CN101406925B - Ultrasonic vibration-assisted microthixotropic deformation method and device of semi-solid metal - Google Patents

Ultrasonic vibration-assisted microthixotropic deformation method and device of semi-solid metal Download PDF

Info

Publication number
CN101406925B
CN101406925B CN2008101621808A CN200810162180A CN101406925B CN 101406925 B CN101406925 B CN 101406925B CN 2008101621808 A CN2008101621808 A CN 2008101621808A CN 200810162180 A CN200810162180 A CN 200810162180A CN 101406925 B CN101406925 B CN 101406925B
Authority
CN
China
Prior art keywords
semi
micro
solid metal
solid
ultrasonic vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008101621808A
Other languages
Chinese (zh)
Other versions
CN101406925A (en
Inventor
梅德庆
姚喆赫
周红华
钱淼
陈子辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN2008101621808A priority Critical patent/CN101406925B/en
Publication of CN101406925A publication Critical patent/CN101406925A/en
Application granted granted Critical
Publication of CN101406925B publication Critical patent/CN101406925B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)

Abstract

The invention discloses a method for the micro-thixotropy and molding of semisolid metal through the assistance of supersonic vibration. The lower end of a lower mould is provided with an electric heater of the lower mould; the lower mould is connected with a supersonic amplitude transformer; the lower mould is provided with a thermocouple of the lower mould; the upper end of a punching head is connected with an upper mould; the upper end of the upper mould is provided with an electric heater of the upper mould; the upper mould is connected with a pressure lever; and the upper mould is provided with a thermocouple of the upper mould. A semisolid metal blank material is remelted and heated to a solid-liquid coexisting region and is subjected to pressure machining; at the same time, supersonic vibration is applied to reduce friction and micro-molding resistance between the semisolid metal blank material and a micro-mould, strengthen the fluidity of the semi-solid metal material, improve the filling performance of the semisolid metal material in the micro-mould, and achieve good micro-molding effect. The method promotes the micro-thixotropy and molding of the semisolid metal, improves the efficiency of micro-molding, reduces equipment cost, avoids the disadvantages of hole contraction and the like in micro-machining process and improves the effects of micro-thixotropy and molding of the semisolid metal.

Description

超声振动辅助半固态金属微触变成形方法及装置Ultrasonic vibration-assisted microthixotropic deformation method and device of semi-solid metal

技术领域technical field

本发明涉及金属材料微加工技术,尤其涉及一种超声振动辅助半固态金属微触变成形方法及装置。The invention relates to metal material microprocessing technology, in particular to an ultrasonic vibration-assisted semi-solid metal microthixotropic deformation method and device.

背景技术Background technique

20世纪70年代初,美国麻省理工学院的科学家在实验中首次发现了半固态金属的流变性能,并发展了金属半固态成形技术,该工艺介于固态金属成形和液态金属成形之间,融合了铸造和塑性成形工艺优点,具有高效、节能等显著优点,许多学者称其为是21世纪最有发展前途的近净成形技术之一。如今国内外学者已经对半固态金属成形开展了大量的研究工作,铝合金及镁合金的半固态加工技术日益成熟,其研究成果在汽车工业中零件加工中已经取得了较大程度的应用。In the early 1970s, scientists from the Massachusetts Institute of Technology discovered the rheological properties of semi-solid metals in experiments for the first time, and developed metal semi-solid forming technology, which is between solid metal forming and liquid metal forming. Combining the advantages of casting and plastic forming technology, it has significant advantages such as high efficiency and energy saving. Many scholars call it one of the most promising near-net shape technologies in the 21st century. Nowadays, scholars at home and abroad have carried out a lot of research work on semi-solid metal forming. The semi-solid processing technology of aluminum alloy and magnesium alloy is becoming more and more mature, and its research results have been applied to a large extent in the processing of parts in the automotive industry.

半固态金属成形是针对固、液态共存的半熔化或半凝固金属进行成形加工的工艺方法的总称,主要包括触变成形和流变成形两种工艺,其中流变成形(Rheoforming)是指将经搅拌获得的半固态金属浆料在保持其半固态温度的条件下直接进行半固态加工,而触变成形(Thixoforming)是指将半固态浆料冷却凝固成坯料后,根据产品尺寸下料,再重新加热到半固态温度,然后进行成形加工。触变成形工艺流程长,但它便于组织专业化生产,质量便于控制,因而成为半固态成形技术研究的重点,在现有的研究及工业应用中也绝大多数采用触变成形的工艺。Semi-solid metal forming is a general term for forming processes for semi-molten or semi-solidified metals that coexist in solid and liquid states, mainly including thixoforming and rheoforming. It refers to direct semi-solid processing of the semi-solid metal slurry obtained by stirring under the condition of maintaining its semi-solid temperature, and thixoforming refers to cooling and solidifying the semi-solid slurry into a billet, according to the size of the product The material is blanked, reheated to semi-solid temperature, and then shaped. The thixoforming process is long, but it is convenient to organize specialized production and the quality is easy to control, so it has become the focus of semi-solid forming technology research, and most of the existing research and industrial applications use thixoforming technology .

金属坯料处于半固态时具有一定的固液比,和液态压铸相比,它具有一定的粘度,所以,成形时可以避免喷溅、紊流以及卷气等缺点;它和固体锻造相比,易于形成微细特征,且变形力小,可以节省能源。因此,和传统成形工艺相比,半固态金属成形具有一系列突出的优点:成形温度低,成形件力学性能好,较好地综合了固态金属模锻与液态压铸成形的优点,可以批量生产形状复杂、高性能和高精度的微型零部件。半固态成形的固有优点决定了半固态成形技术有应用于微小零件制备的潜力,并且有望解决目前微细结构加工技术普遍存在的成本高、效率低的问题,为微细结构的大批量低成本生产提供一种新方法,然而至今半固态微成形技术在世界范围内报道仍很少。2004年荷兰的Steinhoff等人在《Steel Research International》杂志第75卷第611-619页首次提出了有关微半固态成形(又称:微触变成形,Micro-Thixoforming)的概念和方法,但至今还没有出现该技术研究和应用的进一步报道。美国密歇根大学的Gap-Yong Kim等人在博士论文的研究中对于微/介观尺度下的半固态铝合金微触变成形技术进行了研究,主要研究成果在2007年的《Transactions ofthe ASME,Journal of Manufacturing Science and Engineering》杂志第129卷第246-251页进行了报道。When the metal blank is in a semi-solid state, it has a certain solid-liquid ratio. Compared with liquid die-casting, it has a certain viscosity. Therefore, it can avoid the disadvantages of splashing, turbulence and air entrainment during forming; it is easier to process than solid forging. The formation of fine features with low deformation force saves energy. Therefore, compared with the traditional forming process, semi-solid metal forming has a series of outstanding advantages: low forming temperature, good mechanical properties of formed parts, better integration of the advantages of solid metal die forging and liquid die-casting, and mass production of shapes Complex, high-performance and high-precision miniature components. The inherent advantages of semi-solid forming determine that semi-solid forming technology has the potential to be applied to the preparation of tiny parts, and it is expected to solve the problems of high cost and low efficiency that currently exist in microstructure processing technology, and provide a high-volume low-cost production of microstructure. A new method, however, so far semi-solid micro-forming technology is still rarely reported in the world. In 2004, Steinhoff et al. in the Netherlands first proposed the concept and method of micro-semi-solid forming (also known as: micro-thixoforming, Micro-Thixoforming) on pages 611-619 of Volume 75 of the magazine "Steel Research International", but So far there is no further report on the research and application of this technology. Gap-Yong Kim and others from the University of Michigan in the United States studied the micro-thixotropic deformation technology of semi-solid aluminum alloys at the micro/mesoscopic scale in their doctoral dissertation research. The main research results were published in "Transactions of the ASME" in 2007. It was reported on pages 246-251 of Volume 129 of Journal of Manufacturing Science and Engineering.

从当前半固态金属微成形技术的研究报道中可以发现,目前半固态金属微成形技术发展尚处于起步阶段,技术上还不成熟,微成形填充效果不甚理想。From the current research reports on semi-solid metal micro-forming technology, it can be found that the development of semi-solid metal micro-forming technology is still in its infancy, the technology is not yet mature, and the filling effect of micro-forming is not ideal.

主要存在的问题有:The main problems are:

(1)在半固态金属微触变成形过程中,成形效果不够稳定,同一加工过程中的一些相同结构特征的成形一致性还不够好;(1) During the microthixotropic forming process of semi-solid metal, the forming effect is not stable enough, and the forming consistency of some of the same structural features in the same processing process is not good enough;

(2)半固态金属微触变成形结构中还存在缩孔、晶粒结构不致密等问题,制造出的工件的微结构形貌也有待改进;(2) There are still problems such as shrinkage cavity and non-dense grain structure in the semi-solid metal microthixotropic deformation structure, and the microstructure morphology of the manufactured workpiece also needs to be improved;

(3)半固态金属微触变成形的加工效率和能耗尚有待改进。(3) The processing efficiency and energy consumption of semi-solid metal microthixotropy still need to be improved.

为了将半固态金属微成形方法推向产业化应用,从而提供一种适合大批量、低成本和高效的金属微细结构特征加工方法,对于现有的半固态金属微触变成形技术进行改进是十分必要的。In order to promote the semi-solid metal micro-forming method to industrial application, thereby providing a method suitable for large-scale, low-cost and high-efficiency processing of metal microstructure features, it is necessary to improve the existing semi-solid metal micro-thixotropic forming technology. very necessary.

发明内容Contents of the invention

为了克服上述半固态金属微触变成形方法的不足,本发明的目的在于提供一种超声振动辅助半固态金属微触变成形方法及装置。利用超声波的导引作用、排除气体、增强半固态金属材料材料流动性、减小微成形阻力、增加材料致密度等作用,达到对半固态金属微触变成形过程的辅助作用,从而获得良好的半固态金属工件微成形效果,提高微触变成形效率。In order to overcome the disadvantages of the above-mentioned semi-solid metal microthixotropic deformation method, the object of the present invention is to provide a semi-solid metal microthixotropic deformation method and device assisted by ultrasonic vibration. Utilize the guiding effect of ultrasonic waves, remove gas, enhance the fluidity of semi-solid metal materials, reduce the resistance of micro-forming, increase the density of materials, etc., to achieve the auxiliary effect on the micro-thixotropic forming process of semi-solid metals, so as to obtain good results. Excellent semi-solid metal workpiece micro-forming effect, improving the micro-thixoforming efficiency.

本发明解决其技术问题所采用的技术方案是:The technical solution adopted by the present invention to solve its technical problems is:

一、一种超声振动辅助半固态金属微触变成形方法,该方法包括以下各步骤:One, a kind of ultrasonic vibration assisted semi-solid metal microthixotropic deformation method, this method comprises the following steps:

(1)将内部组织结构为球状晶的半固态金属坯料置于下模上,通过内嵌电加热器预热并保持冲头和下模温度升至250~350℃;(1) Place the semi-solid metal blank whose internal structure is spherical crystal on the lower die, preheat it with an embedded electric heater and keep the temperature of the punch and the lower die rising to 250-350°C;

(2)感应线圈加热半固态金属坯料温度,控制坯料的固相分数或液相分数至固液共存区;(2) The induction coil heats the temperature of the semi-solid metal billet, and controls the solid phase fraction or liquid phase fraction of the billet to the solid-liquid coexistence area;

(3)将下表面带有微细特征结构的冲头压下并施加锻压载荷,开始压力加工,锻压力为50kN~70kN,与此同时开启功率超声发生装置,通过超声变幅杆与下模的直接连接,对半固态金属微触变成形加工过程施加功率为300~500W,频率为15~20kHz的超声振动,在超声波的辅助作用下,完成对半固态金属坯料的微触变成形过程;(3) Press down the punch with a fine feature structure on the lower surface and apply a forging load to start the press processing. The forging pressure is 50kN ~ 70kN. At the same time, turn on the power ultrasonic generator, through the ultrasonic horn and the lower die Direct connection, apply ultrasonic vibration with a power of 300-500W and a frequency of 15-20kHz to the micro-thixotropy processing of semi-solid metal, and complete the micro-thixotropy process of semi-solid metal blanks with the assistance of ultrasonic waves ;

(4)完成半固态金属的超声振动辅助微触变成形过程,停止超声振动和模具加热;(4) Complete the ultrasonic vibration-assisted microthixotropy forming process of semi-solid metal, stop ultrasonic vibration and mold heating;

(5)升起冲头后,取出半固态金属微触变成形零件。(5) After raising the punch, take out the semi-solid metal microthixomorphic deformed parts.

二、一种超声振动辅助半固态金属微触变成形装置:2. An ultrasonic vibration-assisted semi-solid metal microthixotropy forming device:

在下模的下端设有下模电加热器,下模与超声变幅杆连接,在下模中安装下模热电偶,下表面带有微细特征结构的冲头的上端与上模连接,上模上端设有上模电加热器,上模与压杆连接,上模中安装上模热电偶。An electric heater for the lower die is provided at the lower end of the lower die, and the lower die is connected to the ultrasonic horn. A thermocouple of the lower die is installed in the lower die. There is an upper mold electric heater, the upper mold is connected with the pressure rod, and the upper mold thermocouple is installed in the upper mold.

在超声振动辅助半固态金属微触变成形方法和装置中,所述带有微细特征结构的冲头下表面开有为孔径和深度均为0.8mm~1mm的圆孔阵列。In the method and device for microthixotropic deformation of semi-solid metal assisted by ultrasonic vibration, the lower surface of the punch with micro-featured structure is provided with an array of circular holes with a diameter and a depth of 0.8 mm to 1 mm.

本发明具有的有益效果是:The beneficial effects that the present invention has are:

本发明首次将超声振动应用于半固态金属微触变成形过程,利用超声振动多方面的辅助作用改善了微触变成形效果,缩短了工艺时间,提高了工艺质量,降低了制造成本。它对于促进半固态金属微触变成形方法的发展及其应用,从而获得一种高效率、低成本、高品质的金属微细结构特征加工方法具有重要意义。The invention applies ultrasonic vibration to the microthixotropy forming process of semi-solid metal for the first time, improves the microthixotropy deformation effect by utilizing various auxiliary functions of ultrasonic vibration, shortens the process time, improves the process quality and reduces the manufacturing cost. It is of great significance to promote the development and application of semi-solid metal micro-thixotropic deformation methods, so as to obtain a high-efficiency, low-cost, high-quality metal microstructure feature processing method.

附图说明Description of drawings

图1是超声振动辅助半固态金属微触变成形装置示意图(感应加热时)。Fig. 1 is a schematic diagram of an ultrasonic vibration-assisted semi-solid metal microthixotropic deformation device (during induction heating).

图2是超声振动辅助半固态金属微触变成形装置示意图(触变成形时)。Fig. 2 is a schematic diagram of an ultrasonic vibration assisted semi-solid metal micro-thixotropic deformation device (during thixotropic deformation).

图中:1.超声变幅杆,2.下模电加热器,3.螺钉,4.冲头,5.螺栓,6.上模电加热器,7.压杆,8.上模,9.上模热电偶,10.下模,11.半固态金属坯料,12.下模热电偶,13.感应线圈。In the figure: 1. Ultrasonic horn, 2. Lower die electric heater, 3. Screw, 4. Punch, 5. Bolt, 6. Upper die electric heater, 7. Pressure rod, 8. Upper die, 9 . Upper mold thermocouple, 10. Lower mold, 11. Semi-solid metal blank, 12. Lower mold thermocouple, 13. Induction coil.

具体实施方式Detailed ways

如图1及图2所示,本发明是在下模10的下端设有下模电加热器2,下模10与超声变幅杆1连接,在下模10中安装下模热电偶12,下表面带有微细特征结构的冲头4的上端与上模8连接,上模8上端设有上模电加热器6,上模8与压杆7连接,上模8中安装上模热电偶9。As shown in Fig. 1 and Fig. 2, the present invention is provided with lower mold electric heater 2 at the lower end of lower mold 10, and lower mold 10 is connected with ultrasonic horn 1, and lower mold thermocouple 12 is installed in lower mold 10, and lower surface The upper end of the punch 4 with micro-featured structure is connected with the upper die 8, the upper end of the upper die 8 is provided with an upper die electric heater 6, the upper die 8 is connected with the pressure rod 7, and the upper die thermocouple 9 is installed in the upper die 8.

所述带有微细特征结构的冲头下表面开有为孔径和深度均为0.8mm~1mm的圆孔阵列。The lower surface of the punch with the fine characteristic structure is provided with an array of circular holes with a diameter and a depth of 0.8 mm to 1 mm.

如图1及图2所示,本发明提出的超声振动辅助半固态金属微触变成形方法的具体实施过程如下:As shown in Figure 1 and Figure 2, the specific implementation process of the ultrasonic vibration-assisted semi-solid metal microthixotropic deformation method proposed by the present invention is as follows:

(1)如图1所示,在加工装置中设置上模电加热器6与下模电加热器2分别对冲头4和下模10进行加热,同时在装置中也设置上模热电偶9及下模热电偶12,并分别实时测量上模8及下模10的温度。将上模电加热器6与上模热电偶9,以及下模电加热器2与下模热电偶12连接至多通道高精度温度控制仪从而形成两个闭环温度控制系统,通过设定多通道温度控制仪的控制温度及控制策略等有关参数,可以达到对于冲头4及下模10温度的实时反馈控制。冲头4及下模10采用的材料为热作模具钢H13。在超声振动辅助半固态金属微触变成形加工之前需要对冲头4及下模10进行预热,温度保持在300℃左右,这是因为在半固态金属微触变成形过程中,如果冲头4和下模10的温度与半固态金属坯料11二次加热温度相比过低,则会引起半固态金属坯料11在加工过程中的温度下降过快,使半固态浆料迅速结壳,或增加冷隔,从而影响半固态金属微结构的成形效果,但模具温度如果过高,容易粘焊,加速模具磨损,因此控制冲头4及下模10温度在300℃左右。(1) As shown in Figure 1, the upper mold electric heater 6 and the lower mold electric heater 2 are set in the processing device to heat the punch 4 and the lower mold 10 respectively, and the upper mold thermocouple 9 and Lower mold thermocouple 12, and measure the temperature of upper mold 8 and lower mold 10 in real time respectively. Connect the upper mold electric heater 6 and the upper mold thermocouple 9, and the lower mold electric heater 2 and the lower mold thermocouple 12 to the multi-channel high-precision temperature controller to form two closed-loop temperature control systems. By setting the multi-channel temperature The relevant parameters such as the control temperature and the control strategy of the controller can achieve real-time feedback control of the temperature of the punch 4 and the lower die 10 . The material used for the punch 4 and the lower die 10 is hot work die steel H13. The punch 4 and the lower die 10 need to be preheated before ultrasonic vibration-assisted microthixotropy processing of semi-solid metal, and the temperature should be kept at about 300°C. The temperature of the head 4 and the lower mold 10 is too low compared with the secondary heating temperature of the semi-solid metal blank 11, which will cause the temperature of the semi-solid metal blank 11 to drop too fast during the processing process, causing the semi-solid slurry to quickly crust. Or increase the cold gap, thereby affecting the forming effect of the semi-solid metal microstructure, but if the mold temperature is too high, it is easy to stick to welding and accelerate the wear of the mold. Therefore, the temperature of the punch 4 and the lower mold 10 is controlled at about 300°C.

(2)如图1所示,在下模10及冲头4预热完成后,使用感应线圈13对于置于下模10上的半固态金属坯料11进行加热,控制坯料的固相分数或液相分数至固液共存区,半固态金属坯料11可以采用A356、A357等常用半固态铝合金或镁合金进行加工。在完成感应加热后,移出感应线圈13。(2) As shown in Figure 1, after the preheating of the lower die 10 and the punch 4 is completed, an induction coil 13 is used to heat the semi-solid metal blank 11 placed on the lower die 10 to control the solid fraction or liquid phase of the blank From the fraction to the solid-liquid coexistence area, the semi-solid metal blank 11 can be processed by commonly used semi-solid aluminum alloys or magnesium alloys such as A356 and A357. After the induction heating is completed, the induction coil 13 is removed.

(3)如图2所示,待半固态金属坯料加热至固液共存区后,将冲头4压下并施加锻压载荷,开始压力加工,锻压力为50kN~70kN。超声振动辅助半固态金属微触变成形装置可以在普通压机的基础上进行改装,其中上模8及压杆7通过螺栓5连接,冲头4下端的微细特征结构可根据工件需要采用微细电火花加工方式完成加工。在压力加工开始的同时开启超声发生装置,超声波的功率为300~500W,频率为15~20kHz。由于超声变幅杆1与下模10通过螺钉3直接连接,从而保证了超声波振动能量的有效传递。在微触变成形加工过程中一直施加超声振动,使得半固态金属坯料在超声波的辅助作用下完成快速微成形过程。在压力加工的同时依然需要通过两个闭环温度控制系统对于冲头4和下模10进行持续加热,维持冲头4和下模10处于高温状态,从而保证半固态金属微触变成形过程中的温度处于固液共存区。(3) As shown in Figure 2, after the semi-solid metal billet is heated to the solid-liquid coexistence area, the punch 4 is pressed down and the forging load is applied to start the press processing. The forging pressure is 50kN-70kN. Ultrasonic vibration-assisted semi-solid metal micro-thixoforming device can be refitted on the basis of ordinary presses, in which the upper die 8 and the pressure rod 7 are connected by bolts 5, and the micro-featured structure of the lower end of the punch 4 can be used according to the needs of the workpiece. The machining is completed by EDM. Turn on the ultrasonic generating device at the same time as the pressure processing starts, the power of the ultrasonic wave is 300-500W, and the frequency is 15-20kHz. Since the ultrasonic horn 1 is directly connected with the lower mold 10 through the screw 3, the effective transmission of ultrasonic vibration energy is ensured. Ultrasonic vibration is always applied during the micro-thixoforming process, so that the semi-solid metal blank completes the rapid micro-forming process with the assistance of ultrasonic waves. At the same time of pressure processing, it is still necessary to continuously heat the punch 4 and the lower die 10 through two closed-loop temperature control systems to maintain the punch 4 and the lower die 10 in a high temperature state, so as to ensure the semi-solid metal microthixotropy during the deformation process. The temperature is in the solid-liquid coexistence region.

(4)微触变成形过程完成后,停止超声振动和模具加热。(4) After the microthixotropy forming process is completed, stop the ultrasonic vibration and mold heating.

(5)升起冲头后,取出半固态金属微成形工件,重复以上过程即可开始下一工件的加工。(5) After raising the punch, take out the semi-solid metal micro-formed workpiece, and repeat the above process to start the processing of the next workpiece.

Claims (4)

1.一种超声振动辅助半固态金属微触变成形方法,其特征在于,该方法包括以下各步骤:1. A microthixotropic deformation method of semi-solid metal assisted by ultrasonic vibration, is characterized in that, the method comprises the following steps: (1)将内部组织结构为球状晶的半固态金属坯料置于下模上,通过内嵌电加热器预热并保持冲头和下模温度升至250~350℃;(1) Place the semi-solid metal blank whose internal structure is spherical crystal on the lower die, preheat it with an embedded electric heater and keep the temperature of the punch and the lower die rising to 250-350°C; (2)感应线圈加热半固态金属坯料温度,控制坯料的固相分数或液相分数至固液共存区;(2) The induction coil heats the temperature of the semi-solid metal billet, and controls the solid phase fraction or liquid phase fraction of the billet to the solid-liquid coexistence area; (3)将下表面带有微细特征结构的冲头压下并施加锻压载荷,开始压力加工,锻压力为50kN~70kN,与此同时开启功率超声发生装置,通过超声变幅杆与下模的直接连接,对半固态金属微触变成形加工过程施加功率为300~500W,频率为15~20kHz的超声振动,在超声波的辅助作用下,完成对半固态金属坯料的微触变成形过程;(3) Press down the punch with a fine feature structure on the lower surface and apply a forging load to start the press processing. The forging pressure is 50kN ~ 70kN. At the same time, turn on the power ultrasonic generator, through the ultrasonic horn and the lower die Direct connection, apply ultrasonic vibration with a power of 300-500W and a frequency of 15-20kHz to the micro-thixotropy processing of semi-solid metal, and complete the micro-thixotropy process of semi-solid metal blanks with the assistance of ultrasonic waves ; (4)完成半固态金属的超声振动辅助微触变成形过程,停止超声振动和模具加热;(4) Complete the ultrasonic vibration-assisted microthixotropy forming process of semi-solid metal, stop ultrasonic vibration and mold heating; (5)升起冲头后,取出半固态金属微触变成形零件。(5) After raising the punch, take out the semi-solid metal microthixomorphic deformed parts. 2.根据权利要求1所述的一种超声振动辅助半固态金属微触变成形方法,其特征在于:所述带有微细特征结构的冲头下表面开有为孔径和深度均为0.8mm~1mm的圆孔阵列。2. A method for micro-thixotropic deformation of semi-solid metal assisted by ultrasonic vibration according to claim 1, characterized in that: the lower surface of the punch with micro-featured structure has a hole diameter and a depth of 0.8mm ~1mm array of circular holes. 3.一种超声振动辅助半固态金属微触变成形装置,其特征在于:在下模(10)的下端设有下模电加热器(2),下模(10)与超声变幅杆(1)连接,在下模(10)中安装下模热电偶(12),下表面带有微细特征结构的冲头(4)的上端与上模(8)连接,上模(8)上端设有上模电加热器(6),上模(8)与压杆(7)连接,上模(8)中安装上模热电偶(9)。3. A microthixotropic deformation device assisted by ultrasonic vibration of semi-solid metal is characterized in that: the lower end of the lower die (10) is provided with a lower die electric heater (2), the lower die (10) and the ultrasonic horn ( 1) connection, the lower mold thermocouple (12) is installed in the lower mold (10), the upper end of the punch (4) with a fine feature structure on the lower surface is connected with the upper mold (8), and the upper end of the upper mold (8) is provided with The upper mold electric heater (6), the upper mold (8) is connected with the depression bar (7), and the upper mold thermocouple (9) is installed in the upper mold (8). 4.根据权利要求3所述的一种超声振动辅助半固态金属微触变成形装置,其特征在于:所述带有微细特征结构的冲头下表面开有为孔径和深度均为0.8mm~1mm的圆孔阵列。4. An ultrasonic vibration-assisted semi-solid metal micro-thixotropy forming device according to claim 3, characterized in that: the lower surface of the punch with the micro-featured structure has a hole diameter and a depth of 0.8mm ~1mm array of circular holes.
CN2008101621808A 2008-11-18 2008-11-18 Ultrasonic vibration-assisted microthixotropic deformation method and device of semi-solid metal Expired - Fee Related CN101406925B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101621808A CN101406925B (en) 2008-11-18 2008-11-18 Ultrasonic vibration-assisted microthixotropic deformation method and device of semi-solid metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101621808A CN101406925B (en) 2008-11-18 2008-11-18 Ultrasonic vibration-assisted microthixotropic deformation method and device of semi-solid metal

Publications (2)

Publication Number Publication Date
CN101406925A CN101406925A (en) 2009-04-15
CN101406925B true CN101406925B (en) 2011-08-24

Family

ID=40570244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101621808A Expired - Fee Related CN101406925B (en) 2008-11-18 2008-11-18 Ultrasonic vibration-assisted microthixotropic deformation method and device of semi-solid metal

Country Status (1)

Country Link
CN (1) CN101406925B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101829772B (en) * 2010-05-26 2011-11-02 浙江大学 Thermoplasticity shaping and processing method of metal glass micro construction member
CN101934336B (en) * 2010-09-14 2012-07-04 华中科技大学 Method and device for semi-solid precision rheo-casting of light alloys
CN102228942B (en) * 2011-04-27 2013-04-17 浙江大学 Semi-solid metal micro-thixoforming device with automatic mould emptier
CN102407271A (en) * 2011-11-14 2012-04-11 上海工程技术大学 Ultrasonic-assisted forging device and method for large forging
CN102581164B (en) * 2012-02-20 2013-10-23 浙江大学 Split type semi-solid metal microthixotropy forming device with upper and lower demoulding mechanism
CN103909267B (en) * 2014-03-26 2015-11-04 浙江大学 Semi-solid metal powder forming device and forming method based on ultrasonic vibration
CN104174677B (en) * 2014-07-16 2015-12-30 深圳大学 The micro-extrusion molding crystal grain thinning technology of magnesium alloy ultrasonic under a kind of normal temperature
CN104148608B (en) * 2014-08-06 2018-08-03 南昌大学 One kind preparing semisolid Mg based on ultrasound2Si particles enhance the method for building up of Mg-Al-Mn composite material rheological models
CN104259364A (en) * 2014-09-16 2015-01-07 浙江德清龙立红旗制药机械有限公司 Metal material heading device
CN104550875B (en) * 2014-12-17 2016-09-28 浙江大学 Ultrasonic wave added upper die structure with chiller
CN105522246B (en) * 2016-03-09 2017-12-15 哈尔滨工业大学(威海) A kind of ultrasonic wave added semi-solid welding method
CN109604495A (en) * 2019-01-15 2019-04-12 苏州市东盛锻造有限公司 A kind of forging method of boll-weevil hanger
CN111531175A (en) * 2020-05-09 2020-08-14 苏州大学 Microstructure device for powder paste ultrasonic field-assisted imprinting
CN113187818A (en) * 2021-05-05 2021-07-30 张家港江苏科技大学产业技术研究院 Method for manufacturing bush of sliding bearing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804034A (en) * 1985-03-25 1989-02-14 Osprey Metals Limited Method of manufacture of a thixotropic deposit
CN1446134A (en) * 2000-08-11 2003-10-01 布鲁内尔大学 Method and apparatus for making metal alloy castings
KR20050021691A (en) * 2003-08-25 2005-03-07 한국과학기술원 Ultra-micro infiltration process using ultrasonic vibration and apparatus therefor
CN1618549A (en) * 2003-11-20 2005-05-25 北京有色金属研究总院 Method of preparing semi solid state moltem metal/blank by ultrasonic treatment to control solidification and its device
CN101070571A (en) * 2006-05-12 2007-11-14 日精树脂工业株式会社 Method for manufacturing composite material for carbon nano material and metal material
CN101181736A (en) * 2007-12-07 2008-05-21 华中科技大学 Method and device for semi-solid rheological deformation of metal parts
CN101186989A (en) * 2007-12-10 2008-05-28 南昌大学 Method for Preparing AZ61 Magnesium Alloy Semi-solid Billet by Ultrasonic
CN201295751Y (en) * 2008-11-18 2009-08-26 浙江大学 Ultrasonic vibration auxiliary semisolid metal micro thixotropic molding device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804034A (en) * 1985-03-25 1989-02-14 Osprey Metals Limited Method of manufacture of a thixotropic deposit
CN1446134A (en) * 2000-08-11 2003-10-01 布鲁内尔大学 Method and apparatus for making metal alloy castings
KR20050021691A (en) * 2003-08-25 2005-03-07 한국과학기술원 Ultra-micro infiltration process using ultrasonic vibration and apparatus therefor
CN1618549A (en) * 2003-11-20 2005-05-25 北京有色金属研究总院 Method of preparing semi solid state moltem metal/blank by ultrasonic treatment to control solidification and its device
CN101070571A (en) * 2006-05-12 2007-11-14 日精树脂工业株式会社 Method for manufacturing composite material for carbon nano material and metal material
CN101181736A (en) * 2007-12-07 2008-05-21 华中科技大学 Method and device for semi-solid rheological deformation of metal parts
CN101186989A (en) * 2007-12-10 2008-05-28 南昌大学 Method for Preparing AZ61 Magnesium Alloy Semi-solid Billet by Ultrasonic
CN201295751Y (en) * 2008-11-18 2009-08-26 浙江大学 Ultrasonic vibration auxiliary semisolid metal micro thixotropic molding device

Also Published As

Publication number Publication date
CN101406925A (en) 2009-04-15

Similar Documents

Publication Publication Date Title
CN101406925B (en) Ultrasonic vibration-assisted microthixotropic deformation method and device of semi-solid metal
CN201295751Y (en) Ultrasonic vibration auxiliary semisolid metal micro thixotropic molding device
CN104162555B (en) A semi-solid thixotropic-plastic composite forming method
CN101850376B (en) Method and die for forward extrusion and variable diameter bending extrusion of magnesium alloy semi-solid billets
CN103464714B (en) A kind of liquid casting and forging molding method of automotive brake clamp and device
CN106312016B (en) A kind of aluminum alloy forge piece vibration casting forging combined shaping method
CN102284664A (en) Semi-solid forming die and forming method for cavity-variable axisymmetric part
CN103909267B (en) Semi-solid metal powder forming device and forming method based on ultrasonic vibration
CN103121075B (en) Hot forging method for transmission shaft yoke with horizontal yoke part
CN102284536B (en) Preparation device and method of magnesium alloy or aluminium alloy semisolid blanks by equal-channel reciprocating extrusion and spheroidization
CN104525829A (en) Radial forging strain-induced semi-solid state process for manufacturing aluminum alloy crankshaft of air condition compressor
CN109092957A (en) A kind of shaft sleeve parts part thixoextruding method
CN104668911B (en) Radial forging type strain-induced semi-solid extrusion process for outer cylinder forged piece of aircraft landing gear
CN203265502U (en) Hot forging device for transmission shaft joint fork with horizontal fork part
CN109807272A (en) A thixotropic soft core composite forging method for aluminum-steel bimetallic components
CN208528052U (en) A kind of shaping dies of shaft sleeve parts part thixoextruding
CN109622835B (en) Casting and forging composite forming device for shaft sleeve parts
CN108580574B (en) A method for three-way near-solid pressure forming of blanks of tee parts
CN105798261A (en) Forming device and method for preparing high-structural strength aluminum alloy hub
CN104264089B (en) A kind of electro-magnetic forming and the compound aluminium alloy semi-solid state blank technique of preparing of secondary remelting
CN208083410U (en) A kind of shaping dies of semi-solid squeeze casting shaft sleeve parts
CN104668910B (en) The strain-induced formula of large ring twists and semisolid die forging combination process
CN1785550A (en) Forging method of soliding fork
CN106363363A (en) Semi-solid thixo-forging forming technology for steel impeller
CN104646945B (en) Special high-strength aluminum alloy part forming method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110824

Termination date: 20121118