CN101392225B - 一种不对称转化制备(s)-4-氯-3-羟基丁酸乙酯的重组酵母菌及其构建方法和应用 - Google Patents

一种不对称转化制备(s)-4-氯-3-羟基丁酸乙酯的重组酵母菌及其构建方法和应用 Download PDF

Info

Publication number
CN101392225B
CN101392225B CN2008101561686A CN200810156168A CN101392225B CN 101392225 B CN101392225 B CN 101392225B CN 2008101561686 A CN2008101561686 A CN 2008101561686A CN 200810156168 A CN200810156168 A CN 200810156168A CN 101392225 B CN101392225 B CN 101392225B
Authority
CN
China
Prior art keywords
chloro
hydroxybutanoate
ethyl
gene
recombinant yeast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008101561686A
Other languages
English (en)
Other versions
CN101392225A (zh
Inventor
应汉杰
许琳
叶齐
严明
熊健
柏建新
陈勇
李振江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN2008101561686A priority Critical patent/CN101392225B/zh
Publication of CN101392225A publication Critical patent/CN101392225A/zh
Application granted granted Critical
Publication of CN101392225B publication Critical patent/CN101392225B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种不对称转化制备(S)-4-氯-3-羟基丁酸乙酯的重组酵母菌,它是导入羰酰还原酶基因和葡萄糖脱氢酶基因的酿酒酵母菌。本发明还公开了上述重组酵母菌的构建方法。利用本发明重组酵母菌制备(S)-4-氯-3-羟基丁酸乙酯的方法为:以4-氯乙酰乙酸乙酯为底物,以葡萄糖为辅助底物,由本发明的重组酵母菌进行转化反应制备得到(S)-4-氯-3-羟基丁酸乙酯。本发明的重组酵母菌可在不添加任何辅酶的条件下,高效催化4-氯乙酰乙酸乙酯为(S)-4-氯-3-羟基丁酸乙酯,光学纯度e.e值大于98%,对底物的转化率大于95%,降低了生产成本,比起其它无需外加昂贵辅酶的菌种,对底物的转发率高,光学活性高。

Description

一种不对称转化制备(S)-4-氯-3-羟基丁酸乙酯的重组酵母菌及其构建方法和应用
技术领域
本发明属于生物催化不对称转化技术领域,具体涉及一种不对称转化制备(S)-4-氯-3-羟基丁酸乙酯的重组酵母菌及其构建方法和应用。
背景技术
(S)-4-氯-3羟基丁酸乙酯(Ethyl4-chloro-3-hydroxybutanoate,(S)-CHBE)是一种重要的有机中间体,可用于很多活性药物的合成,如他汀类药物——羟甲基戊二酰CoA(HMG-CoA)还原酶抑制剂和4-羟基吡啶烷酮(4-hydroxypyrrolidone)等[1]。以4-氯乙酰乙酸乙酯(COBE)作为还原反应的潜手性底物,易于合成且价格低廉,以其为底物进行不对称还原反应获取(S)—CHBE是非常经济有效的制备途径。
迄今为止关于4-氯乙酰乙酸乙酯(4-chloroacetoacetate Ethyl COBE)不对称还原制备(S)-CHBE已进行了很多的研究报道。概括起来主要有化学法和生物法。
化学催化不对称还原法,所用催化剂包括铑、釕等金属,价格昂贵,最关键的问题是采用化学法合成S—CHBE的立体选择性不够高,催化还原反应需要很高的氢气压,耗能高,污染大;
微生物法分为酶催化和全细胞催化法,Shimizu等用来自SporobolomycessalmonicolorAKU4429的NADPH依赖的醛基还原酶分别在单一水相体系[2]和水/有机溶剂两相体系[3]催化还原COBE制备手性CHBE由于应用酶催化还原反应所用的酶要从微生物细胞中分离纯化得到,而且反应必须添加昂贵的辅酶才能进行,与全细胞催化相比,应用较少。全细胞法则分为采用野生酵母和基因工程菌催化COBE为(S)—CHBE两种,Yasohara等[4]从400株酵母菌中筛选得到了一株Candida magnoliae,在水/乙酸正丁酯体系中,在添加葡萄糖、NADP和葡萄糖脱氢酶以及反应过程中需要控制pH值的条件下产物(S)-CHBE在有机相的积累浓度可达90g/L,产物的光学纯度达到96%e.e.。孙志浩等人利用出芽短梗霉CGMCC NO.1244在不添加辅酶的情况下不对称催化底物COBE为(S)-CHBE,光学活性为97.7%[5],Yasohara等[6]从木兰假丝酵母菌Candida magnoliae中分离得到了一个辅酶NADPH依赖型的羰基还原酶,将该酶与葡萄糖脱氢酶基因克隆到大肠杆菌中共表达,在定时添加适量的辅酶NADP和葡萄糖以及分批添加底物的条件下,催化COBE不对称还原(S)-CHBE,其转化率和光学纯度分别为85%和100%e.e.[7]。
综上所述,现有催化COBE为(S)-CHBE的技术只有孙志浩所报道是不需要添加辅酶进行反应,然后由于采用野生菌株中往往含有多种能够催化COBE为不同构型CHBE的还原酶,因此采用野生菌株进行催化所获得的产物的光学活性往往不高,需要筛选到高立体选择性的优良微生物菌株非常困难,所以近来的研究着重集中于运用重组菌不对称合成具有高立体选择性的(S)-CHBE。
参考文献:
[1]Karanewsky DS,Badia MC,Ciosek CP Jr,Robl JF,Sofia MJ,Simpkins LM,DeLange B,Harrity TW,Biller SA,Gorden EM(1990)Phosphorus-containing inhibitors of HMG-CoAreductase.1.4-[2-arylethyl]-hydroxyphosphinyl]-3-hydroxybut anoic acids:a new class ofcell-selective inhibitors of cholesterol biosynthesis.J Med Chem33:2925-2956。
[2]Shimizu S,Kataoka M,Morishita A Katoh M,Morikawa T,Miyoshi T,Yamada H(1990a)Microbial asymmetric reduction of ethyl 4-chloro-3-oxobutaoate to optically active ethyl4-4-chloro-3-hydroxybutanoate.Biotechnol lett12:593-596。
[3]Shimizu S,Kataoka M,Katoh M,Morikawa T,Miyoshi T,Yamada H(1990b)Stereoselective reduction of ethyl 4-chloro-3-oxobutaoate by a microbial aldehyde reductasein an organic solvent-water diphasic system.Appl Environ Microbiol56:2374-2377。
[4]YasoharaY,Kizaki N,Hasegawa J,Takahashi S,Wada M,Kataoka M,Shimizu S(1999)Synthesis of optically activeethyl 4-chloro-3-hydroxybutanoate by microbial reduction.ApplMicrobiol Biotechnol51:847-851。
[5]Jun-Yao He,Zhi-Hao Sun,Wen-Quan Ruan,Yan Xu(2006)Biocatalytic synthesis of ethyl(S)-4-chloro-3-hydroxy-butanoate in an aqueous-organic solvent biphasic system usingAureobasidium pullulans CGMCC 1244.Process Biochemistry41(2006)244-249
[6]Wada M,Kataoka M,Kawabata H,Yasohara Y,Kizaki N,Hasegawa J,Shimizu S(1998)Purification and characterization of NADPH-ependent carbonyl reductase involved instereoselective reduction of ethyl 4-chloro-3-oxobutanoate,from Candida magnoliae.BiosciBiotechnol Biochem62:280-285。
[7]Yasohara Y,Kizaki N,Hasegawa J,Wada M,Kataoka M,Shimizu S(2000)Molecularcloning and overexpression of the gene encoding an NADPH-dependent carbonyl reductase,involved in stereoselective reductionof ethyl 4-chloro-3-oxobutanoate,from Candidamagnoliae.Biosci Biotechnol Biochem64:1430-1436。
发明内容
本发明所要解决的第一个技术问题是提供一株能够催化COBE为(S)-CHBE的重组酵母菌,该重组菌对底物的转化率高、产物光学活性高、成本低。
本发明所要解决的第二个技术问题是提供上述重组酵母菌的构建方法。
本发明所要解决的第三个技术问题是提供利用上述重组酵母菌不对称转化制备(S)-4-氯-3-羟基丁酸乙酯的方法。
为解决上述技术问题,本发明采用的技术方案是:
一种不对称转化制备(S)-4-氯-3-羟基丁酸乙酯的重组酵母菌,是导入羰酰还原酶PsCR(carbonyl reductase from Pichia stipitis,PsCR)基因和葡萄糖脱氢酶GDH(Glucosedehydrogenase from Bacillus megaterium,GDH)基因的酵母菌。
上述羰酰还原酶PsCR基因含有849bp碱基,其在Genbank中的收录号为XM_01387250(http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=XM_001387250.1),其基因序列如SEQ ID NO:1所示。由该基因编码的羰酰还原酶,包含282个氨基酸,其在Genbank中的收录号为XP_001387287(http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=126273732),其氨基酸序列如SEQ ID NO:2所示。
上述葡萄糖脱氢酶GDH基因基因含有786bp碱基,其在Genbank中的收录号为142974(http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=142974),其基因序列如SEQ ID NO:3所示。由该基因编码的葡萄糖脱氢酶,包含261个氨基酸,其在Genbank中的收录号为729328(http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=729328),其氨基酸序列如SEQ ID NO:4所示。
本发明即分别从毕赤酵母(Pichia stipitis CBS6054)和巨大芽孢杆菌(Bacillusmegaterium ATCC14581)克隆羰酰还原酶PsCR基因与葡萄糖脱氢酶GDH基因,将其构建在双启动子载体PESC-LEU中并在酿酒酵母中进行共表达,该重组酵母菌属于酵母属(Saccharomyces)、酿酒酵母种(S.cerevisiae)。该菌株(Saccharomyces cerevisiae499-P-G-Y)保藏号为:CCTCC M208129,保藏日期2008年9月10日,保藏地点为:武汉,中国典型培养物保藏中心。
上述重组酵母菌株具有下述性质:
(1)菌落形态学特征:大较厚,呈乳白色,表面湿润、粘稠,易被挑起。
(2)生理生化特征:可以通过出芽进行无性生殖,也可以通过形成子囊孢子进行有性生殖。
(3)营养特征:酵母菌的最适pH值为pH6.5,最适生长温度30℃。有氧存在时,酵母菌较快。
构建上述重组酵母菌的方法如下:克隆羰酰还原酶PsCR基因与葡萄糖脱氢酶GDH基因,将其构建在双启动子载体PESC-LEU中并在酿酒酵母中进行共表达,获得不对称转化制备(S)-4-氯-3-羟基丁酸乙酯的重组酵母菌。
由于酵母是真核生物,与原核生物(例如大肠杆菌)相比,其代谢途径完整且非常发达,特别是作为好氧的真核生物——酿酒酵母的三羧酸循环(TCA)的代谢途径及其发达,在该代谢途径所产生的大量NADPH可以用作供给羰酰还原酶PsCR不对称合成(S)-4-氯-3羟基丁酸乙酯的辅因子,而所构建的葡萄糖脱氢酶GDH又能够以葡萄糖为辅助底物,使辅因子NADPH原位再生,进而使酵母细胞产生的NADPH高效循环利用。
利用上述重组酵母菌不对称转化制备(S)-4-氯-3羟基丁酸乙酯的方法如下:
以4-氯乙酰乙酸乙酯为底物,以葡萄糖为辅助底物,由导入了羰酰还原酶基因PsCR和葡萄糖脱氢酶GDH基因的酵母菌进行转化反应制备得到(S)-4-氯-3-羟基丁酸乙酯。
其中,底物4-氯乙酰乙酸乙酯的初始反应浓度为1~100g/L,葡萄糖初始反应浓度为100mM~3M,重组酵母菌的用量为20~200g/L。
其中,所述的反应温度为20℃~35℃,反应时间为15h~40h。
其中,所述的转化反应采用水相体系转化法或有机溶剂/水双相体系转化法。所述的水相体系转化法即湿重组酵母菌在pH5~8的磷酸缓冲溶液中进行生物转化;所述的有机溶剂/水双相体系转化法为:湿重组酵母菌在含有pH5~8的磷酸缓冲/乙酸正丁酯的双相体系中进行生物转化。
有益效果:本发明的不对称转化制备(S)-4-氯-3-羟基丁酸乙酯的重组酵母菌可在不添加任何辅酶的条件下,高效催化COBE为(S)-CHBE,光学纯度e.e值大于98%,对底物的转化率大于95%,降低了生产成本,比起其它无需外加昂贵辅酶的菌种,其对底物的转发率高,光学活性高。
附图说明
生物材料保藏情况:保藏日期:2008年9月10日;单位中国典型培养物保藏中心CCTCC;地址:中国.武汉.武汉大学;保藏编号:M208129。
图1为羰酰还原酶PsCR基因和葡萄糖脱氢酶GDH基因与双启动子载体PESC-LEU的构建图。
具体实施方式:
根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的具体的物料配比、工艺条件及其结果仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
实施例1:重组酵母菌的构建
1、羰酰还原酶PsCR基因和葡萄糖脱氢酶GDH基因的获取。
毕赤酵母(Pichia stipitis CBS6054)培养基YPD(g·L-1):酵母提取物10g,蛋白胨20g,葡萄糖20g。
将毕赤酵母接种于5mL YPD液体培养基中30℃培养至对数生长期,使用基因组DNA提取试剂盒(北京天为生物工程有限公司的试剂盒,)提取基因组。
构建到表达载体中MCS1所用的引物加设酶切位点,引物序列如下:
上游引物(-sense含BamH I)为:5′CGCGGATCCATGGCTAAGAACTTCT CCAAC
下游引物(-anti含Xho I)为:CCGCTCGAGTTAGGGAAGCGTGTAGCCAC
所有引物均由上海申能博彩公司合成。
基因的PCR条件(50μL体系):
94℃变性7min,按如下参数循环30次:94℃变性1min,70℃退火50s,72℃延伸1.5min。最后72℃延伸10min.。
巨大芽孢杆菌(Bacillus megaterium ATCC14581)LB液体培养基:蛋白胨1%,酵母抽提物0.5%,NaCl1%,pH7.0。
将巨大芽孢杆菌接种于5mL LB液体培养基中37℃培养至对数生长期,使用基因组DNA提取试剂盒(TAKANA公司基因组试剂盒)提取基因组。
构建到表达载体中MCS2所用的引物加设酶切位点,引物序列如下:
上游引物(-sense含Not I)为:5′ATAAGAATGCGGCCGCATGTATCCGGATTTAAAAGG
下游引物(-anti含Bgl II)为:GGAAGATCTTTAACCGCGGCCTGCCTGG AATGC
所有引物均由上海申能博彩公司合成。
基因的PCR条件(50μL体系):
94℃变性7min,按如下参数循环30次:94℃变性1min,70℃退火50s,72℃延伸1.5min。最后72℃延伸10min.。
2、羰酰还原酶(PsCR)基因与葡萄糖脱氢酶(GDH)基因在PESC-LEU(购于美国Stratagene公司)中的共表达。
用Not I及Bgl II分别酶切PESC-LEU及所扩增含有两个酶切位点的GDH基因。
分别胶回收已双酶切的PESC-LEU及GDH基因片段,将已双酶切的表达载体PESC-LEU与GDH基因用T4连接酶进行连接过夜,将10uL的连接产物PESC-GDH加入100μl的DH5α的感受态细胞中,冰上放置30min,42℃热激90sec。冰上放置2min。加入预热的0.45ml培养基。220rpm37℃1h。将200ul菌液加入分别含有100μg/mL的氨苄青霉素的LB平板上,37℃过夜培养12—16h。挑取阳性克隆DH5α(PESC-GDH)于100μg/mL的氨苄青霉素的液体LB培养中,220rpm,37℃,10h后提取质粒PESC-GDH,用BamH I及Xho I分别酶切PESC-GDH及所扩增含有两个酶切位点的PsCR基因,分别胶回收已双酶切的目的片段,将已双酶切的表达载体PESC-GDH与基因用T4连接酶进行连接过夜,将连接液10μl全部电转至酿酒酵母YPH499(酿酒酵母Saccharomyces cerevisiae YPH499购于美国Stratagene公司)的感受态细胞中,涂布于亮氨酸缺陷型的SD培养基中,30℃,48h。
Saccharomyces cerevisiae YPH499感受态细胞制备步骤如下:
(1)挑酿酒酵母菌接于5mlYPD培养基,30℃,200rpm过夜。
(2)测OD600,计算稀释倍数,取适量加至50mlYPD/250ml瓶,使OD=0.25.。
(3)置30℃200rpm,3-6h,使OD=1.0~1.5,冰上15min停止生长。
(4)离心去上清收获细胞,3000g,5min。(分两管)。
(5)用无菌水洗两次,重悬后离心。
(6)用2ml灭菌预冷的1mol/L的山梨醇重悬液体。移至另一10ml离心管中,离心收集菌体。
(7)加入50ul无菌预冷1mol/L山梨醇重悬,置冰上尽快电转。
电转化步骤(使用伯乐电转仪)如下:
(1)取质粒DNA(100ug),于1.5ml离心管中置冰上。
(2)0.2cm电转杯加40ul感受态细胞或0.4cm电转杯加80ul感受态细胞,轻混后置冰上5min。
(3)设置伯乐电转仪于SC2(0.2cm)or SC4(0.4cm)。
(4)将细胞置于电转杯中(预冷),将电转杯置于“Chamber slide”电击。
(5)取出电转杯,立即加入1ml,预冷的1mol/L山梨醇,转导将杯中液体转至灭菌管中。
(6)核对并记录电击参数,冰上30min。
(7)将细胞涂于SD平板,30℃,48~72h。
液体SD培养基配方如下:
葡萄糖20g;
酵母氮源(不含有亮氨酸)6.7g,其配方见表1;
水至1000ml。
若是固体SD培养基则须加入20g琼脂
表1酵母氮源(不含有亮氨酸)配方一览表
 
Amimo acid (g) 工作浓度(mg/liter)
Adenine sulfate  腺嘌呤硫酸盐 2.5 40
L-arginine(HCl)  L-精氨酸(HCl) 1.2 20
L-aspartic acid  L-天冬氨酸 6.0 100
L-glutamic acid  L-谷氨酸 6.0 100
L- histidine    L-组氨酸 1.2 20
L-lysine       L-赖氨酸 1.8 30
L-methionine    L-甲硫氨酸 1.2 20
L-phenylalanine  L-苯丙氨酸 3.0 50
L-serine       L-丝氨酸 22.5 375
L-threonine     L-苏氨酸 12 200
L-tryptophan     L-色氨酸 2.4 40
L-tyrosine      L-酪氨酸 1.8 30
L-valine       L-缬氨酸 9.0 150
Uracil        L-尿嘧啶 1.2 20
实施例2:重组酵母菌(CCTCC NO:M208129)的发酵
挑已鉴定为阳性的单克隆PESC-GDH-PsCR,接种于5mL的亮氨酸缺陷性SD培养基中,30℃过夜。按照2%的接种量接种于亮氨酸缺陷性的SG培养基中,30℃诱导16h。8000rpm,4℃离心10min,弃上清。
SG培养基配方如下:
半乳糖20g
酵母氮源(不含有亮氨酸)6.7g,其配方见表1;
水至1000ml。
实施例3:
取实施例2的沉淀用磷酸钾缓冲(100mmol·L-1,pH6.0)洗涤两次,称取0.5g(湿重)的重组酵母菌菌泥,悬浮于5mL的pH6.0磷酸钾缓冲中。超声处理细胞(功率300W,超声5s,间歇5s,共5min),加入葡萄糖100mmol/L,COBE1g/L,24℃,190rpm,18h。产物(S)-CHBE的产量为0.99g/L,产物的得率为:99%,光学纯度e.e%为100%。
(S)-CHBE的检测方法如下,以下实施例中产物的检测方法相同:
对于水相反应:反应结束后,加入等体积乙酸乙酯,剧烈振荡10min然后放置两小时,8000rpm离心10min分离有机层和水层。小心吸取上层乙酸乙酯过有机膜,加入内标,保存测样。
对于水/有机两相反应:反应结束后8000rpm离心10min分离有机层和水层。小心吸取上层乙酸乙酯过有机膜,加入内标,保存测样。
PEG-20M毛细管柱,内标物为萘。程序为:检测器FID,温度210℃,汽化室温度210℃,柱温150℃,柱头压0.03MPa,氢气0.05MPa,空气0.1MPa,尾吹0.08MPa。用HPLC对(S)-4-氯-3-羟基丁酸乙酯的旋光性进行分析(手性柱Chiralcel OB,4.6×250mm;Daicel Chemical Industries,日本),检测条件:流动相为正己烷:正己烷(9:1),波长214nm,流量为0.8mL/min,R型和S型CHBE的出峰时间分别为:10.5min和11.6min。
实施例4:
取实施例2的沉淀用磷酸钾缓冲(100mmol·L-1,pH7.5)洗涤两次,称取0.4g(湿重)的重组酵母菌菌泥,悬浮于10mL的pH7.5磷酸钾缓冲中。超声处理细胞(功率300W,超声5s,间歇5s,共5min),加入葡萄糖500mmol/L,COBE20g/L(0、1、8、14h各5g/L),22℃,200rpm,20h。产物(S)-CHBE的产量为19.5g/L,产物的得率为:97.5%,光学纯度e.e%为98.5%。
实施例5:
取实施例2的沉淀用磷酸钾缓冲(100mmol·L-1,pH5.5)洗涤两次,称取0.5g(湿重)的重组酵母菌菌泥,悬浮于25mL的pH5.5磷酸钾缓冲中。超声处理细胞(功率300W,超声5s,间歇5s,共5min),加入葡萄糖800mmol/L,COBE30g/L(0、1、2、8、14h各6g/L),28℃,240rpm,25h。产物(S)-CHBE的产量为28.8g/L,产物的得率为:96%,光学纯度e.e%为98.2%。
实施例6:
取实施例2的沉淀用磷酸钾缓冲(100mmol·L-1,pH6.0)洗涤两次,称取6g(湿重)的重组酵母菌菌泥,悬浮于50mL的pH6.0磷酸钾缓冲中。超声处理细胞(功率300W,超声5s,间歇5s,共5min),加入葡萄糖1.5mol/L,50mL乙酸正丁酯(可促进COBE的溶解并解除底物和产物对酶和细胞的抑制作用),加入COBE.40g/L(0、2、4、6、1h各5g/L),35℃,200rpm,25h。产物(S)-CHBE的产量为38.2g/L,产物的得率为:95.5%,光学纯度e.e%为98.5%。
实施例7:
取实施例2的沉淀用磷酸钾缓冲(100mmol·L-1,pH6.5)洗涤两次,称取2g(湿重)的重组酵母菌菌泥,悬浮于15mL的pH6.5磷酸钾缓冲中。超声处理细胞(功率300W,超声5s,间歇5s,共5min),加入15mL乙酸正丁酯(可促进COBE的溶解并解除底物和产物对酶和细胞的抑制作用),加入葡萄糖1mol/L,COBE50g/L(0、2、4、6、10h各10g/L),26℃,280rpm,26h。产物(S)-CHBE的产量为47.6g/L,产物的得率为:95.2%,光学纯度e.e%为98.3%。
实施例8:
取实施例2的沉淀用磷酸钾缓冲(100mmol·L-1,pH6.5)洗涤两次,称取20g(湿重)的重组酵母菌菌泥,悬浮于100mL的pH6.5磷酸钾缓冲中。超声处理细胞(功率300W,超声5s,间歇5s,共5min),加入100mL乙酸正丁酯(可促进COBE的溶解并解除底物和产物对酶和细胞的抑制作用),加入葡萄糖2mol/L,COBE80g/L(0、2、4、6、10h各16g/L),30℃,280rpm,36h。产物(S)-CHBE的产量为77g/L,产物的得率为:96.2%,光学纯度e.e%为98%。
SEQUENCE LISTING
<110>南京工业大学
<120>一种不对称转化制备(S)-4-氯-3羟基丁酸乙酯的重组酵母菌及其构建方法和应用
<130>njut080924
<160>4
<170>PatentIn version3.3
<210>1
<211>849
<212>DNA
<213>毕赤酵母(Pichia stipitis CBS6054)
<220>
<221>CDS
<222>(1)..(849)
<400>1
Figure G2008101561686D00101
Figure G2008101561686D00121
<210>2
<211>282
<212>PRT
<213>毕赤酵母(Pichia stipitis CBS6054)
<400>2
Figure G2008101561686D00141
Figure G2008101561686D00151
<210>3
<211>786
<212>DNA
<213>巨大芽孢杆菌(Bacillus megaterium)
<220>
<221>CDS
<222>(1)..(786)
<400>3
Figure G2008101561686D00152
Figure G2008101561686D00161
<210>4
<211>261
<212>PRT
<213>巨大芽孢杆菌(Bacillus megaterium ATCC14581)
<400>4
Figure G2008101561686D00181
Figure G2008101561686D00191
Figure G2008101561686D00201

Claims (9)

1.一种不对称转化制备(S)-4-氯-3-羟基丁酸乙酯的重组酵母菌,其特征在于它是导入羰酰还原酶PsCR基因和葡萄糖脱氢酶GDH基因的酿酒酵母菌;其中,所述的羰酰还原酶PsCR基因序列如SEQ ID NO:1所示。
2.根据权利要求1所述的不对称转化制备(S)-4-氯-3-羟基丁酸乙酯的重组酵母菌,其特征在于它的菌株保藏号为CCTCC NO:M 208129。
3.构建权利要求1所述的重组酵母菌的方法,其特征在于该方法为:克隆羰酰还原酶PsCR基因与葡萄糖脱氢酶GDH基因,将其构建在双启动子载体中并在酿酒酵母中进行共表达,获得不对称转化制备(S)-4-氯-3-羟基丁酸乙酯的重组酵母菌。
4.根据权利要求4所述的构建重组酵母菌的方法,其特征在于所述的双启动子载体为PESC-LEU。
5.权利要求1所述的不对称转化制备(S)-4-氯-3-羟基丁酸乙酯的重组酵母菌在4-氯乙酰乙酸乙酯不对称还原制备(S)-4-氯-3-羟基丁酸乙酯中的应用。
6.一种生产(S)-4-氯-3-羟基丁酸乙酯的方法,其特征在于该方法以4-氯乙酰乙酸乙酯为底物,以葡萄糖为辅助底物,由导入了羰酰还原酶PsCR基因和葡萄糖脱氢酶GDH基因的权利要求1所述的酿酒酵母菌进行转化反应制备得到(S)-4-氯-3-羟基丁酸乙酯;
其中,底物4-氯乙酰乙酸乙酯的初始反应浓度为1~100g/L,葡萄糖的初始反应浓度为100mM~3M,重组酵母菌的用量以湿酵母计为20~200g/L。
7.根据权利要求6所述的生产(S)-4-氯-3-羟基丁酸乙酯的方法,其特征在于所述的反应温度为20~35℃,反应时间为15~40h。
8.根据权利要求6所述的生产(S)-4-氯-3-羟基丁酸乙酯的方法,其特征在于所述的转化反应采用水相体系转化法或有机溶剂/水双相体系转化法。
9.根据权利要求8所述的生产(S)-4-氯-3-羟基丁酸乙酯的方法,其特征在于所述的水相体系转化法为:湿重组酵母菌在pH 5~8的磷酸缓冲溶液中进行生物转化;所述的有机溶剂/水双相体系转化法为:湿重组酵母菌在含有pH 5~8的磷酸缓冲液/乙酸正丁酯的双相体系中进行生物转化。
CN2008101561686A 2008-10-06 2008-10-06 一种不对称转化制备(s)-4-氯-3-羟基丁酸乙酯的重组酵母菌及其构建方法和应用 Expired - Fee Related CN101392225B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101561686A CN101392225B (zh) 2008-10-06 2008-10-06 一种不对称转化制备(s)-4-氯-3-羟基丁酸乙酯的重组酵母菌及其构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101561686A CN101392225B (zh) 2008-10-06 2008-10-06 一种不对称转化制备(s)-4-氯-3-羟基丁酸乙酯的重组酵母菌及其构建方法和应用

Publications (2)

Publication Number Publication Date
CN101392225A CN101392225A (zh) 2009-03-25
CN101392225B true CN101392225B (zh) 2012-06-27

Family

ID=40492737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101561686A Expired - Fee Related CN101392225B (zh) 2008-10-06 2008-10-06 一种不对称转化制备(s)-4-氯-3-羟基丁酸乙酯的重组酵母菌及其构建方法和应用

Country Status (1)

Country Link
CN (1) CN101392225B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101372699B (zh) * 2008-09-02 2011-11-30 南京工业大学 一种羰酰还原酶在生产(s)-4-氯-3羟基丁酸乙酯中的应用
CN101962661B (zh) * 2010-06-29 2012-05-23 南京工业大学 一种羰酰还原酶在生产(s)-4-氯-3羟基丁酸乙酯中的应用
CN102925368B (zh) * 2012-11-07 2014-01-01 浙江大学宁波理工学院 一种可催化不对称还原反应的球孢白僵菌及其应用
CN110903993A (zh) * 2019-12-20 2020-03-24 河北兰升生物科技有限公司 一种产生菜籽甾醇的酿酒酵母工程菌及其构建方法和应用
CN113913399B (zh) * 2021-11-19 2023-10-20 万华化学集团股份有限公司 来源于Candida maltosa Xu316的酮基泛解酸内酯还原酶
CN114085820B (zh) * 2021-11-19 2023-10-20 万华化学集团股份有限公司 来源于Candida viswanathii的酮基泛解酸内酯还原酶

Also Published As

Publication number Publication date
CN101392225A (zh) 2009-03-25

Similar Documents

Publication Publication Date Title
CN101372699B (zh) 一种羰酰还原酶在生产(s)-4-氯-3羟基丁酸乙酯中的应用
Kumar et al. Recent advances in biological production of 3-hydroxypropionic acid
CN102212567B (zh) 一种l-2-氨基丁酸的生产方法
Jantama et al. Efficient reduction of the formation of by-products and improvement of production yield of 2, 3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium
CN101392225B (zh) 一种不对称转化制备(s)-4-氯-3-羟基丁酸乙酯的重组酵母菌及其构建方法和应用
CN101613672A (zh) 一种不对称转化制备(s)-4-氯-3-羟基丁酸乙酯的重组大肠杆菌及其构建方法
US20220177930A1 (en) Methods for regulating nitrogen metabolism during the production of ethanol from corn by metabolically engineered yeast strains
CN103497911B (zh) 一株金黄杆菌及其羰基还原酶用于阿瑞匹坦手性中间体生产
Liu et al. Simultaneous production of butanol and acetoin by metabolically engineered Clostridium acetobutylicum
CN110551671B (zh) 一株产surfactin基因工程菌及其构建方法和应用
Moshi et al. High temperature simultaneous saccharification and fermentation of starch from inedible wild cassava (Manihot glaziovii) to bioethanol using Caloramator boliviensis
CN112126610A (zh) 一种用于生产羟基酪醇的工程菌
CN109321590A (zh) 利用乙酸生产l-乳酸的基因工程菌及其构建方法和应用
CN115975832B (zh) 甲酸脱氢酶在提高微生物发酵菌株对纤维素水解液中甲酸和乙酸抗性中的应用
CN103013898B (zh) 一种表达羰基还原酶的重组工程菌及其应用
CN104046586B (zh) 一株基因工程菌及其在生产(2r,3r)-2,3-丁二醇中的应用
CN101962661B (zh) 一种羰酰还原酶在生产(s)-4-氯-3羟基丁酸乙酯中的应用
Cao et al. Efficient L-valine production using systematically metabolic engineered Klebsiella oxytoca
KR20150006412A (ko) 미생물에 의한 n-부티르알데하이드의 생성
Nguyen et al. Engineering of Saccharomyces cerevisiae for the production of dihydroxyacetone (DHA) from sugars: A proof of concept
CN106978379A (zh) 一种产异丁醇和乙醇的大肠杆菌及其制备方法
Kong et al. Metabolic engineering of Aureobasidium melanogenum for the overproduction of putrescine by improved L-ornithine biosynthesis
CN103255183B (zh) 一种利用羰基还原酶不对称还原制备(s)-4-氯-3羟基丁酸乙酯的方法及应用
CN111394396B (zh) 一种微生物利用甘油发酵生产1,3-丙二醇的方法
CN102286556B (zh) 一种山梨糖还原酶在生物法制备(s)-4-氯-3羟基丁酸乙酯中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120627

Termination date: 20151006

EXPY Termination of patent right or utility model