CN101424220A - 用于发动机转速控制的储备扭矩配置 - Google Patents

用于发动机转速控制的储备扭矩配置 Download PDF

Info

Publication number
CN101424220A
CN101424220A CNA2008101842073A CN200810184207A CN101424220A CN 101424220 A CN101424220 A CN 101424220A CN A2008101842073 A CNA2008101842073 A CN A2008101842073A CN 200810184207 A CN200810184207 A CN 200810184207A CN 101424220 A CN101424220 A CN 101424220A
Authority
CN
China
Prior art keywords
torsion
moment
module
rpm
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008101842073A
Other languages
English (en)
Other versions
CN101424220B (zh
Inventor
M·利夫什茨
S·J·奇诺维斯
T·R·舒普
J·M·凯泽
C·E·怀特尼
N·金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN101424220A publication Critical patent/CN101424220A/zh
Application granted granted Critical
Publication of CN101424220B publication Critical patent/CN101424220B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/023Temperature of lubricating oil or working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/22Control of the engine output torque by keeping a torque reserve, i.e. with temporarily reduced drive train or engine efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

本发明涉及用于发动机转速控制的储备扭矩配置。其中发动机控制模块包括基本储备扭矩模块、动力转向储备扭矩模块、储备扭矩模块、第一和第二发动机致动器模块、以及发动机转速控制模块。基本储备扭矩模块确定基本储备扭矩。动力转向储备扭矩模块确定动力转向储备扭矩。储备扭矩模块根据所述基本储备扭矩、所述动力转向储备扭矩、以及发动机机油温度与大气压力中的至少一个来确定第一储备扭矩。第一和第二发动机致动器模块分别控制发动机的第一和第二致动器。发动机转速控制模块命令第一发动机致动器模块从发动机中产生第一扭矩输出,并且命令第二发动机致动器模块从发动机中产生第二扭矩输出。

Description

用于发动机转速控制的储备扭矩配置
相关申请的交叉引用
本申请要求于2007年11月2日提交的美国临时申请No.60/984,878的权益。该申请的公开内容在此引用作为参考。
技术领域
本发明涉及对发动机的控制,更具体地,涉及储备扭矩。
背景技术
在此对背景技术的描述是为了更好地展现本发明的内容。本申请发明人的劳动成果在背景技术部分披露的范围内,以及背景技术部分描述的在提交本申请时没有作为现有技术的其他内容,都不能明确地或暗示地构成对本发明不利的现有技术。
内燃机汽缸内的空气和燃料混合物燃烧以驱动活塞,由此产生驱动扭矩。进入发动机的空气流被节气门所调节。具体来说,节气门调节节流面积,由此增加或减少进入发动机的空气流。随着节流面积增大,进入发动机的空气流也增多。燃料控制系统调节喷射燃料的量,从而给汽缸提供合适的空气/燃料混合物。对汽缸增加空气和燃料的供应能增大发动机的扭矩输出。
已经开发出发动机控制系统用来控制发动机扭矩输出以获得期望的扭矩。但是,传统的发动机控制系统无法把发动机扭矩输出控制得如期望的那样精确。而且,传统的发动机控制无法如期望的那样快速响应于控制信号,或在影响发动机扭矩输出的各设备之间进行发动机扭矩控制调整。
发明内容
一种发动机控制模块,包括基本储备扭矩模块、动力转向储备扭矩模块、储备扭矩模块、第一和第二发动机致动器模块、以及发动机转速控制模块。基本储备扭矩模块确定基本储备扭矩。动力转向储备扭矩模块确定动力转向储备扭矩。储备扭矩模块根据所述基本储备扭矩、所述动力转向储备扭矩、以及发动机机油温度与大气压力中的至少一个来确定第一储备扭矩。第一和第二发动机致动器模块分别控制发动机的第一和第二致动器。发动机转速控制模块命令第一发动机致动器模块从发动机中产生第一扭矩输出,并且命令第二发动机致动器模块从发动机中产生第二扭矩输出。第二扭矩输出大约等于所述第一储备扭矩和所述第一扭矩输出的和。
另一方面,为了从发动机中产生所述第一扭矩输出,所述发动机转速控制模块命令所述第一发动机致动器模块产生所述第一扭矩输出和所述第二发动机致动器模块产生所述第二扭矩输出。所述第一发动机致动器模块包括火花控制模块,所述第二发动机致动器模块包括节流阀开度控制模块。
另一方面,所述基本储备模块根据所述发动机的每缸进气量(APC)和发动机转速(RPM)确定所述基本储备扭矩。所述发动机控制模块还包括稳定RPM模块和稳定APC模块。所述稳定RPM模块根据所述RPM、期望RPM和预定RPM值来确定稳定RPM。所述稳定APC模块根据所述APC、期望APC和预定APC值来确定稳定APC。所述基本储备模块根据所述稳定RPM和所述稳定APC来确定所述基本储备扭矩。
另一方面,所述动力转向储备模块根据动力转向角度和所述动力转向角度的变化速度来确定所述动力转向储备扭矩。所述储备扭矩模块根据所述机油温度和所述大气压力来确定所述第一储备扭矩。
另一方面,所述机油温度的增加导致所述第一储备扭矩的减小。另一方面,所述大气压力的增加导致所述第一储备扭矩的减小。所述发动机控制模块还包括储备扭矩限制模块。所述储备扭矩限制模块对所述第一储备扭矩施加上限和下限中的至少一个。
一种方法,包括:确定基本储备扭矩;确定动力转向储备扭矩;根据所述基本储备扭矩、所述动力转向储备扭矩、以及发动机机油温度与大气压力中的至少一个来确定第一储备扭矩;调节第一发动机致动器以从发动机中产生第一扭矩输出;以及调节第二发动机致动器以从发动机中产生第二扭矩输出。所述第二扭矩输出大约等于所述第一储备扭矩和所述第一扭矩输出的和。
另一方面,该方法还包括,通过调节所述第一发动机致动器模块以产生所述第一扭矩输出,通过调节所述第二发动机致动器模块以产生所述第二扭矩输出。该方法还包括,根据发动机的每缸进气量(APC)和发动机转速(RPM)确定所述基本储备扭矩。
另一方面,该方法还包括,根据所述RPM、期望RPM和预定RPM值来确定稳定RPM;根据所述APC、期望APC和预定APC值来确定稳定APC。根据所述稳定RPM和所述稳定APC来确定所述基本储备扭矩。
另一方面,该方法还包括,根据动力转向角度和所述动力转向角度的变化速度来确定所述动力转向储备扭矩。该方法还包括,根据所述机油温度和所述大气压力来确定所述第一储备扭矩。
另一方面,所述机油温度的增加导致所述第一储备扭矩的减小。另一方面,所述大气压力的增加导致所述第一储备扭矩的减小。该方法还包括,对所述第一储备扭矩施加上限和下限中的至少一个。
根据下文详细的说明,本发明的更多应用范围将变得更为明显。应当理解的是,本发明中详细的描述、具体的例子、典型的优选实施例都是为了说明的目的,都不能用来限定本发明的范围。
附图说明
根据如下的详细说明和附图将更有利于对本发明的全面理解,其中:
图1是根据本发明原理的典型发动机系统的功能性框图;
图2是根据本发明原理的发动机控制模块的典型实施方式的功能性框图;
图3是根据本发明原理的发动机转速(RPM)控制模块的典型实施方式的功能性框图;
图4是根据本发明原理的储备扭矩模块的典型实施方式的功能性框图;
图5是流程图,其示出了根据本发明原理由储备扭矩模块执行的典型步骤。
具体实施方式
现在参照图1,其示出了典型发动机系统100的功能性框图。该发动机系统100包括发动机102,其基于驾驶员输入模块104,使空气/燃料混合物燃烧从而为机动车产生驱动扭矩。空气通过节流阀112被吸入进气歧管110。发动机控制模块(ECM)114对节流阀致动器模块116发出指令,使其调节节流阀112的开度以控制吸入进气歧管110的空气量。
来自进气歧管110的空气被吸入发动机102的汽缸内。为了图示的目的,示出的是单个代表性的汽缸118,但是发动机102可以包括多个汽缸。例如,发动机102可以包括2,3,4,5,6,8,10或12个汽缸。ECM114可以指示发动机致动器模块120有选择地使一些汽缸休缸,从而提高燃油经济性。
来自进气歧管110的空气穿过进气阀122被吸入代表性的汽缸118内。ECM114控制燃料喷射系统124的燃料喷射量。燃料喷射系统124可以在一个中心位置把燃料喷入进气歧管110,或者在多个位置把燃料喷入进气歧管110,例如在各个汽缸的进气阀附近。可选择地,燃料喷射系统124可以直接把燃料喷入汽缸。
所喷射的燃料与空气混合,在汽缸118内形成空气/燃料混合物。汽缸118内的活塞(未示出)压缩空气/燃料混合物。根据来自ECM114的信号,火花致动器模块126给汽缸118内的火花塞128通电,使其点燃空气/燃料混合物。火花正时与活塞位于其最上部位置的时间有关,这也被称为上死点(TDC),即空气/燃料混合物被最大程度压缩的点。
空气/燃料混合物的燃烧驱动活塞向下,从而驱动曲轴(未示出)。然后活塞又向上运动,通过排气阀130把燃烧产物排出。燃烧产物通过排气系统134从机动车排出。
进气阀122可被进气凸轮轴140控制,而排气阀130可被排气凸轮轴142控制。在各种实施形态中,多个进气凸轮轴可控制每个汽缸的多个进气阀和/或控制多个汽缸排的进气阀。类似地,多个排气凸轮轴可控制每个汽缸的多个排气阀和/或控制多个汽缸排的排气阀。汽缸致动器模块120通过停止燃料供应和点火和/或停止排气阀和/或进气阀运动来使汽缸休缸。
通过进气凸轮移相器148,进气阀122的打开时间可以相对于活塞TDC改变。通过排气凸轮移相器150,排气阀130的打开时间可以相对于活塞TDC改变。移相器致动器模块158根据来自ECM114的信号控制进气凸轮移相器148和排气凸轮移相器150。
发动机系统100可以包括增压装置,用来给进气歧管提供增压空气。例如,图1示出了涡轮增压器160。该涡轮增压器160被流经排气系统134的排气所驱动,并且给进气歧管110提供增压空气充量。用于产生增压空气充量的空气可以来自进气歧管110。
废气门164允许排气旁路绕过涡轮增压器160,从而减小涡轮增压器的输出(或增压)。ECM114通过增压致动器模块162控制涡轮增压器160。增压致动器模块162可以通过控制废气门164的位置来调节涡轮增压器160的增压。
中冷器(未示出)可以去除增压空气充量的热量,当空气被压缩时产生了这些热量而且当靠近排气系统134时也增加了热量。另外的发动机系统也可包括机械增压器,其被曲轴驱动向进气歧管110提供增压空气。
发动机系统100可以包括排气再循环(EGR)阀170,其有选择地引导排气再返回到进气歧管110。发动机系统100可以利用RPM传感器180测量曲轴速度即每分钟的转数(RPM)。利用发动机冷却液温度(ECT)传感器182可以测量发动机冷却液温度。ECT传感器182可以位于发动机102内,或者位于冷却液循环到的位置,例如散热箱(未示出)。利用机油温度(OT)传感器183可以测量发动机102内机油的温度。OT传感器183可以位于机油循环的任何位置,例如油盘(未示出)。
可以利用歧管绝对压力(MAP)传感器184测量进气歧管110内的压力。在各种实施方式中,可以测量发动机的真空度,发动机真空度是大气压(即,大气压力)和进气歧管110内的压力的差。例如,可以通过大气压传感器185测量大气压力(BARO)。
可以利用空气质量流量(MAF)传感器1876测量进入进气歧管110的空气质量流量。节流阀致动器模块116可以利用一个或多个节流阀位置传感器(TPS)190监测节流阀112的位置。可以利用进入空气温度(AT)传感器192测量进入发动机系统100的空气温度。
发动机系统100还可以包括动力转向系统193,其有助于驾驶员控制机动车的方向。例如,动力转向系统193可以根据例如转动方向盘(未示出)的驾驶员输入帮助驾驶员使车轮转向。动力转向系统193测量动力转向(PS)转动的角度。动力转向角度可以是方向盘转动的角度。可选择地,动力转向角度可以是一个或多个车轮转动的角度。动力转向角度可以从一个预定角度开始被测量,该预定角度相应于机动车没有转向的角度。动力转向系统193还可以测量动力转向角度改变的速度(PSRate)。ECM114可以利用来自这些传感器的信号来确定发动机系统100的控制决策。
ECM114可以与传动控制模块194通讯以调整变速箱(未示出)的换挡。例如,ECM114可以在换挡时减小扭矩。在各种实施方式中,ECM114与传动控制模块194可以集成为一个或多个模块。
为了抽象地理解发动机102的各控制机构,改变发动机参数的每个系统都可被认为是致动器。例如,节流阀致动器模块116可以改变叶片位置,从而改变节流阀112的开口面积。因此节流阀致动器模块116可以被当作致动器,节流阀开口面积可以作为致动器位置或致动器值。
类似地,火花致动器模块126可以被认为是致动器,相应的致动器位置可以是火花提前量。该火花提前量可以从一个预定的活塞位置测量,例如TDC。其他的致动器可以包括增压致动器模块162,EGR阀170,移相器致动器模块158,燃料喷射系统124和汽缸致动器模块120。这些致动器的致动器位置作为术语可以分别相应于增压压力,EGR阀开度,进气和排气凸轮移相器角度,空燃比,工作汽缸的数量。
当发动机从产生一个扭矩向产生另一个扭矩过渡时,许多致动器位置将改变以更高效地产生新的扭矩。例如,火花提前角,节流阀位置,排气再循环(EGR)调节和凸轮移相器角度可以改变。改变这些致动器位置中的一个通常会产生受益于其他致动器位置的改变的发动机工况,然后该发动机工况又导致原始致动器的改变。这种反馈会引起致动器位置的更新,直到所有致动器位置能最有效地产生期望的扭矩为止。
扭矩的大幅变化常会导致致动器位置的显著变化,这又进而导致其他致动器位置的显著变化。当采用增压装置例如涡轮增压器或机械增压器时尤其如此。例如,当命令发动机大幅度地提高输出扭矩时,发动机会要求涡轮增压器提高增压压力。
在各种实施方式中,当增压压力增大时,爆震或发动机敲缸更容易发生。因此,当涡轮增压器接近所述提高的增压水平时,火花提前量可能需要被减小。一旦火花提前量被减小,就需要进一步增大涡轮增压器增压压力,以获得期望的扭矩。这种循环关系使得发动机到达期望扭矩的速度更慢。由于涡轮增压器增压本身就慢的响应,即涡轮延迟,使得这一问题更为突出,
参照图2,其示出了ECM114典型实施方式的功能性框图。ECM114包括一个轴扭矩标定模块202。该轴扭矩标定模块202确定来自驾驶员输入模块104的驾驶员输入和其他轴扭矩请求之间的关系。例如,驾驶员输入可以包括加速踏板位置。其他轴扭矩请求可以包括在传动控制模块194换挡期间的扭矩减小请求、在车轮打滑时由牵引控制系统作出的扭矩减小请求以及来自巡航控制系统的控制速度的扭矩请求。
轴扭矩标定模块202输出一个预测扭矩和一个扭矩控制期望即时扭矩(期望即时扭矩torque)。预测扭矩是为了满足驾驶员扭矩要求和/或速度要求而将要需要的扭矩量。扭矩控制期望即时扭矩是为了满足当前扭矩需求而在当前时刻所需要的扭矩,例如当换挡或牵引控制系统检测到车轮打滑时减小扭矩。
扭矩控制期望即时扭矩可以由响应速度快的发动机致动器提供,而响应速度较慢的发动机致动器用于提供预测扭矩。例如,火花致动器可以快速改变火花提前量,而凸轮移相器或节流阀致动器的响应就较慢。轴扭矩标定模块202输出一个预测扭矩和一个扭矩控制期望即时扭矩给驱动扭矩标定模块204。
该驱动扭矩标定模块204确定预测扭矩、扭矩控制期望即时扭矩和驱动扭矩请求之间的关系。驱动扭矩请求可以包括用于防止发动机超速的扭矩减小和防止发动机停机的扭矩增大。例如,驱动扭矩标定模块204可以根据驱动扭矩请求调节预测扭矩和扭矩控制期望即时扭矩。
致动模式模块206接收来自驱动扭矩标定模块204的预测扭矩和扭矩控制期望即时扭矩。根据运行模式,致动模式模块206确定如何获得预测扭矩和扭矩控制期望即时扭矩。例如,在第一运行模式中,致动模式模块206输出预测扭矩给驾驶员扭矩滤波器208。
在第一运行模式中,致动模式模块206命令即时扭矩控制模块210把火花正时设定为能获得最大可能扭矩的标定值。即时扭矩控制模块210控制改变速度比预测扭矩控制模块212所控制的发动机参数快的发动机参数。例如,即时扭矩控制模块210可以控制火花提前量,其在下一个汽缸点火时就可以获得指令值。在第一运行模式中,扭矩控制期望即时扭矩被预测扭矩控制模块212和即时扭矩控制模块210所忽略。
在第二运行模式中,致动模式模块206输出预测扭矩给驾驶员扭矩滤波器208。但是,致动模式模块206可以命令即时扭矩控制模块210努力达到扭矩控制期望即时扭矩,例如通过延迟点火。
在第三运行模式中,如果需要的话,致动模式模块206可以命令汽缸致动器模块120使某些汽缸休缸,以获得扭矩控制期望即时扭矩。在该运行模式中,预测扭矩被输出给驾驶员扭矩滤波器208,扭矩控制期望即时扭矩被输出给第一选择模块214。例如,第一选择模块214可以是多路器、开关或任何其他合适的设备。
在第四运行模式中,致动模式模块206输出一个减小的预测扭矩给驾驶员扭矩滤波器208。该预测扭矩被减小可以只是为了使即时扭矩控制模块210利用火花延迟来获得扭矩控制期望即时扭矩。
驾驶员扭矩滤波器208接收来自致动模式模块206的预测扭矩。另外,驾驶员扭矩滤波器208可以接收来自轴扭矩标定模块202和/或驱动扭矩标定模块204的信号,这会表明预测扭矩是否是驾驶员输入的结果。如果是的话,驾驶员扭矩滤波器208可以过滤掉高频扭矩变化,例如在粗糙路面上驾驶员用脚控制加速踏板所引起的高频扭矩变化。驾驶员扭矩滤波器208输出预测扭矩给扭矩控制模块216。
扭矩控制模块216确定扭矩控制期望预测扭矩(期望预测扭矩torque),其相应于发动机102的所需扭矩输出。例如,扭矩控制模块216可以根据预测扭矩、加速踏板位置和/或控制模式来确定扭矩控制期望预测扭矩。共同受让的美国专利No.7,021,282记载了扭矩控制模块216的更多功能,该专利是于2006年4月4日提交的,发明名称为“协同发动机扭矩控制”,其全部内容在此引用作为参考。
模式确定模块218根据扭矩控制期望预测扭矩来确定控制模式。例如,当扭矩控制期望预测扭矩小于一标定扭矩值时,模式确定模块218确定控制模式为RPM控制模式。可选择地,控制模式可以是扭矩控制模式,例如当扭矩控制期望预测扭矩大于或等于所述标定扭矩时。例如,控制模式MODE1可由如下公式所确定:
其中期望预测扭矩torque是扭矩控制期望预测扭矩,CALT是标定值。
ECM114还包括RPM轨迹模块220,其根据例如加速踏板位置和/或RPM来确定期望RPM。RPM轨迹模块220可以根据共同受让的美国专利No.6,405,587中详细描述的RPM控制标准模块来确定期望RPM,该专利是于2002年6月18日提交的,发明名称为“控制机动车减速的系统和方法”,其全部内容在此引用作为参考。
RPM控制模块222接收来自RPM轨迹模块220的期望RPM,来自RPM传感器180的RPM,来自模式确定模块218的控制模式,来自MAF传感器186的MAF以及扭矩控制期望预测扭矩。RPM控制模块222把RPM和期望RPM相比较并根据比较结果确定RPM校正因子(RPMerror)。RPM控制模块222根据RPM校正因子确定预测扭矩校正因子。另外,RPM控制模块222确定一个最小扭矩。该最小扭矩相应于保持期望RPM期望扭矩。RPM控制模块222根据例如一个检索图表来确定该最小扭矩。
发动机负荷可能导致RPM的显著下降。因此,RPM控制模块222可以调节发动机致动器以储备扭矩,该储备扭矩用来补偿所述负荷。例如,可以通过稍微增大发动机空气流(例如,MAF或APC)来产生储备扭矩,同时调节快速响应的发动机致动器(例如,火花正时)以产生期望扭矩。
通过这种调节储备的扭矩量被称为储备扭矩。RPM控制模块222根据RPM和APC来确定储备扭矩。RPM控制模块222也可以对RPM和/或APC进行滤波或缓冲以增强系统的稳定性。
作为发动机负荷的一个例子是动力转向系统193。RPM控制模块222根据动力转向角度(PS)和动力转向角度改变速度(PS速度)来确定动力转向储备。RPM控制模块222根据动力转向储备来调节储备扭矩。
另外,RPM控制模块222可以根据影响发动机系统100的其他工况来调节储备扭矩。所述的其他工况包括,例如,发动机102的机油温度(OT)和/或大气压力(BARO)。RPM控制模块222根据机油温度和/或大气压力来调节储备扭矩。例如,RPM控制模块222在较低机油温度时增大储备扭矩。另外,RPM控制模块222在较低大气压力时增大储备扭矩。大气压力可以例如随着海拔而变化。
RPM控制模块222还可以确定一个前馈扭矩。该前馈扭矩相应于补偿例如启用空调期望扭矩。RPM控制模块222根据预测扭矩校正因子、最小扭矩和储备扭矩来确定RPM控制期望预测扭矩(期望预测扭矩RPM)。RPM控制模块222也可以根据前馈扭矩来确定RPM控制期望预测扭矩。
第二选择模块224接收扭矩控制期望预测扭矩(期望预测扭矩torque)和RPM控制期望预测扭矩(期望预测扭矩RPM)。例如,第二选择模块224可以是多路器、开关或任何其他合适的设备。第二选择模块224根据控制模式选择矩控制期望预测扭矩和RPM控制期望预测扭矩中的一个。例如,当控制模式是RPM控制模式时,第二选择模块224可以选择RPM控制期望预测扭矩。
因此,模式确定模块218命令第二选择模块224从扭矩控制模块216或RPM控制模块222输出期望预测扭矩。第二选择模块224把期望预测扭矩输出到闭环扭矩控制模块226。
闭环扭矩控制模块226接收来自第二选择模块224的期望预测扭矩和来自扭矩估算模块的估算扭矩。该估算扭矩可以定义为通过把点火提前量设定为标定值所立即产生的扭矩量。所述标定值可以被设定为在给定RPM和APC时产生最大扭矩的最小点火提前量。
在各种实施方式中,扭矩估算模块228可以利用来自MAF传感器186的MAF信号和来自RPM传感器180的RPM信号来确定估算扭矩。另外,扭矩估算模块228可以利用当前进气和排气凸轮移相器角度来确定估算扭矩。这些进气和排气凸轮移相器角度可以是测量值。共同受让的美国专利No.6,704,638记载了更多的扭矩估算技术,该专利是于2004年3月9日提交的,发明名称为“发动机RPM和扭矩控制的扭矩估算器”,其全部内容在此引用作为参考。
闭环扭矩控制模块226把期望预测扭矩和估算扭矩相比较并根据比较结果确定扭矩校正因子。闭环扭矩控制模块226根据扭矩校正因子和期望预测扭矩来确定指令扭矩。
在各种实施方式中,扭矩校正因子可以是期望预测扭矩和估算扭矩之间的差。可选择地,闭环扭矩控制模块226可以利用PI控制方法来满足期望预测扭矩。扭矩校正因子可以包括一个扭矩比例部分。该扭矩比例部分可以是基于期望预测扭矩和估算扭矩之间差值的一个比例补偿量。扭矩校正因子还可以包括一个扭矩积分部分。该扭矩积分部分可以是基于期望预测扭矩和估算扭矩之间差值的积分的补偿量。可以利用如下公式确定扭矩校正因子(TPI):
(2)TPI=Kp*(Tdes-Test)+KI*∫(Tdes-Test)δt,
其中Kp是预先确定的比例系数,KI是预先确定的积分系数,Tdes是期望预测扭矩,Test是估算扭矩。
预测扭矩控制模块212接收指令扭矩、MAF信号和RPM信号。预测扭矩控制模块212根据指令扭矩确定期望发动机参数。在各种实施方式中,期望发动机参数可以包括期望节流阀开度、期望MAF、期望歧管绝对压力(MAP)和/或每缸期望空气(APC)。例如,预测扭矩控制模块212可以确定期望节流阀开度,并输出给节流阀致动器模块116。节流阀致动器模块116然后调节节流阀12以产生期望节流阀开度。
再谈及RPM控制模块222,RPM控制模块222还根据RPM校正因子(RPMerror)来确定即时扭矩校正因子。另外,RPM控制模块222确定一运转扭矩。该运转扭矩相应于发动机102当前产生的扭矩。该RPM控制模块222可以根据如下关系确定运转扭矩:
(3)Trun=f(APC,RPM,S,I,E),
其中S是火花提前量,I是进气凸轮移相器位置,E是排气凸轮移相器位置。
RPM控制模块222根据运转扭矩、储备扭矩和即时扭矩校正因子来确定RPM控制期望即时扭矩(期望即时扭矩RPM)。该RPM控制模块222输出RPM控制期望即时扭矩给第一选择模块214。共同受让的美国专利No.60/861,492记载了RPM控制模块222的功能,该专利是于2006年11月11日提交的,发明名称为“基于转速控制的扭矩”,其全部内容在此引用作为参考。
第一选择模块214接收来自致动模式模块206的扭矩控制期望即时扭矩和来自RPM控制模块222的RPM控制期望即时扭矩。第一选择模块214根据控制模式选择RPM控制期望即时扭矩和扭矩控制期望即时扭矩中的一个。例如,当控制模式是RPM控制模式时,第一选择模块214选择RPM控制期望即时扭矩。
因此,模式确定模块218命令第一选择模块214从致动模式模块206或者RPM控制模块222中输出期望即时扭矩。第一选择模块214输出期望即时扭矩给即时扭矩控制模块210。
即时扭矩控制模块210接收来自第一选择模块214的期望即时扭矩和来自扭矩估算模块228的估算扭矩。即时扭矩控制模块210可以利用火花致动器模块126设定火花提前量,以获得期望即时扭矩。因此,即时扭矩控制模块210可以选择把估算扭矩减小为期望即时扭矩的火花提前量。
现在参照图3,其示出了RPM控制模块222的典型实施方式的功能性框图。RPM控制模块222包括第一减法模块302,其根据来自RPM传感器180的RPM信号和来自RPM轨迹模块220的期望RPM来确定RPM校正因子(RPMerror)。例如RPM校正因子可以通过从期望RPM中减去RPM来获得。
最小扭矩模块304根据期望RPM来确定最小扭矩(Tmin)。该最小扭矩相应于把RPM保持在期望RPM所需要的扭矩。第二减法模块306接收来自扭矩控制模块216的扭矩控制期望预测扭矩(期望预测扭矩torque)和最小扭矩。例如,第二减法模块306从扭矩控制期望预测扭矩中减去最小扭矩。
储备扭矩模块308确定储备扭矩。例如,可以根据期望RPM,RPM,APC和期望APC来确定储备扭矩。可以通过根据MAF确定APC的MAF-APC转换器310来提供APC。储备扭矩模块308还根据动力转向储备来确定储备扭矩。
可以根据动力转向角度(PS)和动力转向角度改变速度(PS速度)来确定动力转向储备。例如,动力转向储备随着动力转向角度的增加和/或动力转向角度改变速度的增加而增加。储备扭矩模块308根据动力转向储备来调节储备扭矩。
另外,储备扭矩模块308可以根据其他工况来调节储备扭矩,例如,机油温度和/或大气压力。例如,储备扭矩模块308在较低机油温度时增大储备扭矩。另外,储备扭矩模块308在较低大气压力时增大储备扭矩。大气压力可以例如随着海拔而变化。
第一加法模块312把储备扭矩和最小扭矩相加。PI模块314接收来自第一减法模块302的RPM校正因子以及来自第二减法模块306的扭矩控制期望扭矩和最小扭矩之间的差。
PI模块314根据RPM校正因子以及扭矩控制期望扭矩和最小扭矩之间的差来确定预测扭矩校正因子。预测扭矩校正因子可以包括RPM比例部分(PRPM)和/或RPM积分部分(IRPM)。RPM积分部分(IRPM)可以是基于期望RPM和RPM信号之间差的积分的补偿量。RPM比例部分(PRPM)可以是基于期望RPM和RPM信号之间差的比例的补偿量。例如,可以利用如下公式来确定RPM比例部分PRPM
(4)PRPM=Kp*(RPMdes-RPM)
其中Kp是预先确定的比例系数。例如,可以利用如下公式来确定RPM积分部分IRPM
(5)IRPM=KI*∫(RPMdes-RPM)δt,
其中KI是预先确定的比例系数。另外,PI模块314根据运行模式来确定预测扭矩校正因子。例如,根据运行模式来选择RPM积分部分。
共同受让的美国专利申请No.11/656,929记载了PI控制的更多内容,该专利是于2007年1月23日提交的,发明名称为“高压缩比下的发动机扭矩控制”,其全部内容在此引用作为参考。共同受让的美国专利申请No.60/861,492记载了发动机转速的PI控制的更多内容,该专利是于2006年11月28日提交的,发明名称为“基于发动机转速控制的扭矩”,其全部内容在此引用作为参考。
第二加法模块316根据预测扭矩校正因子以及储备扭矩和最小扭矩之和来确定RPM控制期望预测扭矩(期望预测扭矩RPM)。例如,RPM控制期望预测扭矩可以是预测扭矩校正因子、储备扭矩以及最小扭矩的和。第二加法模块316输出RPM控制期望预测扭矩给第二选择模块224。这样,当控制模式是RPM控制模式时,调整发动机空气流以使发动机提供期望预测扭矩并且产生储备扭矩。
RPM控制模块222还包括运转扭矩(Trun)。该运转扭矩相应于发动机当前产生的扭矩。运转扭矩模块318根据例如APC和/或RPM来确定运转扭矩。例如,运转扭矩模块318可以根据上文公式(3)描述的关系来确定运转扭矩。
RPM控制模块222还包括P模块320,其根据RPM校正因子来确定即时扭矩校正因子(PRPM)。例如,可以根据上文的公式(4)来确定即时扭矩校正因子。第三减法模块322接收运转扭矩和储备扭矩。例如,第三减法模块322从运转扭矩中减去储备扭矩。
第三加法模块324接收来自P模块320的即时扭矩校正因子以及运转扭矩和储备扭矩之间的差。第三加法模块324根据即时扭矩校正因子以及运转扭矩和储备扭矩之间的差来确定RPM控制期望即时扭矩(期望即时扭矩RPM)。例如,RPM控制期望即时扭矩可以是即时扭矩校正因子和运转扭矩和储备扭矩之差的和。第三加法模块324输出RPM控制期望即时扭矩给第一选择模块214。这样,根据储备扭矩调整RPM控制期望即时扭矩,例如预测扭矩。即时扭矩控制模块210调节火花正时(例如提前量),从而产生期望扭矩和储备扭矩。然后根据需要通过调节火花正时(例如提前量)来利用该储备扭矩。
现在参照图4,其示出了储备扭矩模块308的一个典型实施方式的功能性框图。储备扭矩模块308包括稳定RPM模块402、稳定APC模块404和基本储备模块406。稳定RPM模块402根据RPM和期望RPM来确定稳定RPM。稳定RPM模块402对RPM和期望RPM进行滤波以增强系统稳定性。例如,可以由如下公式描述稳定RPM:
(7)稳定RPM=kR*RPM+(1-kR)*期望RPM,
其中kR是RPM滤波器系数。在各种实施方式中,kR是可标定的,并且可以根据例如RPM、发动机负荷工况和/或运转模式从检索图表中被确定。
稳定APC模块404根据APC和期望APC来确定稳定APC。可以通过例如MAF-APC转换器310来提供APC。稳定APC模块404可以对APC和期望APC进行滤波以增强系统稳定性。例如,可以由如下公式描述稳定APC:
(8)稳定APC=kA*APC+(1-kA)*期望APC,
其中kA是APC滤波器系数。在各种实施方式中,kA是可标定的,并且可以根据例如APC、发动机负荷工况和/或运转模式从检索图表中被确定。
基本储备模块406根据稳定RPM和稳定APC来确定基本储备。该基本储备相应于在当前RPM和APC可获得的额外扭矩(即储备扭矩)。例如,基本储备模块406可以根据一个或多个检索图表来确定基本储备。
发动机系统的各部件可以被发动机102所驱动,例如动力转向系统193。动力转向系统193的使用会增加发动机102的负荷(即消耗发动机的扭矩)。如果该负荷未被预测到,那么发动机102可能无法产生所需的扭矩,会导致RPM的显著减小。
动力转向储备模块408根据动力转向角度(PS)和动力转向角度改变速度(PS速度)来确定动力转向储备。例如,动力转向储备随着动力转向角度(从预定角度开始)的增大而增大。动力转向储备也随着动力转向角度改变速度的增大而增大。例如,动力转向储备模块408可以根据一个或多个检索图表来确定动力转向储备。
储备扭矩模块308包括加法模块410,其把动力转向储备和基本储备相加。这样,储备扭矩模块308提高储备扭矩以防止当使用动力转向系统193时引起RPM显著减小。
还可以根据各种工况来调节储备扭矩,例如机油温度(OT)和/或大气压力(BARO)。储备扭矩模块308包括大气压力储备模块412和机油温度储备模块414。大气压力储备模块412根据大气压力确定大气压力校正因子(KB)。大气压力储备模块412可以根据例如检索图表来确定KB。机油温度储备模块414根据机油温度确定机油温度校正因子(KT)。机油温度储备模块414可以根据例如检索图表来确定KT
储备扭矩模块308根据大气压力校正因子和/或机油温度校正因子来调节基本储备和动力转向储备的和。例如,通过KB和KT与基本储备、动力转向储备的和相乘来确定储备扭矩。储备扭矩模块308包括第一乘法器模块416和第二乘法器模块418。KB和KT可以分别通过第一乘法器模块416和第二乘法器模块418与基本储备和动力转向储备的和相乘。例如,储备扭矩可以由如下公式表示:
(9)储备扭矩=(基本储备+动力转向储备)*KB*KT
其中基本储备是稳定RPM和稳定APC的函数。
可以向储备扭矩限制模块420提供储备扭矩。储备扭矩限制模块420可以对储备扭矩施加限制,例如上限和/或下限。例如,上限可以被设定为达到最大可能扭矩的火花正时。所述下限可以用于例如防止发动机102停机。然后RPM控制模块222可以根据储备扭矩来确定RPM控制期望预测扭矩(期望预测扭矩RPM)和RPM控制期望即时扭矩(期望即时扭矩RPM)。可选择地,这些限制可以通过即时扭矩控制模块210施加给(所选择的)期望即时扭矩。储备扭矩限制模块420也可对系统进行滤波以提高系统的稳定性。例如,滤波器可以是低通滤波器、延迟滤波器或任何其他合适的滤波器。
现在参照图5,其示出了由储备扭矩模块308执行的典型步骤的流程图。在步骤502开始控制流程,其中控制流程判断控制模式是否是RPM控制模式。如果是,控制流程继续到步骤506,否则,控制流程保持在步骤502。在步骤506,控制流程确定稳定RPM。控制流程可以根据RPM和期望RPM来确定稳定RPM。例如,控制流程可以根据上文中的公式(7)来确定稳定RPM。
控制流程继续到步骤510,其中控制流程确定稳定APC。控制流程可以根据APC和期望APC来确定稳定APC。可以通过例如MAF-APC转换器310提供APC,该转换器根据来自MAF传感器186的MAF信号来确定APC。仅仅例如,控制可确定使用上述公式(8)的稳定APC。
控制流程继续到步骤514,其中控制流程确定动力转向储备。该动力转向储备是动力转向角度(即PS)和动力转向角度改变速度(即PS速度)的函数。控制流程继续到步骤518,其中控制流程确定储备扭矩。例如,控制流程根据稳定RPM、稳定APC和动力转向储备来确定储备扭矩。
控制流程继续到步骤522,其中控制流程确定机油温度校正因子KT。例如,控制流程根据来自OT传感器183的OT信号和/或检索图表来确定KT。在步骤526,控制流程确定大气压力校正因子KB。例如,控制流程根据来自大气压力传感器185的BARO信号和/或检索图表来确定KB。控制流程继续到步骤530,其中控制流程调节储备扭矩。在各种实施方式中,控制流程可以根据KT和/或KB调节储备扭矩。例如,储备扭矩可被上文的公式(9)表示。
在步骤534,控制流程对储备扭矩施加限制。在各种实施方式中,控制流程可以施加一个上限,其相应于能获得最大扭矩的标定的火花正时。另外,控制流程可以施加一个下限例如防止发动机102停机。控制流程根据储备扭矩调节一个或多个发动机致动器。
根据本发明说明书的以上描述,本领域技术人员可以根据其教导以各种形式实施本发明。因此,尽管说明书中记载了特定的实施例,但是本发明的真正范围并不限于此,因此本领域技术人员根据附图、说明书和如下权利要求的内容可以容易地进行各种变型。

Claims (19)

1.一种发动机控制模块,包括:
基本储备模块,其确定基本储备扭矩;
动力转向储备模块,其确定动力转向储备扭矩;
储备扭矩模块,其根据所述基本储备扭矩、所述动力转向储备扭矩、以及发动机机油温度与大气压力中的至少一个来确定第一储备扭矩;
第一和第二发动机致动器模块,其分别控制发动机的第一和第二致动器;以及
发动机转速控制模块,其命令第一发动机致动器模块从发动机中产生第一扭矩输出,并且命令第二发动机致动器模块从发动机中产生第二扭矩输出,其中第二扭矩输出大约等于所述第一储备扭矩和所述第一扭矩输出的和。
2.如权利要求1所述的发动机控制模块,其特征在于,为了从发动机中产生所述第一扭矩输出,所述发动机转速控制模块命令所述第一发动机致动器模块产生所述第一扭矩输出并命令所述第二发动机致动器模块产生所述第二扭矩输出。
3.如权利要求1所述的发动机控制模块,其特征在于,所述第一发动机致动器模块包括火花控制模块,并且所述第二发动机致动器模块包括节流阀开度控制模块。
4.如权利要求1所述的发动机控制模块,其特征在于,所述基本储备模块根据所述发动机的每缸进气量(APC)和发动机转速(RPM)确定所述基本储备扭矩。
5.如权利要求4所述的发动机控制模块,其特征在于,还包括:
稳定RPM模块,其根据所述RPM、期望RPM和预定RPM值来确定稳定RPM;
稳定APC模块,其根据所述APC、期望APC和预定APC值来确定稳定APC;
其中所述基本储备模块根据所述稳定RPM和所述稳定APC来确定所述基本储备扭矩。
6.如权利要求1所述的发动机控制模块,其特征在于,所述动力转向储备模块根据动力转向角度和所述动力转向角度的变化速度来确定所述动力转向储备扭矩。
7.如权利要求1所述的发动机控制模块,其特征在于,所述储备扭矩模块根据所述机油温度和所述大气压力来确定所述第一储备扭矩。
8.如权利要求1所述的发动机控制模块,其特征在于,所述机油温度的增加导致所述第一储备扭矩的减小。
9.如权利要求1所述的发动机控制模块,其特征在于,所述大气压力的增加导致所述第一储备扭矩的减小。
10.如权利要求1所述的发动机控制模块,其特征在于,还包括储备扭矩限制模块,其对所述第一储备扭矩施加上限和下限中的至少一个。
11.一种方法,包括:
确定基本储备扭矩;
确定动力转向储备扭矩;
根据所述基本储备扭矩、所述动力转向储备扭矩、以及发动机机油温度与大气压力中的至少一个来确定第一储备扭矩;
调节第一发动机致动器以从发动机中产生第一扭矩输出;和
调节第二发动机致动器以从发动机中产生第二扭矩输出,
其中所述第二扭矩输出大约等于所述第一储备扭矩和所述第一扭矩输出的和。
12.如权利要求11所述的方法,其特征在于,还包括,通过调节所述第一发动机致动器模块以产生所述第一扭矩输出,通过调节所述第二发动机致动器模块以产生所述第二扭矩输出。
13.如权利要求11所述的方法,其特征在于,根据发动机的每缸进气量(APC)和发动机转速(RPM)确定所述基本储备扭矩。
14.如权利要求13所述的方法,其特征在于,还包括:
根据所述RPM、期望RPM和预定RPM值来确定稳定RPM;
根据所述APC、期望APC和预定APC值来确定稳定APC;
其中根据所述稳定RPM和所述稳定APC来确定所述基本储备扭矩。
15.如权利要求11所述的方法,其特征在于,根据动力转向角度和所述动力转向角度的变化速度来确定所述动力转向储备扭矩。
16.如权利要求11所述的方法,其特征在于,根据所述机油温度和所述大气压力来确定所述第一储备扭矩。
17.如权利要求11所述的方法,其特征在于,所述机油温度的增加导致所述第一储备扭矩的减小。
18.如权利要求11所述的方法,其特征在于,所述大气压力的增加导致所述第一储备扭矩的减小。
19.如权利要求11所述的方法,其特征在于,还包括,对所述第一储备扭矩施加上限和下限中的至少一个。
CN2008101842073A 2007-11-02 2008-11-03 用于发动机转速控制的储备扭矩配置 Expired - Fee Related CN101424220B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US98487807P 2007-11-02 2007-11-02
US60/984878 2007-11-02
US11/972090 2008-01-10
US11/972,090 US7650219B2 (en) 2007-11-02 2008-01-10 Reserve torque management for engine speed control

Publications (2)

Publication Number Publication Date
CN101424220A true CN101424220A (zh) 2009-05-06
CN101424220B CN101424220B (zh) 2011-10-05

Family

ID=40589014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101842073A Expired - Fee Related CN101424220B (zh) 2007-11-02 2008-11-03 用于发动机转速控制的储备扭矩配置

Country Status (3)

Country Link
US (1) US7650219B2 (zh)
CN (1) CN101424220B (zh)
DE (1) DE102008053934B4 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106662022A (zh) * 2014-06-02 2017-05-10 斗山英维高株式会社 发动机控制装置及方法
CN111502842A (zh) * 2020-04-07 2020-08-07 东风汽车集团有限公司 一种发动机怠速控制储备扭矩的方法
CN114872785A (zh) * 2022-06-20 2022-08-09 中国第一汽车股份有限公司 助力转向系统控制方法、控制装置及车辆

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8116954B2 (en) * 2007-11-02 2012-02-14 GM Global Technology Operations LLC RPM to torque transition control
US8793002B2 (en) * 2008-06-20 2014-07-29 Caterpillar Inc. Torque load control system and method
US8255139B2 (en) * 2008-05-01 2012-08-28 GM Global Technology Operations LLC Method to include fast torque actuators in the driver pedal scaling for conventional powertrains
US9068517B2 (en) * 2008-05-05 2015-06-30 GM Global Technology Operations LLC Cooridnated torque control operation with de-energized throttle
US20100197406A1 (en) * 2009-02-05 2010-08-05 Ford Motor Company System and method for vehicular ad-hoc gaming networking
US8205601B2 (en) * 2009-03-16 2012-06-26 GM Global Technology Operations LLC Systems and methods for measuring engine boost pressure
DE102009046136A1 (de) * 2009-08-13 2011-02-17 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
US20110045842A1 (en) * 2009-08-20 2011-02-24 Ford Global Technologies, Llc Method and System For Updating A Social Networking System Based On Vehicle Events
US8590507B2 (en) * 2009-09-30 2013-11-26 GM Global Technology Operations LLC Variable valve actuation control systems and methods
US9451030B2 (en) 2011-02-18 2016-09-20 Ford Global Technologies, Llc Crowdsourced weather data collection and provision
US9719439B2 (en) 2012-08-24 2017-08-01 GM Global Technology Operations LLC System and method for controlling spark timing when cylinders of an engine are deactivated to reduce noise and vibration
US9638121B2 (en) * 2012-08-24 2017-05-02 GM Global Technology Operations LLC System and method for deactivating a cylinder of an engine and reactivating the cylinder based on an estimated trapped air mass
US9650978B2 (en) 2013-01-07 2017-05-16 GM Global Technology Operations LLC System and method for randomly adjusting a firing frequency of an engine to reduce vibration when cylinders of the engine are deactivated
US9534550B2 (en) 2012-09-10 2017-01-03 GM Global Technology Operations LLC Air per cylinder determination systems and methods
US9726139B2 (en) 2012-09-10 2017-08-08 GM Global Technology Operations LLC System and method for controlling a firing sequence of an engine to reduce vibration when cylinders of the engine are deactivated
US9732688B2 (en) 2014-03-26 2017-08-15 GM Global Technology Operations LLC System and method for increasing the temperature of a catalyst when an engine is started using model predictive control
US9797318B2 (en) 2013-08-02 2017-10-24 GM Global Technology Operations LLC Calibration systems and methods for model predictive controllers
US9784198B2 (en) 2015-02-12 2017-10-10 GM Global Technology Operations LLC Model predictive control systems and methods for increasing computational efficiency
US9920697B2 (en) * 2014-03-26 2018-03-20 GM Global Technology Operations LLC Engine control systems and methods for future torque request increases
US9863345B2 (en) 2012-11-27 2018-01-09 GM Global Technology Operations LLC System and method for adjusting weighting values assigned to errors in target actuator values of an engine when controlling the engine using model predictive control
US8892291B2 (en) 2013-03-12 2014-11-18 Ford Global Technologies, Llc Vehicle mass detection system
US9556811B2 (en) 2014-06-20 2017-01-31 GM Global Technology Operations LLC Firing pattern management for improved transient vibration in variable cylinder deactivation mode
US9599047B2 (en) 2014-11-20 2017-03-21 GM Global Technology Operations LLC Combination cylinder state and transmission gear control systems and methods
US10337441B2 (en) 2015-06-09 2019-07-02 GM Global Technology Operations LLC Air per cylinder determination systems and methods
US9938908B2 (en) 2016-06-14 2018-04-10 GM Global Technology Operations LLC System and method for predicting a pedal position based on driver behavior and controlling one or more engine actuators based on the predicted pedal position
US10161303B2 (en) * 2016-07-07 2018-12-25 Ford Global Technologies, Llc Systems and methods for generating auxiliary torque
DE102016011069B4 (de) * 2016-09-14 2020-02-27 Audi Ag Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
US10174687B2 (en) 2017-01-04 2019-01-08 Hyundai Motor Company Method of controlling engine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040648A (en) * 1990-11-05 1991-08-20 Caterpillar Inc. Electrohydraulic control device for a drive train of a vehicle
DE19612455C2 (de) 1996-03-28 1999-11-11 Siemens Ag Verfahren zum Ermitteln eines Solldrehmoments an der Kupplung eines Kraftfahrzeugs
DE19847205B4 (de) * 1998-10-13 2006-10-12 Zf Friedrichshafen Ag Verfahren zur Ermittlung eines Schnittmomentes in einem Antriebsstrang eines Kraftfahrzeuges mit einem Automatgetriebe
DE19847457C2 (de) 1998-10-15 2000-08-24 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
US6278925B1 (en) * 2000-04-18 2001-08-21 Ford Global Technologies, Inc. Adaptive method for determining onset of positive torque in a powertrain having an automatic transmission
US6405587B1 (en) 2000-05-08 2002-06-18 General Motors Corporation System and method of controlling the coastdown of a vehicle
US6704638B2 (en) 2002-06-26 2004-03-09 General Motors Corporation Torque estimator for engine RPM and torque control
DE10232354A1 (de) 2002-07-17 2004-01-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung der Antriebseinheit eines Fahrzeugs
JP3763472B2 (ja) * 2002-09-30 2006-04-05 三菱電機株式会社 電動パワーステアリング制御装置
DE102004012522B3 (de) 2004-03-16 2006-01-12 Bayerische Motoren Werke Ag Verfahren zur Steuerung einer Brennkraftmaschine
US7021282B1 (en) * 2004-12-01 2006-04-04 General Motors Corporation Coordinated engine torque control
US7433775B2 (en) 2006-11-17 2008-10-07 Gm Global Technology Operations, Inc. Engine torque control at high pressure ratio
US7463970B2 (en) 2006-11-28 2008-12-09 Gm Global Technology Operations, Inc. Torque based engine speed control

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106662022A (zh) * 2014-06-02 2017-05-10 斗山英维高株式会社 发动机控制装置及方法
CN106662022B (zh) * 2014-06-02 2020-09-22 斗山英维高株式会社 发动机控制装置及方法
CN111502842A (zh) * 2020-04-07 2020-08-07 东风汽车集团有限公司 一种发动机怠速控制储备扭矩的方法
CN114872785A (zh) * 2022-06-20 2022-08-09 中国第一汽车股份有限公司 助力转向系统控制方法、控制装置及车辆
CN114872785B (zh) * 2022-06-20 2023-08-29 中国第一汽车股份有限公司 助力转向系统控制方法、控制装置及车辆

Also Published As

Publication number Publication date
DE102008053934B4 (de) 2019-05-29
US7650219B2 (en) 2010-01-19
DE102008053934A1 (de) 2009-06-18
CN101424220B (zh) 2011-10-05
US20090118965A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
CN101424220B (zh) 用于发动机转速控制的储备扭矩配置
CN101435369B (zh) Rpm-转矩的转换控制
CN102102591B (zh) 用于内燃发动机的速度控制系统和方法
CN101846003B (zh) 在基于扭矩的系统中裁定扭矩储备和负载的方法和设备
CN100432404C (zh) 可调式发动机扭矩控制
CN101660453B (zh) 命令发动机扭矩和估计发动机扭矩的调节
JP5152135B2 (ja) 過給式エンジンの吸気量制御装置
CN101644194B (zh) 在标量用于传统动力传动系的驾驶员踏板中包括快速扭矩致动器的方法
CN103362676B (zh) 用于控制发动机速度的系统和方法
JP4464924B2 (ja) エンジンの制御装置および制御方法
CN102052168B (zh) 控制发动机的方法
EP1384875A2 (en) Fuel control system and method of engine
CN101372916B (zh) 全量程扭矩降低
CN101498247A (zh) 基于转矩系统中的速度控制
JPH04228845A (ja) 内燃機関用制御装置及び方法
CN102418617B (zh) 动态迟滞控制系统和方法
JP2007536452A6 (ja) 内燃機関の気流を制御するための方法および装置
CN102146848A (zh) 基于功率的发动机转速控制
CN104321517B (zh) 内燃机的控制装置以及控制方法
CN104487679A (zh) 增压发动机的控制装置
CN102094720A (zh) Hcci模式转换控制系统和方法
CN111788378A (zh) 内燃机及其控制方法
CN101858264A (zh) 与惯量转移相匹配的空气调节扭矩补偿能量
CN101275492B (zh) 基于转矩的发动机转速控制
CN101435375B (zh) 转矩积分控制学习和初始化的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111005

Termination date: 20211103