CN101400822B - 单斜CeTi2O6薄膜和用来制备该单斜CeTi2O6薄膜的溶胶-凝胶法 - Google Patents

单斜CeTi2O6薄膜和用来制备该单斜CeTi2O6薄膜的溶胶-凝胶法 Download PDF

Info

Publication number
CN101400822B
CN101400822B CN2006800538573A CN200680053857A CN101400822B CN 101400822 B CN101400822 B CN 101400822B CN 2006800538573 A CN2006800538573 A CN 2006800538573A CN 200680053857 A CN200680053857 A CN 200680053857A CN 101400822 B CN101400822 B CN 101400822B
Authority
CN
China
Prior art keywords
film
solution
ceti
sol
calcining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800538573A
Other languages
English (en)
Other versions
CN101400822A (zh
Inventor
A·弗马
S·A·阿格尼赫特瑞
A·K·巴克什
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Council of Scientific and Industrial Research CSIR
Original Assignee
Council of Scientific and Industrial Research CSIR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Council of Scientific and Industrial Research CSIR filed Critical Council of Scientific and Industrial Research CSIR
Publication of CN101400822A publication Critical patent/CN101400822A/zh
Application granted granted Critical
Publication of CN101400822B publication Critical patent/CN101400822B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种单斜CeTi2O6薄膜和用来沉积所述CeTi2O6薄膜的溶胶-凝胶法,所述薄膜可用作电致变色装置中的惰性反电极、传感器和光催化剂。这种膜可通过将包含钛和铈前体的溶液旋涂在导电性基材或绝缘的玻璃基材上,然后在空气中、在600℃的温度下煅烧5分钟而制得。用来制备膜的沉积溶胶中的Ce:Ti摩尔比为0.4:1-0.6:1。

Description

单斜CeTi2O6薄膜和用来制备该单斜CeTi2O6薄膜的溶胶-凝胶法 
技术领域
本发明涉及单斜CeTi2O6薄膜形式以及用来制备该薄膜的溶胶-凝胶法。 
背景技术
在开发基于WO3的透射ECD的过程中,我们将注意力集中于开发具有以下性质的离子存储反电极膜,即,其在充电和放电状态都对可见光具有高透射性,离子存储容量超过20mCcm-2或者与WO3相当,以提供深度着色足量数量的离子。因此,就此方向进行了一些研究,通过湿法化学方法合成了用TiO2掺杂的CeO2前体。 
透射电致变色器件(ECD)分为两种。第一种包括一个电致变色(EC)层,其与选定的电致变色材料互补。WO3与NiOxHy的组合便是一个这样的常规的例子。第二种可能是光学惰性(optically passive)的反电极,其在氧化态和还原态下都保持无色。 
无论活性或惰性,反电极还能平衡从活性(active)EC膜穿梭通过离子导体-电解质层的电荷。因此,反电极的离子储存容量应等于ECWO3的离子储存容量。在ECD的工作电压和温度范围内良好的循环稳定性以及高透射性是对反电极的另外的要求。 
在光学惰性的反电极材料中,人们报道了使用In2O3:Sn作为备选材料。尽管其还可用作透明传导电极,但是其插入反应仅仅是部分可逆的。另一种受到人们广泛研究的材料是五氧化二钒(V2O5)。其具有高的Li+存储容量,可逆的锂插入机理,但是其漂白态的透射性很低。人们研究了用不同的掺杂剂(例如Mo和Sb)掺杂的氧化锡作为惰性反电极的备用材料,但是SnO2对Li+插入反应以及类似反应的不稳定性会造成形成SnO,Sn和Li2O,这促使人们去探寻研究其它合适的用于ECD的材料。
与上述材料相比,CeO2似乎是更有前途的光学惰性反电极材料。根据D.Keomany,C.Poinsignon,D.Deroo在《太阳能材料,太阳能电池(Sol.Energy Mater.Sol.Cells)33(1994)429-44》中所述,在CeO2中,锂离子插入反应具有合理良好的可逆性,但是反应动力学非常慢。人们进行了一些尝试,力图通过将氧化物与其它材料(例如Ti,Zr,V,Sn,Mo和Si,单独的或其混合物)混合,以促进反应动力学。 
人们已经通过不同的技术制备了纯CeO2的膜和掺杂的CeO2的膜。M.Veszelei,L.Kullman,C.G.Granqvist,N.V.Rottkay和M.Rubin在《应用光学(Appl.Opt.)》,37(1998)5993-6001中使用溅射技术,通过该方法制得的膜受到了广泛的研究。人们报道了这些膜作为惰性反电极的潜力。但是,这些作者尚未获得和报道这种薄膜形式的CeTi2O6化合物的形成。制得注目的是,一些作者已经表述了将CeO2-TiO2混合氧化物膜作为惰性反电极。但是,之前从未报道过CeTi2O6薄膜作为惰性反电极的可能性。因此,本发明最先报道将这些膜作为用于电致变色装置的惰性反电极。 
广泛应用的溶胶-凝胶法提供了大量优于其它常规沉积技术的优点,这些优点包括调节膜制备的性质,在膜中引入孔隙,工艺成本低以及可以在低温下进行加工。人们尝试了通过各种途径、通过溶胶凝胶技术制备基于CeO2的膜。D.Keomany,C.Poinsignon,D.Deroo.在《太阳能材料太阳能电池(Sol.Energy Mater.Sol.Cells)》33(1994)429-441中报道了将最常用的前体材料醇盐用于溶胶-凝胶法。A.Makishima,M.Asami和K.Wada在J.Non-Cryst.Solids121(1990)310-314中描述了将另外的铈盐,例如CeCl3·H2O,[(NH4)2{Ce(NO3)6}]与钛的醇盐相结合,作为一种制备CeO2-TiO2膜的途径。基于对这些材料的早先的报道,A.Makishima,M.Asami和K.Wada在J.Non-Cryst.Solids121(1990)310-314中进行了研究,改变钛的醇盐中的醇根以及催化剂的种类,以研究它们对膜的性质的影响。这些作者所述的沉积膜在500℃下进行过煅烧,膜的XRD图谱中显示仅有CeO2相的特征衍射峰。 
使用金属氧化物半导体进行气体传感,因为它们的电导性依赖于环境气体组成。由此可能“调控”对特定气体种类的灵敏性和选择性。混合金属 氧化物化合物受到了越来越多的关注,因此通过改变组分的组成,可以改良传感器的性能,即改进了n型和/或p型半导体的灵敏性、选择性、制备,还改良了传感器的电阻以便于形成电子界面(for ease of electronicinterface)。根据F.Millot,De Mierry在《物理化学固体学报(J.Phys.Chem.Solids)》46(1985)797-801中的报道,因为CeO2的化学稳定性以及高的氧空穴扩散系数,CeO2是一种很有前途的用来在高温下进行快速氧气传感的材料。在以下文献中广泛报道了将TiO2的气体传感性质用于氧气、一氧化碳、甲醇和乙醇以及水汽:A.Rothschild,F.Edelman,Y.Komen,F.Cosandey,Sensors and Actuators B61(2000)282-289;N.O.Savage,S.A.Akbar,P.K.Dutta,Sensors and Actuators B 72(2001)239-248;以及C.Garzella,E.Comini,E.Tempesti,C.Frigeri,G.Sberveglieri,Sensors and Actuators B68(2000)189-196。A.Trinchi,Y.X.Li,W.Wlodarski,S.Kaciulis,L.Pandolfi,S.Viticoli,E.Comini,G.Sberveglieri在Sensors and Actuators B95(2003)145-150中报道了使用硝酸铈铵和丁醇钛,通过溶胶-凝胶法沉积的混合CeO2-TiO2膜用作氧气传感器。 
用TiO2和其它半导体材料传感的光催化反应收到人们的广泛关注,作为潜在的解决能源与环境问题的出路。人们研究了一些粉末形式的钛酸铈的光催化活性。根据S.O-Y-Matsuo,T.Omata,M.Yoshimura在J Alloys andCompounds,376(2004)262-267中的报道,黄色的钛酸铈,CeTi2O6(其中主要是Ce4+状态)可以通过Xe辐照放光而造成亚甲基蓝水溶液的光致褪色。Q.N.Zhao,C.L.Li,X.J.Zhao在Key Engineering Materials249(2003)451-456中报道了由使用R.F和D.C溅射沉积的混合CeO2-TiO2膜,在紫外光的辐照下,使得甲基橙溶液褪色。 
A.E.Ringwood,S.E.Kession,N.G.Ware,W.Hibberson,A.Major在Nature(London)278(1979)219中报道了钛铀矿UTi2O6是基于钛酸碳的合成岩晶体陶瓷中的一种副生相。钛铀矿中U含量高(最高达62.8重量%),并且可能为了固定锕系元素而作为核废弃物,这些特点突出了对辐射破坏作用及其与组成和结构的关系的重要性的理解。天然钛铀矿理想的化学式是(U,Th)1-xTi2+xO6,其中铀缺乏而钛过量。已经证明了天然钛铀矿中发生了 许多铀(Pb,Ca,Th,Y和Ce)和钛(Si,Al,Fe)的阳离子取代。理想情况下,符合化学计量关系的钛铀矿是单斜精细,空间点群为C2/m。结构中有两种不同的扭曲八面体。扭曲的TiO6八面体通过共用边形成了之字形的片材,每个钛八面体与钛八面体共用三条边,与铀八面体共用三个顶点。TiO6八面体形成的片与锐钛矿结构中平行于(101)面的结构相同。大的阳离子(Th,U)位于层间位点,连接相邻的片。各个铀八面体与相邻的UO6八面体共用两条边,与TiO6八面体共用四个顶点。氧原子存在于扭曲的HCP(六方密堆积)阵列中。Ce可以取代到U的位置,而几乎不产生八面体扭曲。因为Ce的离子半径与钚接近(Ce(IV)=0.087纳米;Pu(IV)=0.086纳米),经常用Ce来预测含钚的固体的性质。化合物CeTi2O6的结构与PuTi2O6相异。K.B.Helean,A.Navrotsky,G.R.Lumpkin,M.Colella,J.Lian,R.C.Ewing,B.Ebbinghaus和J.G.Catalano在J.Nucl.Mater.320(2003)231-244中报道,通过在空气中、1350℃下对含符合化学计量关系的氧化物CeO2和TiO2的球粒烧结100小时以上来制备粉末形式的CeTi2O6,其用于预测PuTi2O6的性质。 
在本发明中,通过溶胶-凝胶技术得到了CeTi2O6相,这代表了可靠的低成本的化学途径。与在1400-1500℃下形成的粉末状的CeTi2O6材料相比,在本发明中,相应的薄膜通过溶胶-凝胶法在600℃下制备。我们的文献调查显示,之前从没有人制备薄膜形式的CeTi2O6。粉末形式的CeTi2O6被应用于例如核废弃物形式的固定化和光催化活性领域。但是,薄膜形式的CeTi2O6材料可用于以下应用,例如惰性反电极、传感器和光催化活性。我们制备了CeTi2O6膜,其在充电和放电状态下都对可见光具有高透射性,离子储存容量超过20mCcm-2。之前,我们在Sol.Ener.Mater.Sol.Cells86(2005)85-103中报道了使用七水合氯化铈和丙醇钛前体,在500℃的煅烧温度下,使用Ce:Ti组成为4:1和2:1的条件形成CeO2和TiO2的混合化合物,即CeO1.6.2TiO2。从上述化合物的化学式可以很明显地看出,这两种化合物即CeO1.6·2TiO2和CeTi2O6的含氧量以及化学计量组成是不同的。下表I显示了公开的文献和本专利报道的结果的比较图表。
Figure G2006800538573D00061
Figure G2006800538573D00071
发明目的 
本发明的主要目的是提供薄膜形式的单斜CeTi2O6相。 
另一个目的是提供用于制备薄膜形式的单斜CeTi2O6相的溶胶-凝胶法。 
本发明的另一个目的是提供一种方法,其可以制得具有高化学稳定性和机械稳定性的膜。 
本发明的另一个目的是制备一种膜,其中仅含CeTi2O6相,没有任何其它共存的相。 
本发明的另一个目的是沉积具有高的离子存储容量和透射性的膜。 
本发明的另一个目的是使用一种方法,该方法包括少数的步骤。 
附图说明
图1显示了CeTi2O6膜的XRD谱图。 
图2显示了CeTi2O6膜的明场显微照片和电子衍射图。 
图3显示了本文所述沉积的CeTi2O6膜在Li离子插入状态和锂离子未插入(deintercalated)状态下的透射曲线。 
图4显示了CeTi2O6膜的SEM显微照片。 
图5显示了在20毫伏/秒的扫描速率之下,在±1.0V的电势范围内,CeTi2O6膜的循环伏安图。 
发明内容
因此,本发明提供了一种具有以下特性的单斜CeTi2O6薄膜: 
a)膜的孔径在200-300纳米, 
b)结晶尺寸为4.5-16纳米 
c)550纳米的透射率为75-80%, 
c)550纳米的透射率调制<1%, 
e)折射率约为1.99, 
f)间接带隙约为3.25eV, 
g)离子存储容量为19-23mCcm-2
本发明还提供了一种用来制备单斜CeTi2O6薄膜形式的溶胶-凝胶法,所述方法包括以下步骤: 
a)制备七水合氯化铈在无水乙醇中的浓度约0.20-0.25M的醇溶液, 
b)将步骤a)中制备的溶液加入浓度为0.331-0.624M的丙醇钛溶液中,然后搅拌4-10分钟,在20-30℃的温度下老化约一周时间, 
c)将上述老化的溶液旋涂在导电的基材上或显微载玻片上,然后空气干燥约10-20分钟,得到沉积的未煅烧的膜, 
d)在580-620℃的温度范围内煅烧步骤(c)得到的沉积的未煅烧膜5-10分钟,得到所需的单斜CeTi2O6薄膜。 
在本发明的一个实施方式中,七水合氯化铈在无水乙醇中的摩尔浓度为0.22M。 
在另一个实施方式中,所述步骤b)中丙醇钛溶液的摩尔浓度为0.372-0.559M。 
在另一个实施方式中,Ce∶Ti的摩尔比为0.4∶1至0.6∶1。在另一个实施方式中,用来制备膜的步骤b)制得的溶液处于刚刚开始形成凝胶的状态。 
在另一个实施方式中,步骤b)中得到的使用的老化的溶液以3000rpm的转速旋涂35秒。 
在另一个实施方式中,沉积的膜在空气中干燥15分钟。 
在另一个实施方式中,膜在600℃煅烧5分钟。 
在另一个实施方式中,使用的导电性基材是用掺杂氟的氧化锡涂覆过的玻璃。 
新颖性 
与之前的现有技术报道的在1400-1500℃下形成的粉末状的CeTi2O6材料相比,在本发明中,相应的CeTi2O6材料薄膜通过溶胶-凝胶法在600℃下制备。 
创造性: 
1.为了得到薄膜形式的CeTi2O6化合物,溶胶中的Ce∶Ti摩尔比为0.4∶1至0.6∶1。 
2.另一个控制薄膜形式的该化合物的形成的重要参数是温度范围。制得该产品的最优的温度为600℃。煅烧在此温度下、在空气中进行5分钟。在低于580℃的温度下,无法得到薄膜形式的CeTi2O6化合物。 
本发明的主要优点是: 
1.沉积该膜的时候需要较少步骤(四步)。 
2.制备用于沉积膜的溶胶所需的时间很短。 
3.由于形成了薄膜形式的CeTi2O6相,使得其可以更容易地用作光催化剂。常规的粉末催化剂的缺陷在于需要在反应过程中进行搅拌,反应之后需要分离。因为制备了以薄膜形式涂覆的催化剂,得以克服了这些缺点。 
4.粉末状的CeTi2O6材料需要在1400-1500℃的温度范围内对CeO2和TiO2进行煅烧,与之不同的是,所述CeTi2O6膜可以在低得多的温度下制得,即600℃。 
5.这些膜可以应用于许多的领域,例如惰性反电极,传感器和光催化活性。 
具体实施方式
初始的无色透明的七水合氯化铈溶液是通过使铈盐在无水乙醇中进行搅拌,直至盐完全溶解而得到的。该溶液在常温下制得。钛的醇盐易于在水溶液和醇溶液中水解。将基于铈的醇溶液加入丙醇钛中,使得Ce:Ti摩尔比为0.4:1至0.6:1,该操作不会造成丙醇钛的沉淀。铈盐使得醇盐溶液稳定化,阻止了氢氧化物的沉淀。溶液的凝胶化时间根据溶液中钛的醇盐的含量而变化。根据环境温度和湿度条件,对于该Ce:Ti摩尔比(0.6:1,0.5:1和0.4:1)的溶液,胶凝时间约为一周。 
对于电致变色应用,先决条件是膜必须具有高透明度。由于使用刚达到胶凝状态的溶液沉积而成的膜中具有高度的孔隙率,因此这些膜具有高透明度。溶胶中的水解和缩合使得H2O,C2H5OH之类的小基团失去,从而导致膜具有高度的孔隙率,因而得到透明的膜。 
因此,根据前体材料的比例,对溶胶进行适当的老化,然后对沉积的膜进行煅烧,可以得到高透射率的膜。 
在进行最优化的老化之后,沉积的溶胶以3000rpm的转速持续35秒旋涂到导电性(氟掺杂的氧化锡,SnO2:F)和显微载玻片上。膜间歇性地干燥15分钟之后,膜在加热炉内,在空气中,以1-2℃分钟-1的加热速率,在600℃热处理5分钟。
通过将丙醇钛溶解在0.22M的氯化铈溶液中,制得了基于七水合氯化铈和丙醇钛的Ce:Ti(0.6:1,0.5:1和0.4:1)的溶液。 
以下实施例说明了优选用来沉积CeTi2O6膜的溶胶的制备,这些实施例不会对本发明的范围构成限制。 
实施例1 
在无水乙醇(C2H5OH,Merck)中制备了0.22M的七水合氯化铈(CeCl3.7H2O,Merck)的溶液。将上述无色透明的溶液加入丙醇钛中,使得溶液中的Ce:Ti摩尔比为0.5:1。将所得的淡黄色溶液搅拌5分钟。使所得的黄色溶液开始胶凝之后,在3000rpm的转速下持续35秒将该溶胶旋涂到涂覆了掺杂氟的氧化锡的玻璃基材上和显微载玻片基材上,然后在空气中干燥15分钟。然后,所述膜以1-2℃/分钟的加热速率,在空气中,在600℃下热处理5分钟。如上所述制备的厚度为6800埃的膜在以下测量电池中测量光学钝性(optical passivity),该测量电池包括碳酸丙二酯中1M的高氯酸锂溶液的测试电解质和铂电极。XRD结果(图1)表明膜内形成了纯的CeTi2O6相,沿(201)面的平均结晶尺寸为16纳米。TEM研究(图2)还证明膜中形成了单斜CeTi2O6结构。在550纳米下,膜的透射率调制小于1%。在整个可见光谱范围内,膜的透射率约为80%。膜的折射率和间接带隙分别为1.99和3.25eV。从显示CeTi2O6膜的显微照片的图4测得孔径约为250纳米。使用图5所示的循环伏安图计算得到膜的离子储存容量为20.5mCcm-2。 
实施例2 
在无水乙醇(C2H5OH,Merck)中制备了0.22M的七水合氯化铈(CeCl3.7H2O,Merck)的溶液。将上述无色透明的溶液加入丙醇钛中,使溶液中的Ce:Ti摩尔比为0.6:1。将所得的淡黄色溶液搅拌5分钟。在所得的黄色溶液开始胶凝之后,在3000rpm的转速下持续35秒将所述溶胶旋涂到氟掺杂的氧化锡涂覆的玻璃基材和显微载玻片基材上,然后在空气中干燥15分钟。然后,所述膜以1-2℃/分钟的加热速率,在空气中,在600℃下 热处理5分钟。如上所述制备的厚度为6200埃的膜在以下测量电池中测量光学钝性(optical passivity),该测量电池包括碳酸丙二酯中1M的高氯酸锂溶液的测试电解质和铂电极。在550纳米下,膜的透射率调制小于1%。在整个可见光谱范围内,膜的透射率约为80%。XRD结果表明膜内形成了纯的CeTi2O6相,沿(201)面的平均结晶尺寸为14.2纳米。膜的离子储存容量为19mCcm-2。 
实施例3 
在无水乙醇(C2H5OH,Merck)中制备了0.22M的七水合氯化铈(CeCl3.7H2O,Merck)的溶液。将上述无色透明的溶液加入丙醇钛中,使溶液中的Ce:Ti摩尔比为0.4:1。将所得的淡黄色溶液搅拌5分钟。在所得的黄色溶液开始胶凝之后,在3000rpm的转速下持续35秒将所述溶胶旋涂在氟掺杂的氧化锡涂覆的玻璃基材和显微载玻片基材上,然后在空气中干燥15分钟。然后,所述膜以1-2℃/分钟的加热速率,在空气中,在600℃下热处理5分钟。如上所述制备的厚度为10000埃的膜在以下测量电池中测量光学钝性(optical passivity),该测量电池包括碳酸丙二酯中1M的高氯酸锂溶液的测试电解质和铂电极。在550纳米下,膜的透射率调制小于1%。在整个可见光谱范围内,膜的透射率约为80%。XRD结果表明膜内形成了纯的CeTi2O6相,沿(201)面的平均结晶尺寸为4.7纳米。膜的离子储存容量为23.0mCcm-2。 
表II显示了不同膜中观察到的参数的比较。 
表II:不同膜中观察到的参数的比较。 
Figure G2006800538573D00121

Claims (10)

1.一种单斜CeTi2O6薄膜,其具有以下特征:
a)膜的孔径在200-300纳米,
b)结晶尺寸为4.5-16纳米,
c)550纳米的透射率为75-80%,
d)550纳米的透射率调制<1%,
e)折射率为1.99,
f)间接带隙为3.25eV,
g)离子存储容量为19-23mCcm-2
2.一种用来制备如权利要求1所述的单斜CeTi2O6薄膜形式的溶胶-凝胶方法,所述方法包括以下步骤:
a)制备七水合氯化铈在无水乙醇中的浓度0.20-0.25M的醇溶液,
b)将步骤a)中制备的溶液加入浓度为0.331-0.624M的丙醇钛溶液中,然后搅拌4-10分钟,在20-30℃的温度下老化一周时间,
c)将上述老化的溶液旋涂在导电的基材上或显微载玻片上,然后空气干燥10-20分钟,得到沉积的未煅烧膜,
d)在580-620℃的温度范围内煅烧步骤(c)得到的沉积的未煅烧膜5-10分钟,得到所需的单斜CeTi2O6薄膜。
3.如权利要求2所述的方法,其特征在于,所述七水合氯化铈在无水乙醇中的摩尔浓度为0.22M。
4.如权利要求2所述的方法,其特征在于,所述步骤b)中丙醇钛溶液的摩尔浓度为0.372-0.559M。
5.如权利要求2所述的方法,其特征在于,含七水合氯化铈和丙醇钛的溶液中使用的Ce∶Ti的摩尔比为0.5∶1。
6.如权利要求2所述的方法,其特征在于,用来制备沉积的未煅烧膜的步骤b)制得的溶液处于刚刚开始形成凝胶的状态。
7.如权利要求2所述的方法,其特征在于,步骤b)中得到的使用的老化的溶液以3000rpm的转速旋涂35秒。
8.如权利要求2所述的方法,其特征在于,所述空气干燥工艺持续15分钟。
9.如权利要求2所述的方法,其特征在于,所述干燥工艺之后得到的沉积的未煅烧膜在600℃下煅烧5分钟。
10.如权利要求2所述的方法,其特征在于,所用的导电的基材是涂覆了掺杂氟的氧化锡的玻璃。
CN2006800538573A 2006-02-13 2006-03-27 单斜CeTi2O6薄膜和用来制备该单斜CeTi2O6薄膜的溶胶-凝胶法 Expired - Fee Related CN101400822B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN392/DEL/2006 2006-02-13
IN392DE2006 2006-02-13
PCT/IB2006/000694 WO2007093837A1 (en) 2006-02-13 2006-03-27 Monoclinic ceti2o6 thin film and a sol-gel process for the preparation thereof

Publications (2)

Publication Number Publication Date
CN101400822A CN101400822A (zh) 2009-04-01
CN101400822B true CN101400822B (zh) 2011-06-01

Family

ID=38368932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800538573A Expired - Fee Related CN101400822B (zh) 2006-02-13 2006-03-27 单斜CeTi2O6薄膜和用来制备该单斜CeTi2O6薄膜的溶胶-凝胶法

Country Status (6)

Country Link
US (1) US7678413B2 (zh)
JP (1) JP4995839B2 (zh)
CN (1) CN101400822B (zh)
AU (1) AU2006338487B2 (zh)
ES (1) ES2327205B1 (zh)
WO (1) WO2007093837A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099417A1 (en) * 2007-02-13 2008-08-21 Council Of Scientific & Industrial Research An improved sol-gel process for the preparation of nanocrystalline ceti2o6 powder
US20120202037A1 (en) 2011-02-02 2012-08-09 Advenira, Inc. Solution Derived Nanocomposite Precursor Solutions, Methods for Making Thin Films and Thin Films Made by Such Methods
US9044775B2 (en) 2011-05-26 2015-06-02 Advenira Enterprises, Inc. System and process for coating an object
CN102527363A (zh) * 2011-12-27 2012-07-04 长沙学院 一种N-F共掺杂TiO2/竹炭复合光催化材料的生产方法
CN112379553B (zh) * 2020-09-28 2024-05-07 希腊布莱特公司 基于喷墨印刷的电致变色安全玻璃系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1565724A (zh) * 2003-07-08 2005-01-19 浙江大学 铈钛固溶体及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104028A (ja) * 1986-10-22 1988-05-09 Toyota Central Res & Dev Lab Inc 光学機能素子
JPH06650B2 (ja) * 1991-01-29 1994-01-05 触媒化成工業株式会社 酸化チタン・酸化セリウム複合系ゾルおよびこのゾルから形成された透明薄膜
DE10324583B4 (de) * 2003-05-30 2005-08-11 Schott Ag Sol-Gel-Beschichtungslösung zur späteren Herstellung Li-Ionen transparenter Speicherschichten für Lithium-Ionen, Verfahren zur Herstellung der Sol-Gel-Beschichtungslösung sowie Verfahren zur Herstellung einer transparenten Li-Ionen-Speicherschicht
CN1476929A (zh) * 2003-07-08 2004-02-25 浙江大学 以CeTi2O6为载体的脱硝催化剂及制备方法
JP2007116081A (ja) * 2005-09-26 2007-05-10 Hitachi Chem Co Ltd 3元系複合酸化物研磨剤及び基板の研磨方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1565724A (zh) * 2003-07-08 2005-01-19 浙江大学 铈钛固溶体及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Amita Verma et al.Sol-gel derived nanocrystalline CeO2-TiO2 coatings for electrochromic windows.Solar Energy Materials Solar Cells.2004,8685-103. *
Amita Verma et al.Variations in the structural,optical and electrochemical properties of CeO2-TiO2 films as a function of TiO2 content.applied surface science.2005,2525131-5142. *
AmitaVermaetal.Variationsinthestructural optical and electrochemical properties of CeO2-TiO2 films as a function of TiO2 content.applied surface science.2005

Also Published As

Publication number Publication date
AU2006338487A2 (en) 2009-02-05
WO2007093837A1 (en) 2007-08-23
US20070190361A1 (en) 2007-08-16
CN101400822A (zh) 2009-04-01
AU2006338487B2 (en) 2011-09-22
AU2006338487A1 (en) 2007-08-23
JP2009526724A (ja) 2009-07-23
ES2327205A1 (es) 2009-10-26
ES2327205B1 (es) 2010-07-23
JP4995839B2 (ja) 2012-08-08
US7678413B2 (en) 2010-03-16

Similar Documents

Publication Publication Date Title
Aegerter Sol–gel niobium pentoxide: a promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis
JP2002504259A (ja) 固体リチウムイオン電解質
Bathe et al. Titanium doping effects in electrochromic pulsed spray pyrolysed WO3 thin films
Schnitzler et al. Organic/inorganic hybrid materials formed from TiO2 nanoparticles and polyaniline
Avellaneda et al. Preparation of transparent CeO2–TiO2 coatings for electrochromic devices
CN101400822B (zh) 单斜CeTi2O6薄膜和用来制备该单斜CeTi2O6薄膜的溶胶-凝胶法
Azevedo et al. New thin films of NiO doped with V2O5 for electrochromic applications
Bhosale et al. Synthesis and characterization of spray pyrolyzed nanocrystalline CeO2–SiO2 thin films as passive counter electrodes
Camino et al. (CeO2) x-(TiO2) 1− x: Counter electrode materials for lithium electrochromic devices
Zou et al. Synthesis and characterization of nanosized ceria powders and high-concentration ceria sols
Luo et al. Transparent ion-conducting ceria-zirconia films made by sol–gel technology
Gökdemir et al. Comparison of structural and electrochemical properties of V2O5 thin films prepared by organic/inorganic precursors
Iwakura et al. Relationship between Cation Arrangement and Photocatalytic Activity for Sr− Al− Nb− O Double Perovskite
Orel et al. Electrochemical and optical properties of sol-gel-derived Ce02 and mixed CeO2/SnO2 coatings
Berton et al. Thin film of CeO2-SiO2: a new ion storage layer for smart windows
Hosono et al. Fabrication of nanoparticulate porous LaOF films through film growth and thermal decomposition of ion-modified lanthanum diacetate hydroxide
Orel New counter electrode prepared as vanadium oxide and V/Ce oxide films: preparation and characterization
Quinlan et al. Lithium Cobalt Oxide (LiCoO2) Nanocoatings by Sol− Gel Methods
Maček et al. Electrochemical and structural characterisation of dip-coated Fe/Ti oxide films prepared by the sol-gel route
Müller et al. Antimony doped tin oxide nanoparticles and their assembly in mesostructured film
Ceccato et al. Sol-gel synthesis of vanadate-based thin films as counter electrodes in electrochromic devices
Švegl et al. Structural and electrochromic properties of Co-oxide and Co/Al/Si-oxide films prepared by the sol-gel dip coating technique
EP2114826B1 (en) AN IMPROVED SOL-GEL PROCESS FOR THE PREPARATION OF NANOCRYSTALLINE CeTi2O6 POWDER
Verma et al. Effect of precursor sol's aging on properties of nanostructured thin films with coexistent CeO2 and CeTi2O6 phases
Choi et al. Thick CeO2-TiO2 sol-gel coatings for Li-ion storage electrode in electrochromic devices

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110601

Termination date: 20160327

CF01 Termination of patent right due to non-payment of annual fee