CN101397693B - 一种生长高质量单晶氮化铟薄膜的方法 - Google Patents

一种生长高质量单晶氮化铟薄膜的方法 Download PDF

Info

Publication number
CN101397693B
CN101397693B CN2008100720308A CN200810072030A CN101397693B CN 101397693 B CN101397693 B CN 101397693B CN 2008100720308 A CN2008100720308 A CN 2008100720308A CN 200810072030 A CN200810072030 A CN 200810072030A CN 101397693 B CN101397693 B CN 101397693B
Authority
CN
China
Prior art keywords
growth
inn
single crystal
metal organic
indium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008100720308A
Other languages
English (en)
Other versions
CN101397693A (zh
Inventor
张双翔
蔡建九
张银桥
王向武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Changelight Co Ltd
Original Assignee
Xiamen Changelight Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Changelight Co Ltd filed Critical Xiamen Changelight Co Ltd
Priority to CN2008100720308A priority Critical patent/CN101397693B/zh
Publication of CN101397693A publication Critical patent/CN101397693A/zh
Application granted granted Critical
Publication of CN101397693B publication Critical patent/CN101397693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开一种生长高质量单晶氮化铟薄膜的方法,先在硅衬底上利用MOCVD(金属有机化学气相沉积)技术生长一层AlN缓冲层,然后继续利用MOCVD技术生长InN单晶外延,并在InN单晶外延的生长过程中,通入四氯化碳CCl4。此方法可以提高InN单晶外延的晶体质量。

Description

一种生长高质量单晶氮化铟薄膜的方法
技术领域
本发明涉及氮化铟InN的MOCVD(金属有机化学气相沉积)技术生长方法,特别涉及了生长高质量单晶InN外延薄膜的方法。
背景技术
作为第三代半导体材料的III-V族氮化物:氮化镓GaN,氮化铟InN,氮化铝AlN及其合金材料都是直接带隙半导体材料,具有禁带分布范围大,覆盖了从红光到紫外的波段,可用于制作发光二极管,激光器,探测器和太阳能电池等,在全色显示白光照明,高密度存储,紫外探测等方面有广泛的应用。另一方面,由于GaN基材料的禁带宽度大,击穿电压高,电子饱和速度大,热稳定性好,抗腐蚀性强,介电常数小等优点,被广泛用于制作高电子迁移率晶体管,双极晶体管,长效应晶体管等微电子器件,适合在高温,大功率以及恶劣环境下工作。
近期的一些研究结果表明纤锌矿结构的InN室温禁带宽度为约0.7eV(电子伏特),而不是以前一直被广泛引用的1.89eV,因此产生了对于InN禁带宽度的不确定性的争论。根据InN的这个新的禁带宽度,III族氮化物基的光电子器件的发光波段范围将从紫外拓展到近红外。基于这个优势,III族氮化物体系的一个重要潜在应用就是制备完全基于氮化物的高光电转换效率太阳能电池。其中,对于InGaN(铟镓氮)三元合金,通过改变In与Ga的比例便可获得由0.7eV到3.4eV这区域中各种不同能带宽度,这个能量范围几乎覆盖整个太阳光谱(0.4-4eV)。这不仅会降低材料制备的成本,并且使得结构的设计和制备更加灵活,最重要的是有望获得更高的光电转换效率(>70%)。同时,InN自身发光接近1.55微米的通信波段,也为制作高速通信用LD(激光二极管)和LED(发光二极管)提供了可能性。
另外,理论预测还表明InN相比于其它的III族氮化物有着最小的有效质量,具有最高的载流子迁移率,在室温(300K)和低温(77K)下,GaN的电子迁移率最高分别为1000cm2/vs和6000cm2/vs,而InN的电子迁移率最高则分别可以达到4400cm2/vs和30000cm2/vs。InN在室温下有比较高的电子峰值漂移速率,电子饱和速度也大大高于GaAs和GaN,而且它的电子漂移速度受温度和掺杂浓度变化的影响较小,所以它在高速微电子器件方面有着很广阔的应用前景。
目前,世界上比较流行的Si上生长InN单晶薄膜的方法是直接在Si上沉积InN;或者是生长一层低温InN缓冲层,然后生长InN;也有生长一层AlN缓冲层,再生长InN。前两种方法因为生长条件比较难把握,得到的晶体质量不高。第三种的方法生长出来的InN会伴随产生许多金属In滴的产生。因为InN的生长温度偏低(原因是InN的饱和蒸汽压偏高),而在较低的温度范围内,氨气的裂解效率很低,造成合成InN的五族源不充分,部分In就形成金属In出现在样品表面。
发明内容
本发明的目的在于提出一种生长高质量单晶InN薄膜的方法,以提高InN单晶外延的晶体质量。
为了实现上述目的,本发明的解决方案是:
一种生长高质量单晶InN薄膜的方法,先在硅(Si)衬底上利用MOCVD(金属有机化学气相沉积)技术生长AlN缓冲层,然后继续利用MOCVD技术生长InN单晶外延,并在InN单晶外延的生长过程中,通入四氯化碳CCl4
所述AlN缓冲层的生长温度范围为1050℃-1110℃。
所述AlN缓冲层的生长厚度范围为10纳米(nm)-200纳米(nm)。
所述AlN缓冲层的生长V/III比(就是反应所需要的五族源的摩尔量和三族源的摩尔量之比)为4000-6000。
所述AlN缓冲层的生长压力为20托(Torr)-100托(Torr)。
所述InN单晶外延的生长温度范围为400℃-600℃。
所述InN单晶外延的生长压力范围为20托(Torr)-700托(Torr)。
所述InN单晶外延的生长V/III比为3000-20000。
所述InN单晶外延的生长过程中,通入的CCl4的流量为0.1微摩尔/分钟(umol/min)-10微摩尔/分钟(umol/min)。
所述AlN缓冲层生长时,先通入金属有机源铝Al(例如TMAl),通入时间为5秒-300秒,然后才通入氨气。
采用上述方案后,本发明在硅衬底上生长AlN缓冲层,AlN缓冲层的作用是减少衬底的Si向InN外延层扩散,降低晶格失配,并且,本发明在AlN缓冲层基础之上继续生长InN单晶外延,除了通入反应所需要的V族源和III族源,通入CCl4,CCl4中的Cl原子会与反应室内的H原子结合,生成非常微量的HCl,HCl具有腐蚀性,微量的HCl会腐蚀那些在生长过程中由于生长温度偏低而偏析出来的金属In滴,这样,CCl4就可以抑制InN生长过程中产生的金属In滴。所以,本发明提高InN单晶外延的晶体质量,得到高质量单晶InN薄膜。
附图说明
图1是本发明方法生长对应的材料结构图;
图2是本发明方法生长的单晶InN薄膜的X射线衍射分析(XRD)扫描图;
图3是本发明方法生长的单晶InN薄膜的光致发光图谱。
具体实施方式
如图1所示,本发明是先在硅(Si)衬底1上利用MOCVD(金属有机化学气相沉积)技术生长一层AlN缓冲层2,此为本发明的关键之一,然后继续利用MOCVD技术生长高质量的InN单晶外延3,并在InN单晶外延3的生长过程中,通入四氯化碳CCl4,进行抑制金属In滴产生的处理,此为本发明的关键之二。
本发明在Si衬底(layer)1上生长AlN缓冲层2和InN单晶外延3的优化生长条件范围如表1所示。
表1 Si衬底上生长AlN缓冲层和InN单晶外延的优化生长条件范围
layer 生长厚度(nm) 生长温度(℃) 生长压力(mbar) V/III 材料
高温处理 300-1000 20-700 Si
缓冲层 10-200 1050-1110 20-100 4000-6000 AlN
InN 300-500 400-600 20-700 3000-20000 InN
本发明的具体生长包括以下步骤:
1.在MOCVD系统中,在300℃-1000℃的温度下,对Si衬底1进行去水气处理,载气为氢气,处理时间为10分钟-15分钟,压力为20Torr-700Torr。
2.升温进行AlN缓冲层2的生长,载气为氢气。在生长AlN缓冲层2时,首先通入金属有机源Al(例如TMAl)5秒-300秒,然后再通入氨气,进行AlN缓冲层2的生长。
AlN缓冲层2的生长温度为1050℃-1110℃,生长厚度为10nm-70nm,生长V/III比为4000-6000,生长压力为20Torr-100Torr。
3.降温进行InN单晶外延3的生长,载气切换为氮气。
生长InN单晶外延3的温度为400℃-600℃,生长V/III比为3000-20000,生长压力为20Torr-700Torr,生长压力控制在650-750Torr。
在生长InN单晶薄膜过程中,通入CCl4以抑制InN生长过程中的金属In滴产生,通入的剂量控制在0.1umol/min-10umol/min。在这里要注意的是,这个方法使用的过程中,不能通入过量的CCl4,因为过多的HCl在腐蚀金属In滴的同时也会腐蚀InN外延表面,影响整个InN外延的晶体质量,只有剂量控制得当,才可以做到只腐蚀金属In滴而不会腐蚀到InN;同时如果剂量少了,那腐蚀金属In滴的效果就减弱。
如图2所示,是本发明方法生长的单晶InN薄膜的X射线衍射分析(XRD)扫描图;从图中可见,本发明生长出来的InN薄膜质量良好,并且从XRD谱中未见明显的金属In滴信息,说明通入的CCl4明显起到了抑制金属InN滴产生的作用。
如图3所示,是本发明方法生长的单晶InN薄膜的光致发光图谱,说明本发明生长出来的InN薄膜具有良好的光电性质,光致发光结果说明所长InN单晶薄膜禁带宽度在0.7ev左右。Hall(霍尔)测试结果具有900cm2/vs的迁移率,载流子浓度在5×1018cm3范围内。

Claims (2)

1.一种生长单晶氮化铟薄膜的方法,其特征在于:
先在金属有机化学气相沉积系统中,在300℃-1000℃的温度下,对硅衬底进行去水气处理,载气为氢气,处理时间为10分钟-15分钟,压力为20Torr-700Torr;
再在硅衬底上利用金属有机化学气相沉积技术生长AlN缓冲层,载气为氢气,生长温度为1050℃-1110℃,生长厚度为10nm-200nm,生长反应所需要的五族源的摩尔量和三族源的摩尔量之比为4000-6000,生长压力为20Torr-100Torr;
然后继续利用金属有机化学气相沉积技术生长InN单晶外延,载气切换为氮气,生长温度为400℃-600℃,生长反应所需要的五族源的摩尔量和三族源的摩尔量之比为3000-20000,生长压力为20Torr-700Torr;
在InN单晶外延的生长过程中,通入CCl4,通入的剂量控制在0.1umol/min-10umol/min。
2.如权利要求1所述一种生长单晶氮化铟薄膜的方法,其特征在于:所述AlN缓冲层生长时,先通入金属有机源铝Al,通入时间为5秒-300秒,然后才通入氨气。
CN2008100720308A 2008-10-28 2008-10-28 一种生长高质量单晶氮化铟薄膜的方法 Active CN101397693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100720308A CN101397693B (zh) 2008-10-28 2008-10-28 一种生长高质量单晶氮化铟薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100720308A CN101397693B (zh) 2008-10-28 2008-10-28 一种生长高质量单晶氮化铟薄膜的方法

Publications (2)

Publication Number Publication Date
CN101397693A CN101397693A (zh) 2009-04-01
CN101397693B true CN101397693B (zh) 2011-09-28

Family

ID=40516528

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100720308A Active CN101397693B (zh) 2008-10-28 2008-10-28 一种生长高质量单晶氮化铟薄膜的方法

Country Status (1)

Country Link
CN (1) CN101397693B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103710747B (zh) * 2013-12-02 2016-06-08 中国电子科技集团公司第五十五研究所 一种n源间隔输送制备氮化物单晶薄膜及方法
CN103710757B (zh) * 2013-12-04 2016-06-29 中国电子科技集团公司第五十五研究所 一种改善铟镓氮外延材料表面质量的生长方法
CN104037291B (zh) * 2014-06-10 2017-06-20 广州市众拓光电科技有限公司 一种生长在图形化硅衬底上的半极性GaN薄膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1704507A (zh) * 2004-06-02 2005-12-07 中国科学院半导体研究所 生长高结晶质量氮化铟单晶外延膜的方法
CN1811018A (zh) * 2005-12-15 2006-08-02 南京大学 一种生长高结晶氮化铟单晶外延膜的方法
CN101230487A (zh) * 2007-01-24 2008-07-30 中国科学院半导体研究所 生长氮化铟单晶薄膜的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1704507A (zh) * 2004-06-02 2005-12-07 中国科学院半导体研究所 生长高结晶质量氮化铟单晶外延膜的方法
CN1811018A (zh) * 2005-12-15 2006-08-02 南京大学 一种生长高结晶氮化铟单晶外延膜的方法
CN101230487A (zh) * 2007-01-24 2008-07-30 中国科学院半导体研究所 生长氮化铟单晶薄膜的方法

Also Published As

Publication number Publication date
CN101397693A (zh) 2009-04-01

Similar Documents

Publication Publication Date Title
Detchprohm et al. The homoepitaxy of GaN by metalorganic vapor phase epitaxy using GaN substrates
Higashiwaki et al. High-quality InN film grown on a low-temperature-grown GaN intermediate layer by plasma-assisted molecular-beam epitaxy
US6281522B1 (en) Method of manufacturing a semiconductor and a semiconductor light-emitting device
US8106419B2 (en) Group-III nitride compound semiconductor light-emitting device, method of manufacturing group-III nitride compound semiconductor light-emitting device, and lamp
WO1998042024A1 (en) Iii-nitride superlattice structures
WO1998042024A9 (en) Iii-nitride superlattice structures
CN101499416A (zh) 生长ⅲ-ⅴ族化合物半导体的方法以及制造发光器件和电子器件的方法
Iwaya et al. Suppression of phase separation of AlGaN during lateral growth and fabrication of high-efficiency UV-LED on optimized AlGaN
CN106544643B (zh) 一种氮化物薄膜的制备方法
CN101388337A (zh) 一种生长高质量具有双缓冲层的单晶氮化铟薄膜的方法
JPH03218625A (ja) p形窒化ガリウム系化合物半導体結晶の作製方法
CN109378373B (zh) 基于h-BN电子阻挡层的高效深紫外发光二极管及制备方法
US20030056719A1 (en) Low temperature epitaxial growth of quaternary wide bandgap semiconductors
US6194744B1 (en) Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer
CN101397693B (zh) 一种生长高质量单晶氮化铟薄膜的方法
US20070015306A1 (en) Manufacturing method of P type group III nitride semiconductor layer and light emitting device
JP2012169621A (ja) AlInGaN層の成長方法、光電子装置、光電池装置、および電子装置
JPH09251957A (ja) 3−5族化合物半導体の製造方法
CN1219614A (zh) 光辐射加热金属有机化学汽相淀积氮化镓生长方法与装置
JP2004119423A (ja) 窒化ガリウム結晶基板、その製造方法、窒化ガリウム系半導体素子および発光ダイオード
JP2006324512A (ja) 窒化物半導体薄膜およびその製造方法
CN100378255C (zh) 一种a面和m面GaN薄膜材料的控制生长方法
US20120248577A1 (en) Controlled Doping in III-V Materials
JP2812375B2 (ja) 窒化ガリウム系化合物半導体の成長方法
CN113461717A (zh) 有机镁化合物及电子器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: 361100 Fujian Xiamen torch high tech Zone (Xiangan) Industrial Zone, No. 259-269, Xiang Tian Road.

Patentee after: Xiamen Changelight Co., Ltd.

Address before: 361000 108A, Chuang Chuang, torch high tech Zone, Xiamen, Fujian

Patentee before: Xiamen Changelight Co., Ltd.

CP02 Change in the address of a patent holder