CN101421640B - 用于预测井位的碳氢化合物产量的方法和设备 - Google Patents

用于预测井位的碳氢化合物产量的方法和设备 Download PDF

Info

Publication number
CN101421640B
CN101421640B CN200780012824.9A CN200780012824A CN101421640B CN 101421640 B CN101421640 B CN 101421640B CN 200780012824 A CN200780012824 A CN 200780012824A CN 101421640 B CN101421640 B CN 101421640B
Authority
CN
China
Prior art keywords
well location
relevant
well
hydrocarbon
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200780012824.9A
Other languages
English (en)
Other versions
CN101421640A (zh
Inventor
D·李
L·登贝尔
C·M·赛尔斯
P·J·霍伊曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prad Research and Development Ltd
Original Assignee
Prad Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prad Research and Development Ltd filed Critical Prad Research and Development Ltd
Publication of CN101421640A publication Critical patent/CN101421640A/zh
Application granted granted Critical
Publication of CN101421640B publication Critical patent/CN101421640B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/306Analysis for determining physical properties of the subsurface, e.g. impedance, porosity or attenuation profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/48Processing data
    • G01V1/50Analysing data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/62Physical property of subsurface
    • G01V2210/624Reservoir parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/64Geostructures, e.g. in 3D data cubes
    • G01V2210/646Fractures

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

公开了利用微震事件数据,应力数据,地震数据和岩石特性来预测井位的碳氢化合物产量成就的方法和设备。实例方法基于与至少第一井位相关的信息产生碳氢化合物产量函数,获得与第二井位相关的信息,以及利用与第二井位相关的信息计算碳氢化合物产量函数,以便预测第二井位的碳氢化合物产量。

Description

用于预测井位的碳氢化合物产量的方法和设备
技术领域
本发明通常涉及预测井位的碳氢化合物产量成就(hydrocarbonproduction success),并且更具体地涉及利用微震事件数据,关于原地应力的信息和岩石特性来预测井位的碳氢化合物产量成就以及激励(例如由于水力劈裂)的方法和设备。
背景技术
用以提高产量或由于来自储集层(reservoir)的产量的与水力劈裂井相关的微震事件的采集和分析通常是公知的。这种微震事件基本上是源自与井或储集层相关的地质结构中的应力变化的小的地震(例如具有小于三的里氏震级(Richter magnitude))。典型地,在流体进入井或储集层的析取或喷射过程中引入这些应力变化。更具体地,储集层中地应力的各向异性特征导致对于地质结构的剪切应力的累积,比如断层,裂隙等等。在矿量递减(例如析取过程)和激励(例如在水力劈裂激励过程中)操作过程中常常释放这些累积的剪切应力。这些剪切应力的释放导致可被比如地震检波器,加速度计等的装置检测到的声能或声音的发射,并被分析来确定井和/或储集层的某些物理特性。
一些过去的努力试图分析微震数据,以便最佳化井布置和预测井性能。具体地,这些努力的一些集中于识别用以映射裂隙的微震事件的位置,以便允许井性能的预测和/或最佳化井布置。例如,微震数据可被分析来确定裂隙定向,程度或尺寸,以及被估计的生长,其全部是影响最佳井布置的因素,并且最终是影响井产量或性能的因素。在Society of Petroleum Engineers(SPE)paper number 88695,Kaiser等人的名称为“Contribution to the Valuation of MicroseismicMonitoring Data Recorded from Treatment Well-Results Basedon 20 Hydro-fracturing Jobs Recorded From Trea tment Well,”中描述了一种这种努力,于此将其公开的内容全部并入作为参考。
其它努力集中于利用微震事件数据来改进储集层的水力劈裂激励,从而增大相关井的产量,在SPE paper number 91435,East等人的名称为“Successful Application of Hydrajet Fracturing onHorizontal Wells Completed in a Thick Shale Reservoir,”中描述了一种这种努力,于此将其公开的内容全部并入作为参考。
在微震数据的上面指出的用途已经集中于确定储集层的空间特性(例如裂隙位置,定向,程度等等)的同时,仍有其它努力试图利用微震事件数据来估计储集层特性,比如空隙率,渗透率,流体饱和度,应力,地震速度和岩石强度。除了空间特性之外,这些其它储集层特性可以有用于控制从储集层的流体析取和/或计划产量和/或场的发展。在美国专利No.6,947,843中描述了如上面指出的处理微震信号来估计储集层特性的实例系统,于此将其公开的内容全部并入作为参考。
附图说明
图1是表示用以预测井位的碳氢化合物产量的实例过程的流程图;
图2表示其中在图1的实例方法中可以确定岩石岩石学特性的实例方式;
图3表示其中在图1的实例方法中可以确定岩石力学和应力特性的实例方式;
图4表示储集层的生产层的实例曲率;
图5是表示在图1的实例过程中用以估计可以用于确定水力劈裂特性的水力劈裂体积的实例过程的流程图;
图6A是具有相对高的水平应力各向异性的裂隙的实例表示;
图6B是具有相对低的水平应力各向异性的裂隙网络的实例表示;
图7是裂隙的水平应力特性和裂隙的纵横比之间的关系的实例曲线表示;
图8是实例处理器系统,其可以用于执行机器可读指令来实施于此描述的实例系统和方法。
发明内容
依据一个公开的方面,预测井位的碳氢化合物产量的系统和方法基于与至少第一井位相关的信息产生碳氢化合物产量函数,获得与第二井位相关的信息,以及利用与第二井位相关的信息计算碳氢化合物产量函数,以便预测第二井位的碳氢化合物产量。
依据另一公开的方面,估计裂隙体积的系统和方法获得与裂隙相关的一组微震数据,基于该组微震数据来产生体素化空间(voxelizedspace),并且从该组微震数据选择成对的点。此外,该系统和方法识别来自体素化空间的体素,其中识别出的体素对应于成对的点和连接成对的点的向量,以及基于识别的体素而估计裂隙体积。
依据另一公开的方面,估计裂隙的纵横比的系统和方法计算与裂隙相关的应力比,以及借助使对于地质区域的应力比与纵横比相关的预定关系,映射应力比至估计的纵横比。
具体实施方式
通常,在这里所述的实例方法,设备和制造物品利用岩石特性,应力和微震事件数据或采集的信息,例如在用以预测或估计井位(例如可被钻井的位置)的碳氢化合物产量成就的水力劈裂处理过程中。更具体地,在这里所述的实例方法,设备和制造物品确定支配对于地平线,场或地质区域(例如盆地)的碳氢化合物产量的地质力学,岩石学和/或其它岩石特性,并且然后利用结果来预测用于未来井的井位的生产率。
在于此所述的例子中,通过拟合数据确定或生成碳氢化合物产量函数或模型,该拟合数据与对于用于那些工作井的实际碳氢化合物产量的一个或多个工作或现有井的地质力学,岩石学和/或其它岩石特性相关。用于确定或产生碳氢化合物产量函数的工作或现有井可以与具体的地质区域(例如盆地)相关。以该方式,通过采集对于钻井位的地质力学,岩石学和/或其它岩石特性可以估计碳氢化合物产量函数应用于的地质区域中被钻井的位置的碳氢化合物产量,并利用与碳氢化合物产量函数结合的该采集数据来估计或预测被钻井位的碳氢化合物产量。如下面更详细地所述的,利用微震数据,地震数据,测井数据等可以确定用以确定和/或计算于此所述的实例碳氢化合物产量函数的一些参数。
在详细讨论实例方法之前,可以认识到,于此所述的实例方法或步骤可被实施为存储于有形介质上的机器可读和可执行指令,代码,软件等,该有形介质比如是磁、固态和/或光学介质,并且可由例如控制器,微处理器等执行,比如在下面更详细地描述的图8的实例处理器系统800。此外,可以人工执行与于此描述的实例方法相关的一些或全部操作,和/或可以改变或消除这些操作的顺序,以便获得相同或类似的结果。
可以结合流程图描述实例方法,其可以表示实例机器可读和可执行指令,软件或代码。这种机器可读和可执行指令,软件或代码可以包括用于通过处理器执行的程序,该处理器比如是在图8的实例处理器系统800中示出的处理器812。该程序可以嵌入存储于有形介质上的软件中,该有形介质比如是CD-ROM,软盘,硬驱动,数字通用光盘(DVD)或与处理器812相关和/或以公知方式嵌入固件和/或专用硬件中的存储器。附加或可替代地,利用硬件,固件和/或软件的任何期望组合可以实施这些实例方法。例如,一个或多个集成电路,分立的半导体元件或无源电子元件可以用于执行以流程图表示的操作。
现在返回图1,示出表示用以预测井位的碳氢化合物产量的实例过程100的流程图。实例预测过程100开始于利用测井数据确定岩石岩石学特性,利用岩心测量可以将其校准(块102)。通常,在块102处确定的岩石学特性与岩石的碳氢化合物产量潜能相关。如图2中描述的,利用元素测井分析200可以实施块102处的操作,所述元素测井分析可以更通常地称作ELANTM(其是Schlumberger的标志),用以确定什么类型的碳氢化合物存在于岩石的孔隙(pore space)中,多少碳氢化合物存在于岩石的孔隙中,并且碳氢化合物位于什么孔隙中。如已知的,元素测井分析利用作为输入的测井数据202和作为校准点的岩心测量204对岩石的体积分离矿物,碳氢化合物的孔隙度和饱和度。元素测井分析200然后输出岩石岩石学特性206,比如孔隙度,矿物体积,碳氢化合物饱和度,有机碳含量等。如已知的,利用布置在一个或多个井孔中的一个或多个探针和/或其它工具、传感器等可以采集测井数据202,并且利用在钻井过程中获得的岩心样品在实验室条件下可以进行岩心测量204。岩心测量204提供井中已知深度处的某些岩石特性,并因此可以以已知的方式用于更好地估计与井中的不同深度(例如更深)处采集的测井数据相关的岩石特性。
返回图1,跟随在块102处岩石岩石学特性的确定,实例过程100确定岩石力学和应力特性(块104)。尽管多个技术可以用于对具体的井确定岩石力学和应力特性,但是使用例如在图3中示出的力学地建模(mechanical earth modeling)技术可以有利地实施与块104相关的操作。
在图3中描述的地建模技术300是由Schlumberger TechnologyCorporation研发的公知的技术。在美国专利No.6,549,854和No.6,766,354中公开了描述地建模技术的更详细的信息,于此将两者的全部内容并入作为参考。通常,地建模技术300允许对于与被分析的井相关的场的一维力学地模型的生成。该一维地模型可以用于估计井孔处的岩石力学和应力特性。结合地震数据,也可以产生覆盖感兴趣区域的三维力学地模型,并且利用比如克里格法(kriging)的地统计学(geostatistical)技术,该三维力学地模型可以被增加(populatedwith)测井数据和地震数据。这种三维地模型可以特别有用于预测对于没有井信息的位置处的激励处理的预期生产和性能。更具体地,该模型包括地应力或应力轮廓,比如岩石孔隙中流体的压力或孔隙压力(Pp)302,复盖岩层(overburden)的重量或垂直应力(Sv)304,最小有效水平应力(Sh)306,以及最大有效水平应力(SH)308。该力学地模型300也包括主要应力方向310,比如应力Sh和SH的方位角。此外,力学地模型300包括岩石岩石学特性,比如岩石压缩和拉伸强度312,泊松比,杨氏模量(也就是岩石的静态弹性特性),摩擦角等等。
再次返回图1,跟随块104处岩石力学和应力特性的确定,实例过程100从生产层上的地震或水平面特性确定地层和地平线曲率(块106)。曲率是关于沿着表面的垂直向量沿着表面的角度的变化的速率(例如时间或深度)。图4描述了用于曲率的实例弯曲表面和符号规定。具体地,图4描述了零曲率,负曲率和正曲率的区域。三维表面(比如结合与井相关的碳氢化合物区域的表面)的曲率与如下面在方程式1中阐述的应力(假定地壳弯曲)相关,其中利用井、该区域中的地震和应力信息可以确定比例常数。
其中
h=层厚度
K=层或地平线曲率
E=杨氏模量
方程1
再次返回图1,跟随在块106处的地层和地平线曲率确定,实例预测过程100确定与被分析的现有井位(例如工作井)相关的水力劈裂特性(块108)。更具体地,在块108处,在现有井位的水力劈裂激励过程中可被采集的微震事件数据可以用于确定水力劈裂方向,水力劈裂体积,水力劈裂纵横比,以及任何其它期望的水力劈裂特性。
为了在块108处确定水力劈裂体积,可以使用离散的成对线性内插方法。在下面详细概述特别有用的离散的成对线性内插方法。然而在提供其中可以实施线性内插方法的方式的更详细的描述之前,提供该方法的操作的更通常的讨论,以便有助于可以用于实施与块108相关的方法的详细的实例数学操作的理解。
通常,用于在块108处估计或确定水力劈裂体积的实例过程基于以下假定:在对于水力劈裂激励的初始化的时间附近出现的微震事件空间上比从激励的初始化相对较迟的时间出现的那些微震事件更靠近裂隙源。换句话说,对于任何组的微震数据,该数据通常被假定为时间和空间相关,以使在随后时间出现的数据空间上更远离该源。当然,在实践中,一些数据可以不完全与假定的空间/时间相关性一致。然而,这种不一致的数据将对得到的裂隙体积估计具有或产生最小的影响,如果有的话。例如,由补偿、处理等可以消除被认为非应允或另外异常的数据。
给定将被处理的微震数据的假定的空间/时间相关性,初始以时间顺序列表接收数据,以使在列表中相邻的数据也时间上(并被假定为空间上)相邻。数据列表然后被遍历,以便确定最小和最大x,y和z轴坐标,其又用于计算被微震数据占据的三维空间的最大尺寸。利用期望的分辨率(也就是体素尺寸)然后体素化(voxelize)三维空间,并且可以利用一个或多个数据阵列和/或任何其它合适的数据结构或构造表示该三维空间。这种数据结构(例如数据阵列)的使用允许在计算机存储器和/或任何其它类型的计算机可读介质中表示和存储体素化空间。
在已经建立体素化空间之后,微震数据的时间顺序列表被处理,以便允许体素化空间中的体素被填充,标记,示踪(tag),或者被另外识别为构成裂隙空间。通常,该识别过程包括迭代处理微震数据的时间顺序列表,以便重复选择被充分时间和空间相关的不同对的数据点,并且填充,示踪等对应于数据点自身的体素化空间中的那些体素,以及沿着接合数据点的向量存在的体素。因此,通过从时间顺序列表重复选择不同对的点,并且填充,示踪等对应于原始微震点自身的那些体素,以及沿着接合那些点的向量存在的体素,体素化空间形成填充或示踪体素体积,云(cloud),或整个或全部可用的体素化空间中的空间。该填充或示踪体素体积或空间然后可以与裂隙体积相关,或者可以对应于裂隙体积。
尽管在上面所述的迭代过程中可以配对每一个原始微震点与所有其它的这种点,但是所得到的示踪体素的体积将基本上过高估计相关的裂隙网络的实际体积。因此,有利的是限制可被成对的点的范围,对应于假定的空间/时间相关性的范围,在该范围内点配对被假定为有效或有意义的。因此,在下面更详细地描述的体素填充过程中,时间上间隔超过预定阈值(例如由使用者选择的时间间隔)的成对的点不受填充或示踪过程的支配,并且位于连接这些成对的点的向量之上的点既不被填充,也不被示踪。此外,下面的实例过程也认识到,成对点之间的相关性程度可以随着增加时间分离而衰减或减小。具体地,实例填充过程建立最大半径,或者空间相关长度可以随着增大时间滞后而减小。落进最大时间滞后阈值内但是对于其点之间的距离超过最大半径或相关长度的一对点不受填充或示踪的支配。
在图5中提供通常表示上面所述过程的例子的流程图。用于估计水力劈裂体积的实例过程500可以用于实施图1的实例过程,并且具体地说可以用于实施在这里示出的块108的操作。详细地回到图5,该实例过程获得时间顺序的微震数据(块502)。可以以时间顺序数据的预处理列表或一维阵列的形式接收时间顺序的微震数据。时间顺序数据的列表然后被处理或检查,以便生成可以用于保持表示裂隙体积的数据的体素化空间(块504)。具体地,如上面指出的,体素化空间可被实施为一个或多个三维数据阵列。
然后从时间顺序微震数据选择一对点(块506),并且估计所述点来确定它们是否落进预定空间和时间阈值(块508)。如果所述点在块508处不落进阈值,不进一步处理该对点,并且控制返回块506来选择不同对的点。如果所述点在块508处落进阈值,与所述点相关的体素被示踪,填充,或被另外识别或分类为构成裂隙体积的一部分(块510)。过程500然后确定是否存在将处理的更多的点对(块512)。如果在块512处存在将处理的更多的点,控制返回块506来选择不同对的点。如果在块512处没有将处理的进一步的点,实例过程500然后可以估计该组示踪、填充等的体素,以便估计裂隙的体积(块514)。
下面的讨论提供了用于估计水力劈裂体积的上面描述的操作或过程的更详细的例子。初始,以上升时间(t)顺序给定N个空间和时间相关点,Pn=[xn,yn,zn,tn],其中n=1至N,且相关的离散化间隔(Δx,Δy,Δz)>0,利用对于l=1至L的成对点Pn和Pn-l之间的离散化的线性内插生成附加点,其中L<N,并且L受在下面示出的约束条件的支配。
Δt<Δtmax
r<Rmax
以及:
Δt≡tn-tn-l
r≡[(xn-xn-l)2+(yn-yn-l)2+(zn-zn-l)2]1/2
通过体素化它们成三维阵列然后离散化输入点。点的整个列表(也就是N个点的列表)初始被遍历,以便确定每一个坐标(xmin,xmax,ymin,ymaz,zmin,zmzx)的数值范围。三维阵列(ni,nj,nk)的尺寸然后被确定为:
ni=(ymax-ymin)/Δy+1.5
nj=(xmax-xmin)/Δx+1.5
nk=(zmax-zmin)/Δz+1.5
两个三维阵列然后被分配,从而使阵列(Tijk)中的一个用于记录t坐标值,并且其它阵列(Mijk)用于计数对于每一个体素的贡献者(contributor)的数量。在初始化两个三维阵列至零之后,通过计算三维阵列中对应单元的标号i,j,k,并且记录tn和贡献者的数量来体素化每一个输入点。下面阐述一种实例过程,通过该实例过程阵列被调零,并且输入点可被体素化。
for n=1 to N:
        Tijk←0
        Mijk←0
end for
for n=1 to N:
        i      ←(yn-ymin)/Δy+0.5
        j      ←(xn-xmin)/Δx+0.5
        k      ←(zn-zmin)/Δz+0.5
       Tijk←Tijk+tn
       Mijk←Mijk+1
end for
如果体素半径 ( &Delta;r &equiv; &CenterDot; &Delta;x 2 + &Delta;y 2 + &Delta;z 2 ) 1 / 2 超过点之间的最小距离,体素化导致抽取(decimation),并且增加的体素的总数Np小于输入点N的总数。在这种情况中,通过在执行内插之前除以阵列Mijk和重置Mijk成单位阵列(unity)来标准化阵列Tijk
体素化之后,执行内插,以便沿着接合每一对点的向量填充体素。根据假定的时间相关长度(Δtmax)和点之间的时间间隔(Δt)(例如由使用者)选择任意最大滞后(L)。例如,可以根据方程式L=NΔtmaz/(tN-t1)选择L。也假定最大半径(Rmax),对应于横向和垂直空间相关长度。通过分析利用与现有井位相关的微震数据产生的变量图可以获得时间和空间相关长度的估计。假定成对点之间的相关性的程度随着增加时间分离而衰减,最大半径可被模型化为滞后(l)的函数。例如, r max ( l ) = R l q , 其中q>0,获得随着增大滞后而减小的最大半径。下面描述可以执行上面所述的内插的过程。
for l=1 to L:
  rmax←Rmax/lq
   for n=l+1 to N:
          x←xn-xn-l
          y←yn-yn-l
          Z←Zn-Zn-l
          r←(x2+y2+z2)1/2
          if(r<rmaxand tn-tn-l<Δtmax)then
              infill_voxels_between_pts(n,n-l)
           end if
    end for
end for
然后通过从接合点n和n-1的向量迭代分解(stripping)长度的分段Δr,如在下面的实例过程中示出的,借助线性内插执行体素填充。
跟随块108处水力劈裂特性的确定,实例过程100比较水力劈裂特性(例如水力劈裂体积、取向和/或纵横比)与裂隙或裂隙网络的应力和地震各向异性特性(块110)。具体地,在块110处,实例过程100可以比较取向和/或纵横比信息与比如应力各向异性和/或地震各向异性特性的应力特性。
裂隙或裂隙网络的纵横比通常积极(并且强烈地)地与裂隙或裂隙网络的碳氢化合物产量相关。因此,如下面所述地,用以确定现有井的纵横比的微震信息或数据的分析会是有利的,当确定或产生用于预测新的井位的生产的碳氢化合物产量函数或模型时。在转向涉及其中利用微震数据可以确定裂隙纵横比的方式的更详细的讨论之前,结合图6A和6B提供涉及原地应力场的各向异性、裂隙纵横比、裂隙生长和裂隙特性或类型之间的一般关系的通常讨论。
如从图6A中可以看出的,高应力(以及地震的)各向异性(例如比率Sh/SH更接近零)导致基本上平面的水力劈裂的生长,其通常被称作典型的水力劈裂。如图6A中所描述的,在典型的水力劈裂中,应力Sh(也就是最小水平应力)基本上小于应力SH(也就是最大水平应力),其易于导致响应水力劈裂激励沿着最大应力方向的裂隙生长。另一方面,如在图6B中所示的,低应力(以及地震的)各向异性(例如Sh/SH的比率更接近1)典型地导致由相交裂隙的更分散的网络构成的宽裂隙航路。裂隙网络的宽裂隙航路或裂隙网络在比如公知的Barnett页岩的低渗透性储集层中通常是有利的(例如更大的生产性),例如,因为相比较对于基本上平面的裂隙所出现的,在多重裂隙和碳氢化合物支撑岩石之间存在更多的接触区域。因此,具有相对高Sh/SH比率的井位典型地具有相对高纵横比(也就是宽度/长度),并且可被预期提供宽的裂隙网络,比如在图6B中示出的,并且获得相对高的碳氢化合物产量。
作为应力场各向异性的结果,水力劈裂不各向同性地生长,而是相反地具有优选取向和宽度。水力劈裂宽度通常对应于裂隙和地层之间的接触面积,同时裂隙取向通常是作用于裂隙的主要应力方向的函数。利用如下所示定义的回转矩阵(gyration matrix)的半径可以计算水力劈裂的取向和宽度。
R = R 11 R 12 R 13 R 21 R 22 R 23 R 31 R 32 R 33
其中
R ij = 1 N &Sigma; k = 1 N ( r i ( k ) - r &OverBar; i ( k ) ) ( r j ( k ) - r &OverBar; j ( k ) )
在上面的计算中,N表示在水力劈裂生长的监控过程中记录的微震事件的数量,ri (k)是第k个微震事件的位置向量的第i个分量,并且ri -(k)是基于全部微震事件平均的ri (k)的平均值,并且是微震云的重心的位置向量的第i个分量。R的本征值的平方根是回转的主半径,并且可被认为是描述微震云的形状的椭圆体的主轴(也就是宽度,长度和高度)。R的本征值限定微震云的主轴的方向,并且可以用于确定主要应力方向的方向和地震各向异性的主轴。典型地,主轴中的一个基本上是垂直的,并且由λV,λH和λh表示本征值,其中λV是垂直本征值,λH是最大的水平本征值,并且λh是最小的水平本征值。微震云的纵横比(α)然后被定义为最小水平本征值除以最大水平本征值的平方根,并且等于α=(λhH)1/2,并且根据它的长度和地震各向异性的振幅而定义裂隙航路的宽度,其随着增大纵横比而减小。可以计算第二纵横比β=(λvH)1/2,并且该第二纵横比与水力劈裂的垂直程度有关,并且可以用于确定水力劈裂是否已经停留在区域中。
通过计算Sh/SH是已知的(或者利用例如用于方位角的各向异性的三维地震数据进行估计)并且岩石近似是方位角各向同性(例如在具有小的裂隙密度或低曲率的区域中)的任何位置处微震云的宽度对长度的比率可以校正该关系(也就是例如利用结合图7在下面详细描述的程序或技术可以确定单独的参数p)。然后可以预测井还没有被钻井,但是在该处可以估计Sh/SH的任何位置处任何微震云的纵横比,从而使在钻井之前,该估计可以用于估计微震云的体积。需要指出,通过依据上面的方程式组合微震云的纵横比和该位置处的最小水平应力,该方法也可以用于估计水力劈裂的位置处的最大水平应力。
可以对一个或多个井实施与块102-110相关的操作,对于该一个或多个井来说实际的碳氢化合物产量是已知的。该一个或多个井可以与具体的地质区域(例如盆地)相关,对于该具体的地质区域,新的(也就是将被钻井的)井位的碳氢化合物产量将被估计或预测。以该方式,如下面更加详细所述的,涉及(例如拟合)在块102-110处确定的数据或信息的方程式或模型可以基于统计学上更重要的数据集,并因此可以允许相同的地质区域或地质学类似的区域中新的井位的碳氢化合物产量的更精确的预测。
具体地,在块102-110处确定的数据或信息可以涉及对于在块102-110处分析的现有井位的每一个的实际的碳氢化合物产量(块112)。如下面表述的,利用岩石特性、岩石学特性、储集层曲率,连同微震取向、体积和利用微震事件计算的纵横比一起,可以确定使这些特性与碳氢化合物产量相关的相关性,从而使:
碳氢化合物产量=f(HIP,Sh,SH,曲率,MSV,纵横比)
其中
HIP=原地的碳氢化合物
Sh=最小水平应力
SH=最大水平应力
曲率=生产地层表面曲率
MSV=微震裂隙体积
纵横比=微震云的纵横比
上面指出的参数的相关性或关系将基于被分析的地质区域(例如盆地)的具体特性而改变。例如对于具体的地质区域中的一个或多个井可以确定上面的参数或特性的每一个,对于该具体的地质区域,碳氢化合物产量是已知的。利用对于这些井的每一个的参数值以及这些井的已知的碳氢化合物产量,利用几个数据拟合方法或技术中的一个在块112处可以确定感兴趣的参数(例如在上面指出的那些)的最佳相关性。例如,最小平方、加权平均、线性回归或任何其它合适的数据拟合技术可以用于建立数据至函数的最佳拟合。然而,需要指出,上面所述的碳氢化合物函数或模型是一个实例函数或模型,并且较少的参数和/或附加的参数可以用于产生该函数或模型。
也存在力学/应力特性和微震裂隙体积之间的关系(材料平衡),以使MSV=f(Sh,SH,曲率,裂隙流体的体积)。因此,利用于此描述的技术的这种关系的发展提供了另一种方式,其中对于新的井位(例如将被钻井的位置)可以计算MSV参数。在Sh/SH为已知的任何位置处也可以估计该MSV,或者可以利用例如结合图7在下面描述的技术估计(例如借助用于方位角的各向异性的三维地震数据的分析)该MSV。
在块112处确定或生成与具体的地质区域(例如盆地)相关的碳氢化合物产量函数或模型之后,实例过程100利用在块112处展开的碳氢化合物产量函数或模型来预测新的井位(例如可被钻井的位置)的碳氢化合物产量(块114)。更具体地,计算对于新的井位确定组成函数或模型的参数的每一个的值和预测的碳氢化合物产量。对于上面提供的实例函数或模型,对于新的井位可以确定HIP,Sh,SH,曲率,MSV和纵横比(α)的值,并且所述值可以与先前生成的碳氢化合物产量函数或模型(也就是在块112处产生的函数或模型)一起用于计算预测的碳氢化合物产量(块114)。
如上面指出的,利用与微震信息相反更容易获得的应力数据可以确定新的井位(例如将被钻井的井位)的纵横比。具体地,最小和最大水平应力(也就是Sh/SH)的比率可以与纵横比α相关。具体地,该关系通常可被表达为α=(Sh/SH)p,其中p是具体的地质区域的特性。
图7是包括族曲线的实例曲线图,该族曲线描述了对于不同p值的应力比和纵横比之间的关系。为了预测、估计或确定对于新的井位(例如被钻井的位置)的纵横比,与现有井位(例如在过程100的块108和110处采集的信息)相关的实际应力数据和纵横比信息用于确定哪一个族曲线最佳表示地质区域(例如盆地或场)。在从在图7中示处的族曲线选择出表示地质区域的曲线之后,估计或测量对于新的井位(例如被钻井的位置)的应力数据(也就是Sh和SH)。然后计算比率Sh/SH,并将其映射至选择的曲线,以便确定被估计的纵横比。例如,如果对于新的井位的比率Sh/SH被确定为.8,并且与该位置相关的p值被确定为.5,那么利用图7的实例曲线,对于新的位置的估计或预测的纵横比大约是.9。当利用图1的块112处展开的产量方程或模型计算对于新的井位的预测产量时,然后可以使用(与用于其它值的参数一起)被估计的纵横比。
图8是可以用于实施于此描述的系统和方法的实例处理器系统的方块图。如图8中示出的,处理器系统800包括被耦合至互连总线814的处理器812。处理器812包括寄存器组或寄存器空间816,其在图8中被示为整个在芯片内,但是其可替代地被定位成整个或部分地在芯片外并且借助专用电连接和/或借助互连总线814被直接耦合至处理器812。处理器812可以是任何合适的处理器、处理单元或微处理器。尽管没有在图8中示出,系统800可以是多处理器系统,并因此可以包括与处理器812相同或类似的并且被通信耦合至互连总线814的一个或多个附加的处理器。
图8的处理器812耦合至芯片组818,其包括存储器控制器802和输入/输出(I/O)控制器822。如公知的,芯片组典型地提供I/O和存储器管理功能,以及可由耦合至芯片组818的一个或多个处理器存取和/或使用的多个通用和/或专用寄存器、计时器等。存储器控制器820执行使处理器812(或各个处理器,如果存在多个处理器的话)能够访问系统存储器824和大容量存储器825的功能。
系统存储器824可以包括任何期望类型的易失性和/或非易失性存储器,比如静态随机存取存储器(SRAM),动态随机存取存储器(DRAM),闪存,只读存储器(ROM)等。大容量存储器825可以包括任何期望类型的大容量存储装置,包括硬盘驱动,光驱动,带存储装置等。
I/O控制器822执行使处理器812能够经由I/O总线832与外围输入/输出(I/O)装置826和828和网络接口830通信的功能。所述I/O装置826和828可以是任何期望类型的I/O装置,比如键盘,视频显示器或监控器,鼠标等等。网络接口830例如可以是使处理器系统800能够与另一处理器系统通信的以太网装置、异步传输模式(ATM)装置,802.11装置,DSL调制解调器,电缆调制解调器,蜂窝调制解调器等等。
尽管存储器控制器820和I/O控制器822在图8中被描述为芯片组818中的单独的功能块,但是通过这些块执行的功能可被集成在单个半导体电路中,或者可以利用两个或更多个单独的集成电路来实施。

Claims (25)

1.一种预测井位的碳氢化合物产量的方法,包括:
利用在三维空间中表示的空间和时间相关的微震数据来估计裂隙体积;
通过使碳氢化合物产量值与所述裂隙体积相关来基于与至少第一井位相关的信息产生碳氢化合物产量函数;
获得与第二井位相关的信息;以及
利用与第二井位相关的信息计算碳氢化合物产量函数来预测第二井位的碳氢化合物产量。
2.如权利要求1所述的方法,其中与该至少第一井位相关的信息包括微震数据、地震数据或测井数据中的至少一个。
3.如权利要求1所述的方法,其中与该至少第一井位相关的信息包括借助地模型或元素测井分析产生的信息。
4.如权利要求1所述的方法,其中与第二井位相关的信息包括微震数据、地震数据或测井数据中的至少一个。
5.如权利要求1所述的方法,其中获得与第二井位相关的信息包括获得与第二井位相关的应力信息并且利用该应力信息来估计与第二井位相关的裂隙的纵横比。
6.如权利要求5所述的方法,其中利用与第二井位相关的应力信息来估计裂隙的纵横比包括计算应力比和利用该应力比来估计纵横比。
7.如权利要求6所述的方法,其中利用与第二井位相关的信息计算碳氢化合物产量函数来预测第二井位的碳氢化合物产量包括利用估计的纵横比计算碳氢化合物产量函数。
8.如权利要求1所述的方法,其中产生碳氢化合物产量函数包括确定岩石岩石学特性、岩石力学特性、应力、或地层和地平线曲率中的至少一个。
9.如权利要求1所述的方法,进一步包括基于与多个井位相关的信息产生碳氢化合物产量函数。
10.如权利要求1所述的方法,其中计算碳氢化合物产量函数包括利用碳氢化合物原地参数、水平应力参数、储集层曲率或纵横比中的至少一个来计算碳氢化合物产量函数。
11.如权利要求1所述的方法,其中第一和第二井位与单个地质区域相关。
12.如权利要求1所述的方法,其中第一井位是现有井位,并且第二井位是将被钻井的井位。
13.如权利要求1所述的方法,其中所述碳氢化合物产量值还与碳氢化合物原地参数、水平应力参数、储集层曲率或纵横比中的至少一个相关,所述纵横比是通过使用至少一个回转半径来计算的。
14.一种用于预测井位的碳氢化合物产量的系统,包括:
存储器和耦合至存储器的处理器,其中处理器被编程为:
利用在三维空间中表示的空间和时间相关的微震数据来估计裂隙体积;
通过使碳氢化合物产量值与所述裂隙体积相关来基于与至少第一井位相关的信息产生碳氢化合物产量函数;以及
基于与第二井位相关的信息计算碳氢化合物产量函数来预测第二井位的碳氢化合物产量。
15.如权利要求14所述的系统,其中与该至少第一井位相关的信息包括微震数据、地震数据或测井数据中的至少一个。
16.如权利要求14所述的系统,其中与该至少第一井位相关的信息包括借助地模型或元素测井分析产生的信息。
17.如权利要求14所述的系统,其中与第二井位相关的信息包括微震数据、地震数据或测井数据中的至少一个。
18.如权利要求14所述的系统,其中处理器进一步被编程为利用与第二井位相关的应力信息来估计与第二井位相关的裂隙的纵横比。
19.如权利要求18所述的系统,其中处理器进一步被编程为通过计算应力比并且利用该应力比估计纵横比来估计裂隙的纵横比。
20.如权利要求19所述的系统,其中处理器进一步被编程为通过利用估计的纵横比计算碳氢化合物产量函数来预测第二井位的碳氢化合物产量。
21.如权利要求14所述的系统,其中处理器进一步被编程为通过确定岩石岩石学特性、岩石力学特性、应力、或地层和地平线曲率中的至少一个来产生碳氢化合物产量函数。
22.如权利要求14所述的系统,其中处理器进一步被编程为基于与多个井位相关的信息产生碳氢化合物产量函数。
23.如权利要求14所述的系统,其中处理器进一步被编程为通过利用碳氢化合物原地参数、水平应力参数、储集层曲率或纵横比中的至少一个来计算碳氢化合物产量函数。
24.如权利要求14所述的系统,其中第一井位是现有井位,并且第二井位是将被钻井的井位。
25.如权利要求14所述的系统,其中所述碳氢化合物产量值还与碳氢化合物原地参数、水平应力参数、储集层曲率或纵横比中的至少一个相关,所述纵横比是通过使用至少一个回转半径来计算的。
CN200780012824.9A 2006-02-09 2007-02-08 用于预测井位的碳氢化合物产量的方法和设备 Expired - Fee Related CN101421640B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/350,639 2006-02-09
US11/350,639 US7486589B2 (en) 2006-02-09 2006-02-09 Methods and apparatus for predicting the hydrocarbon production of a well location
PCT/US2007/003493 WO2007092596A2 (en) 2006-02-09 2007-02-08 Methods and apparatus for predicting the hydrocarbon production of a well location

Publications (2)

Publication Number Publication Date
CN101421640A CN101421640A (zh) 2009-04-29
CN101421640B true CN101421640B (zh) 2013-04-17

Family

ID=38230925

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780012824.9A Expired - Fee Related CN101421640B (zh) 2006-02-09 2007-02-08 用于预测井位的碳氢化合物产量的方法和设备

Country Status (7)

Country Link
US (3) US7486589B2 (zh)
EP (1) EP1984759A2 (zh)
CN (1) CN101421640B (zh)
CA (2) CA2641867C (zh)
EA (1) EA014144B1 (zh)
IN (2) IN2014CN02483A (zh)
WO (1) WO2007092596A2 (zh)

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7486589B2 (en) * 2006-02-09 2009-02-03 Schlumberger Technology Corporation Methods and apparatus for predicting the hydrocarbon production of a well location
US7457194B2 (en) * 2006-09-12 2008-11-25 Schlumberger Technology Corporation Discriminating natural fracture- and stress-induced sonic anisotropy using a combination of image and sonic logs
US7882745B2 (en) * 2006-09-20 2011-02-08 Schlumberger Technology Corporation Method and system to invert tectonic boundary or rock mass field in in-situ stress computation
US20080109169A1 (en) * 2006-11-07 2008-05-08 Sreekanth Thumrugoti Method and system for characterizing seismic reflection points
US7958937B1 (en) * 2007-07-23 2011-06-14 Well Enhancement & Recovery Systems, Llc Process for hydrofracturing an underground aquifer from a water well borehole for increasing water flow production from Denver Basin aquifers
CN101903805B (zh) * 2007-12-21 2013-09-25 埃克森美孚上游研究公司 沉积盆地中的建模
US8269501B2 (en) * 2008-01-08 2012-09-18 William Marsh Rice University Methods for magnetic imaging of geological structures
US9223041B2 (en) * 2008-01-23 2015-12-29 Schlubmerger Technology Corporation Three-dimensional mechanical earth modeling
US8073665B2 (en) * 2008-03-07 2011-12-06 Schlumberger Technology Corporation Analyzing an oilfield network for oilfield production
US8301383B2 (en) * 2008-06-02 2012-10-30 Schlumberger Technology Corporation Estimating in situ mechanical properties of sediments containing gas hydrates
EP2154551A1 (de) * 2008-08-12 2010-02-17 Geolab S.a.s. Verfahren zum Erfassen von Veränderungen in einem Kohlenwasserstoff-Vorkommen
WO2010080366A1 (en) 2009-01-09 2010-07-15 Exxonmobil Upstream Research Company Hydrocarbon detection with passive seismic data
US20100252268A1 (en) * 2009-04-03 2010-10-07 Hongren Gu Use of calibration injections with microseismic monitoring
US8600708B1 (en) 2009-06-01 2013-12-03 Paradigm Sciences Ltd. Systems and processes for building multiple equiprobable coherent geometrical models of the subsurface
US9418182B2 (en) 2009-06-01 2016-08-16 Paradigm Sciences Ltd. Systems and methods for building axes, co-axes and paleo-geographic coordinates related to a stratified geological volume
US10060241B2 (en) 2009-06-05 2018-08-28 Schlumberger Technology Corporation Method for performing wellbore fracture operations using fluid temperature predictions
US8498852B2 (en) * 2009-06-05 2013-07-30 Schlumberger Tehcnology Corporation Method and apparatus for efficient real-time characterization of hydraulic fractures and fracturing optimization based thereon
US20110029291A1 (en) * 2009-07-31 2011-02-03 Xiaowei Weng Method for fracture surface extraction from microseismic events cloud
GB2473251B (en) * 2009-09-07 2013-09-18 Statoilhydro Asa Method of assessing hydrocarbon source rock candidate
EP2315045B1 (de) * 2009-10-22 2012-08-01 Sick Ag Messung von Entfernungen oder Entfernungsänderungen
US8743115B1 (en) 2009-10-23 2014-06-03 Paradigm Sciences Ltd. Systems and methods for coordinated editing of seismic data in dual model
US8898044B2 (en) 2009-11-25 2014-11-25 Halliburton Energy Services, Inc. Simulating subterranean fracture propagation
US8386226B2 (en) * 2009-11-25 2013-02-26 Halliburton Energy Services, Inc. Probabilistic simulation of subterranean fracture propagation
US9176245B2 (en) * 2009-11-25 2015-11-03 Halliburton Energy Services, Inc. Refining information on subterranean fractures
US8392165B2 (en) * 2009-11-25 2013-03-05 Halliburton Energy Services, Inc. Probabilistic earth model for subterranean fracture simulation
US8886502B2 (en) * 2009-11-25 2014-11-11 Halliburton Energy Services, Inc. Simulating injection treatments from multiple wells
US8437962B2 (en) * 2009-11-25 2013-05-07 Halliburton Energy Services, Inc. Generating probabilistic information on subterranean fractures
US9410421B2 (en) * 2009-12-21 2016-08-09 Schlumberger Technology Corporation System and method for microseismic analysis
US9134454B2 (en) 2010-04-30 2015-09-15 Exxonmobil Upstream Research Company Method and system for finite volume simulation of flow
US9058445B2 (en) 2010-07-29 2015-06-16 Exxonmobil Upstream Research Company Method and system for reservoir modeling
CA2803066A1 (en) 2010-07-29 2012-02-02 Exxonmobil Upstream Research Company Methods and systems for machine-learning based simulation of flow
CA2805446C (en) 2010-07-29 2016-08-16 Exxonmobil Upstream Research Company Methods and systems for machine-learning based simulation of flow
AU2011283109B2 (en) * 2010-07-30 2016-07-21 Exxonmobil Upstream Research Company Systems and methods for predicting well performance
WO2012039811A1 (en) 2010-09-20 2012-03-29 Exxonmobil Upstream Research Company Flexible and adaptive formulations for complex reservoir simulations
US10428626B2 (en) * 2010-10-18 2019-10-01 Schlumberger Technology Corporation Production estimation in subterranean formations
AU2010365379B2 (en) 2010-12-16 2015-07-23 Landmark Graphics Corporation Method and system of plotting correlated data
EP2697734B1 (en) * 2011-04-15 2017-07-05 Landmark Graphics Corporation Systems and methods for hydraulic fracture characterization using microseismic event data
US8681583B2 (en) * 2011-08-17 2014-03-25 Microseismic, Inc. Method for calculating spatial and temporal distribution of the Gutenberg-Richter parameter for induced subsurface seismic events and its application to evaluation of subsurface formations
US9513402B2 (en) 2011-08-23 2016-12-06 Exxonmobil Upstream Research Company Estimating fracture dimensions from microseismic data
US11774616B2 (en) 2011-08-29 2023-10-03 Seismic Innovations Method and system for microseismic event location error analysis and display
WO2013112719A1 (en) * 2012-01-24 2013-08-01 Octave Reservoir Technologies, Inc. Method and system for displaying microseismic event locations
US9945970B1 (en) * 2011-08-29 2018-04-17 Seismic Innovations Method and apparatus for modeling microseismic event location estimate accuracy
US20140334261A1 (en) * 2011-08-29 2014-11-13 Jonathan S. Abel Method and system for microseismic event location error analysis and display
CA2843929C (en) 2011-09-15 2018-03-27 Exxonmobil Upstream Research Company Optimized matrix and vector operations in instruction limited algorithms that perform eos calculations
WO2013039558A1 (en) * 2011-09-16 2013-03-21 Landmark Graphics Corporation Systems and methods for assisted property modeling
US9001619B2 (en) * 2011-10-19 2015-04-07 Global Microseismic Services, Inc. Method for imaging microseismic events using an azimuthally-dependent focal mechanism
US9097821B2 (en) * 2012-01-10 2015-08-04 Chevron U.S.A. Inc. Integrated workflow or method for petrophysical rock typing in carbonates
US9377546B2 (en) * 2012-05-06 2016-06-28 Schlumberger Technology Corporation Automatic extraction and characterization of fault and fracture populations
CA2873722C (en) * 2012-05-14 2017-03-21 Landmark Graphics Corporation Method and system of predicting future hydrocarbon production
WO2014036742A1 (en) 2012-09-10 2014-03-13 Schlumberger Canada Limited Method for transverse fracturing of a subterranean formation
US10036829B2 (en) 2012-09-28 2018-07-31 Exxonmobil Upstream Research Company Fault removal in geological models
US20140100797A1 (en) * 2012-10-08 2014-04-10 Mihira Narayan Acharya System and method for determining the production of wells
US20150355354A1 (en) * 2013-01-14 2015-12-10 Westerngeco Llc Method of analyzing seismic data
WO2014124455A1 (en) * 2013-02-11 2014-08-14 Conocophillips Company Method for detecting and quantifying fracture interaction in hydraulic fracturing
CA2904139C (en) * 2013-03-14 2021-09-07 Schlumberger Canada Limited Direct fluid indicators in multiple segment prospects
US9097097B2 (en) 2013-03-20 2015-08-04 Baker Hughes Incorporated Method of determination of fracture extent
US9612359B2 (en) 2013-06-12 2017-04-04 Baker Hughes Incorporated Generation of fracture networks using seismic data
US10444389B2 (en) 2013-06-21 2019-10-15 Schlumberger Technology Corporation Determining change in permeability caused by a hydraulic fracture in reservoirs
US20150006082A1 (en) * 2013-06-26 2015-01-01 Baker Hughes Incorporated Method and apparatus for microseismic attribute mapping for stimulated reservoir volume evaluation
CN104278991B (zh) * 2013-07-09 2016-12-28 中国石油化工股份有限公司 盐湖相烃源岩有机碳和生烃潜量的多元测井计算方法
US9416652B2 (en) 2013-08-08 2016-08-16 Vetco Gray Inc. Sensing magnetized portions of a wellhead system to monitor fatigue loading
US9529104B2 (en) 2013-08-26 2016-12-27 Halliburton Energy Services, Inc. Indentifying a stimulated reservoir volume from microseismic data
US9529103B2 (en) 2013-08-26 2016-12-27 Halliburton Energy Services, Inc. Identifying overlapping stimulated reservoir volumes for a multi-stage injection treatment
US9903189B2 (en) 2013-08-26 2018-02-27 Halliburton Energy Services, Inc. Real-time stimulated reservoir volume calculation
US9523275B2 (en) * 2013-08-26 2016-12-20 Halliburton Energy Services, Inc. Identifying an axis of a stimulated reservoir volume for a stimulation treatment of a subterranean region
US9551208B2 (en) 2013-08-26 2017-01-24 Halliburton Energy Services, Inc. Identifying uncertainty associated with a stimulated reservoir volume (SRV) calculation
EP3060753B1 (en) 2013-10-21 2021-04-28 Westerngeco LLC Seismic data analysis
EP2869096B1 (en) 2013-10-29 2019-12-04 Emerson Paradigm Holding LLC Systems and methods of multi-scale meshing for geologic time modeling
WO2015089458A1 (en) 2013-12-13 2015-06-18 Schlumberger Canada Limited Creating radial slots in a wellbore
US10221667B2 (en) 2013-12-13 2019-03-05 Schlumberger Technology Corporation Laser cutting with convex deflector
US10422923B2 (en) 2014-03-28 2019-09-24 Emerson Paradigm Holding Llc Systems and methods for modeling fracture networks in reservoir volumes from microseismic events
WO2016018723A1 (en) 2014-07-30 2016-02-04 Exxonmobil Upstream Research Company Method for volumetric grid generation in a domain with heterogeneous material properties
WO2016067108A1 (en) * 2014-10-27 2016-05-06 Cgg Services Sa Predicting hydraulic fracture treatment effectiveness and productivity in oil and gas reservoirs
US11077521B2 (en) 2014-10-30 2021-08-03 Schlumberger Technology Corporation Creating radial slots in a subterranean formation
CA2963416A1 (en) 2014-10-31 2016-05-06 Exxonmobil Upstream Research Company Handling domain discontinuity in a subsurface grid model with the help of grid optimization techniques
AU2015339883B2 (en) 2014-10-31 2018-03-29 Exxonmobil Upstream Research Company Methods to handle discontinuity in constructing design space for faulted subsurface model using moving least squares
US10197704B2 (en) 2014-12-19 2019-02-05 Baker Hughes, A Ge Company, Llc Corrective scaling of interpreted fractures based on the microseismic detection range bias correction
US10822922B2 (en) * 2015-01-19 2020-11-03 International Business Machines Corporation Resource identification using historic well data
CN108138555A (zh) * 2015-02-23 2018-06-08 奈克森能量无限责任公司 预测储层性质的方法、系统及设备
US9690002B2 (en) 2015-06-18 2017-06-27 Paradigm Sciences Ltd. Device, system and method for geological-time refinement
FR3038091B1 (fr) * 2015-06-25 2017-07-28 Storengy Procede et dispositif de determination d'une permeabilite au sein d'un reservoir
WO2017007464A1 (en) * 2015-07-08 2017-01-12 Halliburton Energy Services, Inc. Improved fracture matching for completion operations
US10338246B1 (en) 2015-08-31 2019-07-02 Seismic Innovations Method and system for microseismic event wavefront estimation
CN105572746A (zh) * 2015-12-11 2016-05-11 中国石油天然气股份有限公司 一种确定钻井位置的方法及装置
CN105927216B (zh) * 2016-04-25 2019-04-16 中国矿业大学 一种褶皱发育区储层裂缝预测方法及装置
US10466388B2 (en) 2016-09-07 2019-11-05 Emerson Paradigm Holding Llc System and method for editing geological models by switching between volume-based models and surface-based structural models augmented with stratigraphic fiber bundles
GB2569900B (en) * 2016-10-04 2022-03-02 Landmark Graphics Corp Geostatistical analysis of microseismic data in fracture modeling
CN106646605A (zh) * 2016-10-16 2017-05-10 中国地质大学(北京) 一种复杂断裂区岩层曲率优化计算方法
CN106772673B (zh) * 2016-11-29 2018-11-13 西南石油大学 一种页岩储层地应力预测建模系统
CN106772674B (zh) * 2016-12-01 2018-11-16 中国石油天然气股份有限公司 一种裂缝性砂岩储层含油饱和度的计算方法
US10839114B2 (en) 2016-12-23 2020-11-17 Exxonmobil Upstream Research Company Method and system for stable and efficient reservoir simulation using stability proxies
CN110850470A (zh) * 2018-08-20 2020-02-28 中国石油化工股份有限公司 一种利用地震资料计算地应力差异系数的方法
CN109710968B (zh) * 2018-11-14 2022-03-01 中国石油天然气股份有限公司 一种基岩潜山裂缝预测方法及装置
US11156744B2 (en) 2019-01-10 2021-10-26 Emerson Paradigm Holding Llc Imaging a subsurface geological model at a past intermediate restoration time
US10520644B1 (en) 2019-01-10 2019-12-31 Emerson Paradigm Holding Llc Imaging a subsurface geological model at a past intermediate restoration time
RU2720859C1 (ru) * 2019-05-29 2020-05-13 Общество с ограниченной ответственностью "Газпром добыча Кузнецк" Способ выбора конструкции горизонтальной метаноугольной скважины
CN111045082A (zh) * 2020-01-06 2020-04-21 中国石油化工股份有限公司 利用微地震事件点构建水力压裂裂缝空间缝网的方法
CN111749687B (zh) * 2020-07-23 2023-11-21 中海石油国际能源服务(北京)有限公司 多层油藏主力层位确定方法、装置、设备及存储介质
US11921250B2 (en) 2022-03-09 2024-03-05 Saudi Arabian Oil Company Geo-mechanical based determination of sweet spot intervals for hydraulic fracturing stimulation
CN114779330B (zh) * 2022-04-26 2022-12-27 中国矿业大学 一种基于微震监测的采掘工作面主裂隙方位分析预测方法
CN117872472B (zh) * 2023-12-15 2024-06-18 大庆油田有限责任公司 一种砂泥地层正断层不规则断面形状的确定方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220205A (en) * 1978-11-28 1980-09-02 E. I. Du Pont De Nemours And Company Method of producing self-propping fluid-conductive fractures in rock

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739871A (en) * 1971-07-30 1973-06-19 Senturion Sciences Mapping of earth fractures induced by hydrafracturing
BE795884A (fr) * 1971-08-25 1973-08-23 Continental Oil Co Procede pour la determination du degre de maturite d'hydrocarbures par des mesures de resonance paramagnetique electronique
US4280200A (en) * 1979-05-21 1981-07-21 Daniel Silverman Seismic method of mapping horizontal fractures in the earth
US4442895A (en) * 1982-09-07 1984-04-17 S-Cubed Method of hydrofracture in underground formations
US4638254A (en) * 1983-05-02 1987-01-20 Mobil Oil Corporation Method of determining and displaying the orientation of subsurface formations
US4802144A (en) * 1986-03-20 1989-01-31 Applied Geomechanics, Inc. Hydraulic fracture analysis method
US4749038A (en) * 1986-03-24 1988-06-07 Halliburton Company Method of designing a fracturing treatment for a well
US4907206A (en) * 1988-07-29 1990-03-06 Amoco Corporation Method for estimating formation lithology
US5010527A (en) * 1988-11-29 1991-04-23 Gas Research Institute Method for determining the depth of a hydraulic fracture zone in the earth
US5963508A (en) * 1994-02-14 1999-10-05 Atlantic Richfield Company System and method for determining earth fracture propagation
US5771170A (en) * 1994-02-14 1998-06-23 Atlantic Richfield Company System and program for locating seismic events during earth fracture propagation
US5472049A (en) * 1994-04-20 1995-12-05 Union Oil Company Of California Hydraulic fracturing of shallow wells
US5711376A (en) * 1995-12-07 1998-01-27 Marathon Oil Company Hydraulic fracturing process
US5671136A (en) * 1995-12-11 1997-09-23 Willhoit, Jr.; Louis E. Process for seismic imaging measurement and evaluation of three-dimensional subterranean common-impedance objects
FR2772137B1 (fr) * 1997-12-08 1999-12-31 Inst Francais Du Petrole Methode de surveillance sismique d'une zone souterraine en cours d'exploitation permettant une meilleure identification d'evenements significatifs
US6236942B1 (en) 1998-09-15 2001-05-22 Scientific Prediction Incorporated System and method for delineating spatially dependent objects, such as hydrocarbon accumulations from seismic data
CA2362285C (en) 1999-02-12 2005-06-14 Schlumberger Canada Limited Uncertainty constrained subsurface modeling
GB9906893D0 (en) 1999-03-26 1999-05-19 Univ Edinburgh Stress-forecasting time and magnitude of large earthquakes in stress-monitoring sites
US7028772B2 (en) * 2000-04-26 2006-04-18 Pinnacle Technologies, Inc. Treatment well tiltmeter system
US6351991B1 (en) * 2000-06-05 2002-03-05 Schlumberger Technology Corporation Determining stress parameters of formations from multi-mode velocity data
US6766354B1 (en) 2000-09-28 2004-07-20 Intel Corporation Speed sensitive content delivery in a client-server network
US6904366B2 (en) * 2001-04-03 2005-06-07 The Regents Of The University Of California Waterflood control system for maximizing total oil recovery
US7096942B1 (en) * 2001-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a relatively permeable formation while controlling pressure
GB2379013B (en) * 2001-08-07 2005-04-20 Abb Offshore Systems Ltd Microseismic signal processing
US6581686B2 (en) * 2001-10-09 2003-06-24 Digital Tracing Systems Ltd Method of and device for tracing hydraulic fractures, stimulations, cement jobs, etc. in oil and gas wells
US7069149B2 (en) * 2001-12-14 2006-06-27 Chevron U.S.A. Inc. Process for interpreting faults from a fault-enhanced 3-dimensional seismic attribute volume
WO2004022905A1 (en) * 2002-04-10 2004-03-18 Schlumberger Technology Corporation Method, apparatus and system for pore pressure prediction in presence of dipping formations
FR2855631A1 (fr) * 2003-06-02 2004-12-03 Inst Francais Du Petrole Methode pour optimiser la production d'un gisement petrolier en presence d'incertitudes
US6985816B2 (en) * 2003-09-15 2006-01-10 Pinnacle Technologies, Inc. Methods and systems for determining the orientation of natural fractures
RU2006112550A (ru) * 2003-09-16 2007-11-10 Коммонвет Сайентифик Энд Индастриал Рисерч Органайзейшн (Au) Гидравлический разрыв пласта
GB2419707B (en) * 2004-10-28 2006-12-27 Schlumberger Holdings System and method for placement of packers in open hole wellbores
US7225078B2 (en) * 2004-11-03 2007-05-29 Halliburton Energy Services, Inc. Method and system for predicting production of a well
US7679993B2 (en) * 2005-06-17 2010-03-16 Schlumberger Technology Corporation Method of characterizing a fractured reservoir using seismic reflection amplitudes
US7299132B2 (en) * 2005-08-08 2007-11-20 Schlumberger Technology Corp. Method and system for pre-drill pore pressure prediction
US7486589B2 (en) 2006-02-09 2009-02-03 Schlumberger Technology Corporation Methods and apparatus for predicting the hydrocarbon production of a well location

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220205A (en) * 1978-11-28 1980-09-02 E. I. Du Pont De Nemours And Company Method of producing self-propping fluid-conductive fractures in rock

Also Published As

Publication number Publication date
EA200870245A1 (ru) 2009-02-27
US8780671B2 (en) 2014-07-15
IN2014CN02484A (zh) 2015-10-09
US20070183260A1 (en) 2007-08-09
EA014144B1 (ru) 2010-10-29
EP1984759A2 (en) 2008-10-29
CA2641867A1 (en) 2007-08-16
US20090125240A1 (en) 2009-05-14
WO2007092596A2 (en) 2007-08-16
CN101421640A (zh) 2009-04-29
WO2007092596A3 (en) 2007-12-13
IN2014CN02483A (zh) 2015-10-09
US7869954B2 (en) 2011-01-11
CA2641867C (en) 2014-01-21
CA2827032A1 (en) 2007-08-16
US20110295508A1 (en) 2011-12-01
US7486589B2 (en) 2009-02-03

Similar Documents

Publication Publication Date Title
CN101421640B (zh) 用于预测井位的碳氢化合物产量的方法和设备
US10942293B2 (en) Rock physics based method of integrated subsurface reservoir characterization for use in optimized stimulation design of horizontal wells
US10444389B2 (en) Determining change in permeability caused by a hydraulic fracture in reservoirs
AU2009260453B2 (en) Heterogeneous earth models for a reservoir field
EP3071787B1 (en) Workflow for determining stresses and/or mechanical properties in anisotropic formations
US20130046524A1 (en) Method for modeling a reservoir basin
RU2305301C1 (ru) Способ размещения поисковых, разведочных и эксплуатационных скважин на месторождениях нефти и газа на основе трехмерной геологической модели
Williams-Stroud et al. Microseismicity-constrained discrete fracture network models for stimulated reservoir simulation
US20140214387A1 (en) Constrained optimization for well placement planning
US20140052377A1 (en) System and method for performing reservoir stimulation operations
CA3032777C (en) Multivariate analysis of seismic data, microseismic data, and petrophysical properties in fracture modeling
CN108138555A (zh) 预测储层性质的方法、系统及设备
CN114746774A (zh) 预测油气和运移路径的综合地质力学模型
CN103403768A (zh) 有关地下岩层的模型的方法和系统
CN104153768A (zh) 一种评价花岗岩储层储集性能的方法
US20220120933A1 (en) Method of detection of hydrocarbon horizontal slippage passages
CN110062897B (zh) 使用自组织映射来进行的岩石物理场评估
Bian et al. 3D Discrete Natural Fracture Networks and Fracture Reactivation Potential Assessment in the Longmaxi Shale
Lacazette et al. Ambient seismic imaging throughout the unconventional field’s life cycle
Kemper et al. Integrated Workflow and the Application of a Fully Coupled Geomechanical Flow Simulator for Shales
ROCK PRODUCTION BASED [-114

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130417

Termination date: 20150208

EXPY Termination of patent right or utility model