑制器56的孔眼密封部件21结合。由此,确定了位置关系,如这些元件之间的距离,藉此可降低在该超声波传播通道13中的流体状况的变化,并可实现几乎没有变化的稳定的测量。此外,因为不仅传播通道流动调节器43和45被结合在一起,而且孔眼密封部件21也与该传播通道流动调节器43和45结合在一起,因此,有可能进一步提高传播通道流动调节器的机械强度。由此,可在一段长的使用时间内防止变形,由此,改善了耐用性和可靠性。
尽管传播通道流动调节器43被安装的位置沿测量流动通道6的宽度W方向与超声波传播通道13基本平行,该传播通道流动调节器43还可能被安装于测量流量调节器43之内,该测量流量调节器43在沿如上述参考图16的高度H方向具有圆形的横截面。通过将传播通道流体调节器43安装于测量流动通道6中,可期望获得与上述实施例相同的效果,所述测量流动通道具有矩形的横截面,如上参见图22所述。在所述孔眼被形成为具有孔形,或者所述非均匀流动抑制器被设置于测量流动通道的上游端上的引入部或该测量流动通道的下游端上的出口部的情况下,类似地,可期望获得上述实施例中所述的效果,其中,所述孔形有一边基本是沿与流体穿过测量流动通道的方向垂直的方向。
如上所述,在根据实施例5的超声波流量计中,传播通道流动调节器43被提供为紧靠超声波传播通道13的上游,以沿着超声波传播通道13的整个区域从上游端向其下游端延伸,由此,促进了横穿超声波传播通道13的整个区域的流体的扰动。于是,在整个流速测量范围内可稳定由于流量变化而引起的修正系数的特性,从而防止由修正系数而引起的误差的升高并提高测量精确度。此外,可提供流体抑制器以降低流入孔眼的流体,由此大大地降低超声波传播通道中的流体扰动。于是,可提高超声波接收水平并提高对流量测量的上限值。
该流体抑制器可以是被提供用于下游孔眼的第一流体抑制器。因此,该流体抑制器用于下游孔眼,在该孔眼周围易于发生强旋涡,因为下游孔眼在相对于流体成锐角的方向延伸。因此可以降低流入该孔眼的流体,以有效地减低超声波换能器之间的流动扰动,从而提高对流量测量的上限值。
该流体抑制器可以是为上游孔眼和下游孔眼设置的第一流体抑制器。因此,孔眼中的扰动占超声波传播通道中总流动扰动至主要部分,对于沿测量流动通道中的顺流或逆流,这种扰动可被有效地降低,从而可以提高测量精度和对流量测量的上限值。
该流体抑制器可以是通过向传播通道流动调节器提供一流体抑制部件而获得的第二流体抑制器。于是,通过将传播通道流动调节器和流体抑制器结合,可降低对流入到孔眼的流体的抑制的变化,由此提高可靠性并可考虑提供小型超声波传播通道。由此,可降低该测量流动通道的尺寸。
第一流体抑制器可以为具有至少一个超声波传输孔的孔眼密封部件。由此,通过使用该孔眼密封部件覆盖该孔眼,可进一步增进对流入该孔眼的流量的抑制效果,由此降低并稳定该孔眼中的流体。此外,尽管由该超声波传输孔可确保超声波的传播,该孔眼密封部件仅被提供用于下游孔眼,在该情况下,可进一步降低该超声波的衰减,由此降低用于超声波换能器的驱动输入和功耗。
第一流体抑制器可包括具有超声波传输孔的孔眼密封部件和设置在该孔眼附近的导流器。于是,可进一步增进对流入该孔眼的被测流体的抑制效果,由此提高测量精确度。此外,可通过提供导流器以降低外来物质的附着,如孔眼密封部件上的灰尘。于是,可主要考虑超声波透射性来选择该孔眼密封部件,而不用过多地考虑孔眼密封部件的堵塞,此而增加了选择的自由度。此外,有可能进一步增加超声透射率,以降低功率消耗,或进一步提高灵敏度,以便实现具有所期望的测量精度的装置。
流体抑制器可包括提供用于该孔眼的第一流体抑制器和通过向传播通道流动调节器提供一流体抑制部件而获得的第二流体抑制器。于是,可通过第一和第二抑制器的倍增效果来降低该孔眼中的扰动,且可通过传播通道流动调节器和流体抑制器的结合来降低对流体流入该孔眼的抑制的变化。因此,可提高测量的精确度和可靠性。此外,可提供小型超声波传播通道,由此降低该测量流动通道的尺寸。
本实施例示出了弯管部17和18沿测量流动通道6的宽度W方向弯曲的情况。此外,可以理解,弯管部17和18也可以选择沿测量流动通道6的高度H方向或其它任何方向延伸,且弯管部部分17和18可以以不同的角度弯曲。
(实施例6)
图34为一示出根据本发明的实施例6的超声波流量计的流动通道的横截面图。在图34中,与在图1-33中所示的实施例中相同的元件和功能部件具有相同的参考编号,以下将不再详细描述,在以下的描述中,将着重于详细地描述不同于上述实施例中的部件。
参考编号63表示设置在孔眼11和12的每一个的隔离通道。该隔离通道63通过沿超声波传播方向分隔孔眼11和12的每一个来获得。如图35所示,该隔离通道63具有一沿超声波换能器9的振动面64延伸的入口表面65和沿测量流动通道表面6a延伸的出口表面66。隔离通道63的垂直部分的一侧67的尺寸大于用于发射/接收的超声波的半波长λ/2,且不是该超声波半波长的整数倍。在孔眼12的隔离通道63和超声波换能器9的振动面之间的距离68为该超声波的半波长λ/2的整数倍。隔离通道63的每个隔断的厚度短于该超声波的波长λ。尽管上述描述针对下游超声波换能器9,其同样适用于上游超声波换能器8。
如图36所示,沿测量流动通道表面6a设置的孔眼11的每一隔离通道63被设置为与另一孔眼12对应的一个的隔离通道63共线地延伸,其中,所述测量流动通道表面6a与超声波换能器9相对。
以下将描述对流量测量的常用的方法。如上所述,超声波流量计基于超声波传播时间T1的倒数和超声传播时间T2的倒数之间的差值获得如下式所示的流速V,并通过流速V和流动通道的横截面积相乘来将流动速度V转化为流量。
于是,如在下式中所示获得流体速度V:
V=[L/(2cos θ)]×[(1/T1)-(1/T2)]
受流体的影响,超声波传播距离L根据是否有流体流入孔眼而改变。特别是,基于流动速度或波动流的存在/不存在,流体可能会进入或不进入该孔眼,由此改变有效的传播距离L并引起所测流量的误差。
在本发明的结构中,设置在测量流动通道内的每个孔眼的内部被分为若干更小的部分。于是,发生漩涡的可能性会更小,且由于隔离通道作为流体抑制器的功能可能会降低流入孔眼的流体的流量。于是,即使是当流体速度改变或出现波动时,仍有可能维持有效传播距离L恒定并正确地测量流量。此外,由于超声波传播经过该隔离通道内的被测流体,灵敏度的降低可能会小于当使用大块元件时会产生的结果。此外,由于对通道的分隔,有可能保持该超声波的直线特性,并实现其理想的发射/接收。此外,由于超声波可以一直角进入该隔离通道,并因此沿一直线穿过该通道行进,从而可提供没有偏移和几乎没有衰减的超声波传播通道。此外,因为出口为相对于测量流动通道表面的平滑表面,因此在沿测量流动通道表面的外围层的流体中没有扰动。此外,由于将出口表面校准为辐射表面,所以可有效地辐射该超声波。所述隔离通道对中的一个的发射表面沿该超声波的行进方向与另一隔离通道的接收表面对齐,由此,可降低由相对孔眼的隔离通道中的隔板(partitioned plate)所引起的反射衰减。
每个隔离通道的纵断面的边67长于半个波长。因此,该分隔表面的粘滞性影响会被降低,由此可能提供几乎没有衰减的隔离通道。此外,可将边67的长度设定为不是波长的整数倍,以抑制横向共振,由此实现高效的传播。
可如此设定超声波换能器和隔离通道的入口表面间的距离68,使得共振出现在半波处。隔离通道的每个分隔部分的厚度d可被设定为比波长短,以防止超声波进入该分隔部分时的偏离,由此提供该超声波的有效传播并实现所期望的发射/接收。
当采用矩形横截面的隔离通道时,如图37、38和39所示,可获得同样的效果。当采用如图40所示的蜂窝状的隔离通道时,该蜂窝状的网格物可通过被固定于该孔眼中来容易地加以固定。此外,分隔部分的厚度d可充分地小于超声波的波长,并可能沿垂直方向和横向来分开每一孔眼。此外,超声波有效地传播,由此实现所期望的发射/接收。
该隔离通道中的一个在孔眼的中部具有其开口。于是,由于在该孔眼的中央有一开口,所以该孔眼与超声波换能器的中轴对齐,由此可有效地实现在超声波输出较高的中央区域的传播,从而可通过超声发射/接收来改进信号的发射。
当采用一多角形状使得该隔离通道的相对面彼此不平行时,沿垂直于超声波行进的方向的传播被分散,从而不可能会发生共振,因此超声波能够有效地传播。具体来说,当一蜂窝状网格材料被用于在其中央具有开口的隔离通道时,可能会由于超声波发射/接收而使得信号发射更为有效,其中,所述超声波发射/接收由上述共振现象的降低、分隔部分充分小的厚度d所提供的效应、及在超声波输出较高的中央区域的超声波的有效传播而引起。
此外,如图41所示,每个隔离通道可能包括在沿其长度的某一确定点处的连通部件69,其用于使该隔离通道与该隔离通道的相邻的一个通道连通。于是,降低了分隔部分的总面积,并可能使由壁表面引起的衰减最小化,连通部件69的尺寸也可大于超声波的波长,从而使该隔离通道可容易地被相互连接。通过交替地提供连接部件和分隔部分,有可能得到分隔效应及降低衰减之效应。
以下,将参照图42和43描述该隔离通道的另一实施例。图42为一示出孔眼12的隔离通道70的横截面图。与先前实施例的不同之处在于该分隔部分通过在沿与超声传播方向垂直的方向的超声波换能器上及在沿该流动通道壁表面的流动通道侧上设置一作为网状物质的丝网(wire mesh)而获得,由此该隔离通道的通道长度Lb比用于发射/接收的超声波的波长λ短。图43示出开口71。
通过采用长度短于该超声波波长的通道长度,每个隔离通道可用作几乎不具有衰减的传播通道。此外,沿测量流动通道表面所提供的在每个孔眼中的孔空间被分为若干较小的空间,使得不可能出现漩涡,并有可能降低流入该孔眼的流体的流量。因此,即使当流速改变或出现波动时,也可正确地测量流量。此外,由于超声波穿过隔离通道中的气体,所以灵敏度的降低会小于使用大体积元件时会出现的灵敏度的降低。而且,通过通道的分隔,有可能维持该超声波的直线特性,并实现其所期望的发射/接收。
隔离通道的纵向横截面的边67长于该半波长,因此有可能提供一传播通道,其对沿分隔表面流过的流体的粘滞性更不明显,从而几乎没有衰减。此外,通过将边67的长度设定为波长的非整数倍以抑制横向的共振,从而实现有效的传播。
通过对设置有如第一抑制器或第二抑制器的流体抑制器的测量流动通道采用隔离通道,可进一步降低孔眼中的流体扰动。于是,除上述的效果外,还可能提高对测量的上限值。
工业应用
由上述说明可以明显地看到,本发明的超声波流量计提供以下效能。
本发明的超声波流量计包括:一设置在至少该下游孔眼的附近的第一流体抑制器,其用于降低流入该孔眼的被测流体的流入量;和一设置在相对于该孔眼的测量流动通道的上游端的第二流体抑制器,用于降低流入该孔眼的被测流体的流入量,其中,被提供用于该下游孔眼的该第一流体抑制器包括具有至少一个超声波传输孔的孔眼密封部件。因此,有可能稳定超声波换能器间的流动,以便加强超声波接收水平,并通过加强该超声波接收水平和借助于提供流体抑制器来改善超声波的衰减来降低对超声波换能器的驱动输入。
或者,本发明的超声波流量计包括第一流体抑制器和第二流体抑制器,用于降低流入该孔眼的被测流体的流量,所述孔眼用于被测流体的顺流和逆流,其中,当流体沿顺向流动时,被提供用于该孔眼的在上游端的第一流体抑制器为一具有至少一个超声波传输孔的孔眼密封部件;而第二流体抑制器被设置在该测量流动通道的入口端和出口端。于是,即使当该流量具有波动并引起瞬间逆流时,也可以降低流入该孔眼的被测流体的流量,如在顺流中的情况,并显著地降低超声波换能器间的流体的扰动,由此增加测量精度和对流量测量的上限值。
或者,本发明的超声波流量计包括:沿一超声波传播通道所设置的且具有一暴露于该流体的调节部件的传播通道调节器,所述超声波传播通道位于上游超声波换能器和下游超声波换能器之间。于是,被设置在紧邻该超声波传播通道上游的传播通道调节器的调节部件利于横穿从该超声波传播通道的上游端到下游端的整个区域的流体的扰动。因此,在该超声波传播通道,横穿该超声波传播通道的整个区域的流态被同等地扰动,而与流速无关,其中,所述超声波传播通道沿宽度方向从靠近上游孔眼的区域到靠近下游孔眼的区域,由此防止了由修正系数所引起的误差的增加并提高了测量精度。于是,即使当雷诺数由于流体的流动粘滞度的改变而改变时,仍然保持该测量精度,由此可能实现能够承受流体的温度变化或流体成分变化的测量装置,从而提高该装置的实用性。
或者,本发明的超声波流量计包括:沿一超声波传播通道所设置的且具有一暴露于该流量的调节部件的传播通道调节器,所述超声波传播通道位于上游超声波换能器和下游超声波换能器之间,和一流体抑制器,用于降低流入到该孔眼的被测流体的流量。于是,被紧邻该超声波传播通道上游设置的传播通道流动调节器的调节部件利于横穿从该超声波传播通道的上游端到下游端的整个区域的流体的扰动。因此,在该超声波传播通道,横穿该超声波传播通道的整个区域的流体被同等地扰动,而与流速无关,其中,所述超声波传播通道沿宽度方向从靠近上游孔眼的区域到靠近下游孔眼的区域,由此防止由修正系数引起的误差的增加并提高了测量精度。此外,有可能设置用于该孔眼的测量流动通道,其通向测量流动通道,以便降低流进孔眼的流体,由此可明显地降低超声波换能器间沿该超声波传播通道的流体扰动,并提高对流量测量的上限值。
或者,被提供用于该上游孔眼的该第一流体抑制器为一导流器。于是,有可能减小穿过用于上游孔眼的该超声波传输孔的超声波的传播损耗,由此降低对超声波换能器的驱动输入,并降低流入该上游孔眼的流体流量,从而稳定沿超声波传播通道的流体扰动并提高测量的精确度。
或者,被提供用于上游孔眼的该第一流体抑制器为一孔眼密封部件,其具有至少一个超声波传输孔。于是,有可能明显地降低流入到上下游孔眼的流体流量,由此提高了对流量测量的上限值并提高了用于甚至伴随有逆流的流量的测量精确度。此外,有可能通过大大地降低由该孔眼引起的流体扰动,实现具有所期望的S/N特性的超声发射/接收。由此,可降低传送输出和驱动输入,从而降低功耗。
或者,被提供用于上游孔眼的孔眼密封部件的孔径比大于被提供用于下游孔眼的孔眼密封部件的孔径比。于是,超声波的传播损耗可以被降低,从而有可能提高对流量测量的上限值和对于逆流的测量精确度,并通过降低对超声波换能器的驱动输入来降低功率损耗。
或者,传播通道流体调节器被设置在相对于该超声波传播通道的上游端和下游端。于是,该超声波传播通道被上游和下游传播通道流动调节器所包围,从而有可能均衡来自超声波传播通道的上游端和下游端的扰动状态,由此,可进一步稳定修正系数并进一步提高测量精确度。此外,该流动状态对沿测量流动通道的下游端的影响被下游传播通道流动调节器所降低。于是,有可能实现稳定的测量,而不用考虑在测量装置的下游端的管道情况,从而可提高安装该测量装置的自由度。此外,无论是对于沿测量流动通道的顺流还是逆流都可获得同样的效果,以便有可能稳定即使是对于波动流的修正系数,从而提高测量的精确度。
或者,设置在相对于该超声波传播通道的上游端和下游端的传播通道流动调节器通过一连接器部件连接在一起。于是,有可能防止并稳定传播通道流动调节器间的间距的偏移或上游调节部件和下游调节部件间的位置偏移,由此获得变化降低了的测量装置。此外,连接部件加固了传播通道流动调节器,由此有可能降低该调节部件的尺寸和厚度。从而有可能均衡超声波传播通道中的流体状态或者降低测量流动通道的压力损失。
或者,设置在相对于该超声波传播通道的上游端和下游端的传播通道流动调节器和流体抑制器被结合在一起。于是,有可能确定位置关系,如该上游和下游传播通道流动调节器和流体抑制器间的距离,由此稳定该流体状态。因此,有可能降低该超声波传播通道中的流体状况的变化,并实现几乎没有变化的稳定测量。通过这种结合,有可能进一步提高该传播通道流动调节器的机械强度,从而防止其长时间使用后的变形,并由此改善其耐用性和可靠性。
或者,流体抑制器是为下游孔眼设置的第一流体抑制器。于是,该第一流体抑制器被设置为用于下游孔眼,该孔眼的周围易于出现强漩涡,因为该下游孔眼沿与该流动成锐角的方向延伸。于是,有可能降低流入孔眼的流体的流量,以便有效地降低超声波换能器间的流体扰动,由此提高对流量测量的上限值。
或者,流体抑制器是为上游孔眼和下游孔眼设置的第一流体抑制器。于是,孔眼中的扰动可被有效地降低,该扰动占超声波传播通道中的总流体扰动的主要部分,由此,有可能提高测量精度和对流量测量的上限值。
或者,该流体抑制器是通过向沿该超声波传播通道设置的传播通道流动调节器提供一流体抑制部件而获得的第二流体抑制器。于是,通过将该传播通道流动调节器与流体抑制器结合,有可能降低对流入到孔眼的流体的流量的抑制,由此增加可靠性并允许提供一种小型超声波传播通道。于是,可以降低测量流动通道的尺寸。
或者,该流体抑制器包括为孔眼设置的第一流体抑制器和第二流体抑制器,所述第二流体抑制器通过向传播通道流动调节器提供一流体抑制部件而获得。于是,通过第一和第二流体抑制器的倍增效应可降低孔眼中的扰动,通过传播通道流动调节器和流体抑制器的结合可使对流入到孔眼的流体的抑制的变化降低。于是,可以提高测量精度和可靠性。此外,可以增加测量精确度和可靠性。此外,可提供小型超声波传播通道,由此降低测量流动通道的尺寸。
或者,第一流体抑制器为一具有至少一个超声波传输孔的孔眼密封部件。于是,通过使用孔眼密封部件覆盖该孔眼,可进一步改进对流入到孔眼的被测流体的流量的抑制效果,由此降低并稳定该孔眼中的流体。
或者,该第一流体抑制器包括具有至少一个超声波传输孔的孔眼密封部件和设置在该孔眼部分附近的导流器。于是,有可能进一步改进对流入到孔眼的被测流体的流量的抑制效果,由此进一步提高测量精确度。此外,有可能通过提供该导流器来降低外来物质的附着,所述外来物质如粘到孔眼密封部件的灰尘。于是,可主要考虑超声透射性来选择该孔眼密封部件,而不用过多地考虑孔眼密封部件的堵塞,由此增加该选择的自由度。此外,有可能进一步增加超声透射率,以降低功率消耗,或进一步提高灵敏度,以便实现具有所期望的测量精度的装置。
或者,为上游孔眼设置的孔眼密封部件的孔径比大于为下游孔眼设置的孔眼密封部件的孔径比。于是,超声波的传播损耗可以被降低,从而可以提高对流量测量的上限值和用于逆流的测量精确度,并通过降低对超声波换能器的驱动输入来降低功率损耗。
或者,孔眼密封部件为相对于水平方向倾斜的网状结构的网状部件。于是,该网状结构相对于水平方向倾斜,从而有可能方便于处理小的微粒,如附着在该倾斜的网格部分的灰尘,由此降低所沉积的这种微粒的量并因此而防止该网状部件的阻塞。于是,有可能确保超声波在其中的传播并保持在一个相当长的时间段内的稳定的测量精度,由此提高耐用性和可靠性。
或者,该导流器被设置于孔眼的上游端和下游端。于是,无论对于沿测量流动通道的顺流还是逆流,都有可能进一步提高测量精度,抑制流入到该孔眼的流量,并防止外来物质进入该孔眼。因此,即使对于伴随有逆流的波动流,也有可能在一段长的时间段内保持稳定的测量精确度,由此,提高耐用性和可靠性。
或者,该传播通道流动调节器和超声传播通道之间的距离依赖于被测流体的类型而改变。于是,有可能通过仅改变该传播通道流动调节器而普遍地使用该测量流动通道,而不用考虑被测流体的类型,由此提高了方便性,并可在不考虑被测流体的情况下保持稳定的测量精度。此外,由于该测量流动通道可被普遍使用,因此有可能降低成本。
或者,所提供的该传播通道流动调节器的调节部件为网状部件之结构。于是,有可能减少相对于流动方向的传播通道流动调节器的安装空间,由此,降低测量流动通道的尺寸。
或者,传播通道流动调节器的调节部件为网格部件之结构,该网格部件的壁表面沿流动方向延伸。从而可以通过沿流动方向延伸的壁表面来调节该流方向,由此进一步使超声波传播通道中的流体速度分布变得均匀,并由此提高测量的精确度。
或者,传播通道流动调节器的两相邻调节部件间的间隔依据沿测量流动通道的横截面的位置而改变。于是,有可能根据沿测量流动通道的横截面的位置优化该孔尺寸,同时保持调节部件沿流动方向的已降低了的长度。由此,有可能进一步均衡该超声波传播通道中的流速分布,并降低调节部件沿流动方向的长度,由此降低了压力损失,且同时由流速分布均匀导致提高了测量精确度。
或者,沿垂直于流动方向的测量流动通道的横截面具有矩形形状。于是,通过采用矩形的横截面,有可能增加相对于总测量横截面积的测量面积,由此允许在同样的条件下,进行从超声波传播通道的上游端到下游端的流体测量。此外,可以增加沿测量流动通道的流动的二维性,由此为高精度测量流体的平均流速创造条件。此外,可通过提供第二流体抑制器来进一步提高流体流动的二维性。
或者,沿与流过其中的流体流动垂直的方向的测量流动通道的横截面的形状为长宽比小于2的矩形。于是,不必通过提高该长宽比来建立二维的流体流动,并可根据流动通道的高度来自由地设定横截面的规格,从而为提高超声波发射/接收的灵敏度创造条件。此外,有可能通过调节测量横截面来降低测量流动通道中的压力损失,以便在不过分使测量横截面变平的情况下,降低测量横截面与流体接触的长度。
或者,该孔眼开口通向测量流动通道,其中的形状具有一边,它沿与穿过测量流动通道的流体的方向基本垂直的方向延伸。于是有可能相对于该测量流动通道的高度方向均衡地发射/接收该超声波,并缩短在沿流向的测量流动通道的孔眼中的孔长度。由此,有可能进一步降低由该孔眼引起的流体扰动,从而进一步提高测量精度。
或者,在测量流动通道的上游端设置的引入部被设置有一非均匀流动抑制器,其具有一带有一小孔的通道开口。于是,有可能提供流入测量流动通道的稳定的流体,而不管流动通道的形状或该测量流动通道的上游的管道结构,由此可降低超声波换能器间的流体扰动。此外,有可能进一步提高对流量测量的上限值并进一步提高测量精度。此外,有可能实现稳定的测量,而不管流动通道的形状或该测量流动通道的上游的管道结构,从而增加了该测量装置安装的自由度。
或者,被设置在测量流动通道的上游端上的引入部或该测量流动通道的下游端上的出口部每个都设置有一非均匀流动抑制器,它具有带有小孔的通道开口。于是,即使是当被测流体具有伴随有逆流的波动流或被测流体具有在下游端的波动源时,仍有可能提供流入该测量流动通道的稳定的流体。由此,有可能降低超声波换能器间的流体扰动,以进一步提高对流量测量的上限值,并进一步提高测量的精确性。此外,有可能实现稳定的测量而无须考虑流动通道的形状、通道结构、或波动源、该测量流动通道的上游或下游,由此提高在测量装置的安装中的自由度。
或者,该引入部或出口部的横截面面积大于测量流动通道的横截面面积。由此,有可能提高该非均匀流动抑制器的安装横截面积,以便降低由该非均匀流动抑制器引起的压力损失,由此防止压力损失的增大。此外,可以提高引入部或出口部的横截面积,由此,即使是在该流动通道的形状或上游端或下游端的管道结构变化时,也便于该测量装置的安装,而不用改变该引入部或出口部的形状。由此,有可能实现具有提高了的安装自由度的测量装置。
或者,该非均匀流动抑制器的通道开口的孔尺寸小于在第二流体抑制器中设置的通道开口的孔尺寸。于是,即使当上游或下游连接口的设置有位置上的移位,该流体仍可在测量流动通道内均衡地流动,由此便于提高测量精确度。此外,即使当被测流体具有波动时,也可提供以降低了的波动的流体流入测量流动通道,所述波动的降低由具有小的孔尺寸的通道开口所引起,从而提高测量精度,即使是出现波动流时。此外,由于该非均匀流动抑制器的通道开口具有小的孔尺寸,因此有可能降低进入测量部件的灰尘和(或)污物的量,由此增加沿该测量流动通道的测量操作的可靠性。
或者,本发明的另一种超声波流量计包括:被测流体流经的测量流动通道;分别设置在沿测量流动通道彼此相对的上游端和下游端的超声波换能器;上游孔眼和下游孔眼,该孔眼用于使超声波换能器暴露于该测量流动通道,其中,该孔眼的至少一个包括多个沿超声波的传播方向延伸的隔离通道。于是,由于该超声波传播经过该隔离通道内的流体,灵敏度基本上没有被降低。此外,由于对该通道的分隔,有可能保持该超声波的直线特性并实现其所期望的发射/接收。此外,在沿流动通道的侧表面所设置的孔眼内的孔流通道被分为若干小的部分,由此更不可能会发生漩涡,且有可能降低流入到该孔眼的流体的流量。由此,即使在出现波动时,仍可能正确地测量流速。
或者,至少有一个孔眼包括多个隔离通道,其沿该超声波的传播方向延伸。于是,流入该孔眼的流体流量可通过流体抑制器来降低,且可改进对该测量的上限值。此外,由于该超声波传播经过该隔离通道内的流体,因此灵敏度几乎没有下降。此外,由于对该通道的分隔,有可能保持该超声波的直线特性并实现其所期望的发射/接收。此外,在沿流动通道的侧表面所设置的孔眼内的孔流动通道被分为若干小的部分,由此更不可能会发生漩涡,且有可能降低流入到该孔眼的流体的流量。由此,即使在出现波动时,仍可能正确地测量流速。
或者,每个隔离通道具有一沿超声波换能器的振动面延伸的入口表面和沿测量流动通道的壁面延伸的出口表面。于是,由于超声波能够以一直角进入该隔离通道,并因此沿一直线通道穿过该通道行进,因此,可提供没有反射和几乎没有衰减的超声波传播通道。此外,因为出口为相对于测量流动通道的壁面的平滑表面,因此在沿测量流动通道表面的外围层的流体中没有扰动。此外,由于将出口表面校准为辐射表面,因此可有效地辐射超声波。
或者,一个孔眼的每一个隔离通道与另一孔眼的对应的一个隔离通道共线地延伸。于是,发射表面与接收表面彼此沿该超声波的行进方向对齐,由此,可降低由相对孔眼的隔离通道中的隔板所引起的反射衰减。
或者,每个隔离通道的纵断面的一边的长度大于用于发射/接收的超声波的半波长。因此,该分隔表面的粘滞性影响会被降低,由此可以提供几乎没有衰减的隔离通道。
或者,每个隔离通道的纵断面的一边的长度不是用于发射/接收的超声波的半波长的整数倍。于是,可以抑制横向的共振,由此实现高效的传播。
或者,在孔眼的隔离通道和相应的一个超声波换能器的振动面之间的距离为超声波的半波长的整数倍。于是,可使共振出现在半波处,由此有可能提供有效的辐射。
或者,该隔离通道的每一分隔部分的厚度小于用于发射/接收的超声波的波长。于是,可防止超声波的反射,从而在其中提供有效的发射/接收。
或者,该隔离通道是通过将一蜂窝状网格安装进该孔眼而形成。于是,通过采用网格,有可能在纵向和横向分开每个孔眼。
或者,所述隔离通道的一个在该孔眼的中部有一开口。于是,该孔眼与超声波换能器的中轴对齐,由此便于有效的接收/发射。
或者,每一个隔离通道的通道长度比用于发射/接收的超声波的波长要短。于是,可提供几乎没有衰减的超声波传播通道。
或者,隔离通道是通过在孔眼内沿垂直于超声波传播之方向的方向安装一网状部件而形成。于是,通过使用网状部件来划分该孔眼有可能使通道的长度最小化。
或者,每个隔离通道包括在沿其长度方向的某一点上的连通部件,用于使该隔离通道与其邻近一个隔离通道连通。于是,可以使由该隔板所引起的衰减最小。

Claims (10)

1.一种超声波流量计,包括:测量流动通道,被测量的流体通过其中流动;超声波换能器,分别设置在沿测量流动通道彼此相对的上游端和下游端;上游孔眼和下游孔眼,用于使超声波换能器暴露于该测量流动通道;其中,至少一个孔眼包括沿超声波传播方向延伸的多个隔离通道,并且每个隔离通道具有沿超声波换能器的振动面延伸的入口表面和沿测量流动通道的壁面延伸的出口表面。
2.如权利要求1所述的超声波流量计,其中,一个孔眼的每一个隔离通道与另一孔眼之对应的一个隔离通道共线延伸。
3.如权利要求1所述的超声波流量计,其中,每一个隔离通道的纵向剖面的一边长于用于发送/接收的超声波的半波长。
4.如权利要求1所述的超声波流量计,其中,每一个隔离通道的纵向剖面的一边不是用于发送/接收的超声波的半波长的整数倍。
5.如权利要求1所述的超声波流量计,其中,孔眼的隔离通道和对应的一个超声波换能器的振动面之间的距离是超声波的半波长的整数倍。
6.如权利要求1所述的超声波流量计,其中,隔离通道的每个隔板的厚度小于用于发送/接收的超声波的波长。
7.如权利要求1所述的超声波流量计,其中,隔离通道是通过将蜂窝状网格安装在孔眼而构成。
8.如权利要求1所述的超声波流量计,其中,所述隔离通道中的一个隔离通道在孔眼的中部有开口。
9.如权利要求1所述的超声波流量计,其中,每一个隔离通道包括在沿其长度的某一点上的一个连通部件,用于使该隔离通道与相邻的一个隔离通道连通。
10.一种超声波流量计,包括:
测量流动通道,被测量的流体通过其中流动;
超声波换能器,分别设置在沿测量流动通道彼此相对的上游端和下游端;以及
上游孔眼和下游孔眼,用于使超声波换能器暴露于该测量流动通道,
其中,至少一个孔眼包括沿超声波传播方向延伸的多个隔离通道,并且每一个所述隔离通道的通道长度短于用于发送/接收的超声波的波长,所述隔离通道是通过在孔眼中在沿垂直于所述超声波传播方向的所述超声波换能器上及沿所述测量流动通道壁面的测量流动通道侧上设置一个网状部件而构成。
CN2008101833356A 1999-03-17 2000-03-17 超声波流量计 Expired - Fee Related CN101424552B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP7145899 1999-03-17
JP71458/1999 1999-03-17
JP9256099 1999-03-31
JP92560/1999 1999-03-31
JP10224099 1999-04-09
JP102240/1999 1999-04-09
JP10787899 1999-04-15
JP107878/1999 1999-04-15

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB008051666A Division CN100453980C (zh) 1999-03-17 2000-03-17 超声波流量计

Publications (2)

Publication Number Publication Date
CN101424552A CN101424552A (zh) 2009-05-06
CN101424552B true CN101424552B (zh) 2012-09-26

Family

ID=40615308

Family Applications (3)

Application Number Title Priority Date Filing Date
CN2008101833356A Expired - Fee Related CN101424552B (zh) 1999-03-17 2000-03-17 超声波流量计
CNA2008101833360A Pending CN101424553A (zh) 1999-03-17 2000-03-17 超声波流量计
CN2008101833375A Expired - Fee Related CN101424554B (zh) 1999-03-17 2000-03-17 超声波流量计

Family Applications After (2)

Application Number Title Priority Date Filing Date
CNA2008101833360A Pending CN101424553A (zh) 1999-03-17 2000-03-17 超声波流量计
CN2008101833375A Expired - Fee Related CN101424554B (zh) 1999-03-17 2000-03-17 超声波流量计

Country Status (1)

Country Link
CN (3) CN101424552B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2612113B1 (en) * 2010-09-03 2016-11-16 Los Alamos National Security LLC Apparatus and method for visualization of particles suspended in a fluid and fluid flow patterns using ultrasound
CN102032932B (zh) * 2010-10-26 2012-09-05 周岳建 一种超声波流量计
BR112013018520A2 (pt) * 2011-02-23 2016-10-18 Miitors Aps método ultrassônico de vazão
US9711709B2 (en) * 2013-08-08 2017-07-18 General Electric Company Transducer systems
DE102014004747B4 (de) * 2013-10-30 2023-02-16 Krohne Ag Ultraschall-Durchflussmesser
US10444051B2 (en) * 2017-01-09 2019-10-15 Georg Fischer Signet, LLC Ultrasonic sensor assembly and method of manufacture
DE102017009462B4 (de) * 2017-10-12 2023-01-26 Diehl Metering Gmbh Messeinrichtung zur Ermittlung einer Fluidgröße
CN110646043A (zh) * 2019-11-04 2020-01-03 中国计量科学研究院 一种低声道数的气体超声流量测量方法
CN111896062B (zh) * 2020-07-24 2022-09-20 北京瑞德联数据科技有限公司 一种超声波流量测量、装置、设备及存储介质
CN112595373B (zh) * 2020-11-24 2022-12-06 宁波水表(集团)股份有限公司 一种超声水表设计方法以及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP特开平11-64058A 1999.03.05
JP特开平9-15012A 1997.01.17
JP特开平9-21666A 1997.01.21

Also Published As

Publication number Publication date
CN101424554A (zh) 2009-05-06
CN101424554B (zh) 2010-12-01
CN101424552A (zh) 2009-05-06
CN101424553A (zh) 2009-05-06

Similar Documents

Publication Publication Date Title
CN100453980C (zh) 超声波流量计
CN101424552B (zh) 超声波流量计
US8701501B2 (en) Ultrasonic flowmeter
US7360449B2 (en) Ultrasonic fluid measurement instrument having a plurality of split channels formed by partition boards
CN101294833B (zh) 超声波式流体测量装置
TW585995B (en) Flow meter
WO2014057673A1 (ja) 流量計
WO2005005932A1 (ja) 流れ計測装置
CN208254563U (zh) 超声波计量装置及超声波计量表
CN109655117A (zh) 用于确定流体变量的测量装置
JP2004101542A (ja) 超音波流量計測装置
JP2004101543A (ja) 超音波流量計測装置
JP2003065817A (ja) 超音波流量計測装置
KR102478319B1 (ko) 유량관용 슬롯부재
CN108871475A (zh) 超声波计量装置
JP3438716B2 (ja) 超音波流量計測装置
US10866127B2 (en) Dual class ultrasonic gas meters and related flowtubes
JP4007861B2 (ja) 超音波流量計
JP2002122451A (ja) 超音波流量計測装置
JP2002350212A (ja) ガスメータの器差調整方法
JP2005207772A (ja) 超音波流量計
JP2004069527A (ja) 超音波流量計測装置
JPS6166928A (ja) 面積式流量計

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120926

Termination date: 20140317