CN101370585A - 使用电沉积制备催化物质的方法 - Google Patents

使用电沉积制备催化物质的方法 Download PDF

Info

Publication number
CN101370585A
CN101370585A CNA2007800023656A CN200780002365A CN101370585A CN 101370585 A CN101370585 A CN 101370585A CN A2007800023656 A CNA2007800023656 A CN A2007800023656A CN 200780002365 A CN200780002365 A CN 200780002365A CN 101370585 A CN101370585 A CN 101370585A
Authority
CN
China
Prior art keywords
compound
pottery
active layer
layer mutually
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800023656A
Other languages
English (en)
Other versions
CN101370585B (zh
Inventor
D·加里
P·德尔加洛
F·巴塞尔
G·弗纳萨里
V·罗塞蒂
A·瓦卡里
E·斯卡维塔
D·托奈立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of CN101370585A publication Critical patent/CN101370585A/zh
Application granted granted Critical
Publication of CN101370585B publication Critical patent/CN101370585B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

本发明提供了催化物质的制备方法,该催化物质基本由涂有陶瓷活性相层的金属载体构成,该陶瓷活性相层主要是通式(I)的化合物:[RhxNiyMglAlm(OH)2]2+ (An- z/n)kH2O,其中An-主要是硅酸根或多硅酸根阴离子;0≤x≤0.3;0≤y≤0.9;0≤l≤0.9;0≤m≤0.5;0≤k≤10;x+y>0;0.5≤y+l≤0.9;x+y+l+m=1;且z是阳离子元素的总电荷,或该陶瓷活性相层是通式(II)的化合物:[AzA′1-z][B1-x-yNixRhy]O3-δ (II),其中A和A′不同,并选自镧系或锕系或选自门捷列夫元素周期表的第IIa族;B选自门捷列夫元素周期表的第IIIb、IVb、Vb、VIb、VIIb、Ib和IIb纵列和第VIIIb族的过渡金属;0≤x≤0.7,0≤y≤0.5,0≤x+y≤0.8,0≤z≤1且δ是获得所述钙钛矿化合物的电中性所需的氧的亚化学计量值;所述方法基本由将所述陶瓷活性相电沉积在所述金属载体上的步骤(a)组成。本发明还提供了所述催化物质用于气态烃的催化剂氧化而制造合成气的用途。

Description

使用电沉积制备催化物质的方法
本发明涉及用于烃的不完全氧化(CPO)、蒸汽甲烷重整(SMR)、蒸汽石油脑重整或干重整(DR)的新型催化剂。
合成气的催化生产在通常对催化剂的稳定性非常有害的剧烈条件(主要温度条件)下进行。烃的催化不完全氧化(CPO)例如是强的放热反应,且催化床的第一部分可以达到最高1000℃的温度。相反,由于蒸汽甲烷重整(SMR)和干重整(DR)是吸热反应,因此必须将催化床加热至接近1000℃以实现烃类的最大转化,且向催化床的热传递必须非常迅速地完成,通常少于1秒,优选少于0.1秒,从而降低其与反应物质的接触时间以限制碳形成。
这些反应因此需要使用在金属烧结、载体化学、机械耐受性和粒子分散方面非常稳定的催化剂。
此外,催化剂活性可能影响反应器的热分布:在这方面,可以强调,烃的催化不完全氧化(CPO)必须仔细控制,以避免在反应器中形成热点,这可能在均匀反应中突然发生;吸热反应需要由加热装置产生的大量能量加热反应器壁。因此,如果催化材料造成良好的热传递,可以由此促进、甚至改善反应的均匀性。
此外,活性催化剂如果沉积在具有高热导率的载体上,则可以改进这些体系的效率。特殊的耐高温合金通常提供这种性质。
催化床还必须引起最小的压降(压降对反应有害),同时主要出于经济原因具有最低堆密度。形态与几何结构方面的最佳折衷方案可能是使用特定的金属泡沫类的载体。
另一关键点涉及在载体上沉积活性相的方法。由于金属载体的比表面积无效,直接的标准沉积方法(如浸渍法)不合适。
一些出版物公开了制造适用于烃的氧化重整的负载型金属催化剂的方式。
日本专利5,186,203公开了用于SMR的催化元件,其由附着在多孔氧化铝层上的镍细粒构成,多孔氧化铝层本身连接到金属重整管内表面上。
Ismagilov等人(Studies in surface Science and Catalysis,Elsevier,Amsterdam,2000,第130C卷,2759)公开了结合甲烷的放热燃烧和吸热蒸汽重整的催化换热(HEX)管式反应器,其在燃烧部分中包含在镍-铬泡沫(Ni-Cr泡沫)材料上的钙钛矿或铂负载型催化剂,并在蒸汽重整部分中包含含镍的泡沫催化剂。
美国专利US 6,630,078 B2公开了金属材料的用途,其用作在低接触时间值下进行的SMR反应的催化载体。
美国专利申请US 2003/0,185,750A1和国际申请WO 02/066,371公开了将活性相(Ni、Rh、Pt、Ru......)沉积在陶瓷尖晶石(Mg-Al2O3,La-Al2O3,Ce-Al2O3)上,而陶瓷尖晶石负载在载体标准氧化铝或特殊金属泡沫体上。这类催化剂用在SMR反应中,其所需接触时间短于1秒。
美国专利申请US 2004/0,157,939 A1公开了催化活性金属,其沉积在碳化硅载体上,并用在将甲烷催化不完全氧化成合成气的反应中。
国际申请WO 2004/087,312公开了用Ni催化剂涂布金属载体材料表面的简单有效的方法,即使载体材料具有复杂的表面几何,其也可以使用。
美国专利申请US 2005/0,084,441 A1公开了C-纳米芯片的制备,该C-纳米芯片是来自元素周期表的第VIII、IB和IIIB族的金属或这些金属的金属氧化物的合适的高导电性载体,并且可用在催化反应中,例如氧化、氢化、重整或蒸汽重整。
日本专利5,007,298公开了可用于烃的蒸汽重整的多孔金属催化剂,其可以如下制造:形成含有多孔陶瓷层的催化剂层,该多孔陶瓷层载有催化剂粉末,所述催化剂层负载在具有3维网状结构的多孔金属催化剂载体表面上。然后,将通过用所述催化剂粉末涂覆陶瓷粉末而形成的复合陶瓷粉末固定并负载在具有3维网状结构的多孔金属载体骨架表面上。
活性相的沉积通过常规方法进行,例如浸涂、连续洗涂、有机金属气相沉积、等离子体沉积、或化学气相沉积。但是,金属载体必须先被陶瓷层涂布,例如MgAl2O4、Al2O3、Al2O3+CeO2、SiC Ca-Al2O3或La-Al(n2O3,但该涂层必须具有尽可能最低的厚度,以产生固定活性相所必须的最小表面积。这种陶瓷涂层对于合金泡沫体的意义不仅是确保催化活性相分散,还在工业条件下随时间的经过保护合金免受腐蚀、金属粉尘或氧化效应。这种涂层的质量直接影响材料在稳定性或催化活性方面的性能,且催化活性相不与金属载体直接接触。但是,上述已知涂布技术不容易继续发挥作用。
本发明人工作的起点是两篇论文,其报道了通过硝酸盐的阴极还原而本体合成含有Co或Ni作为二价阳离子和含有Al作为三价阳离子的水滑石化合物(L.Indira和P.V.Kamath,J.Mater.Chem.4(1994)1487;Dixit和P.V.Kamath,J,Power Sources 56(1995)97)。在此基础上,已经进行大量研究,以找出通过Ni/Al水滑石的一步电合成来改变不同电极的最佳实验条件(E.Scavetta,B.Ballarin,M.Giorgetti,I.Carpani,F.Cogo和D.Tonelli,J.New Mater.Electrochem.Systems 7(2004-43),证明了时间和电势在控制薄膜厚度方面的关键作用)。图1公开了薄膜重量与沉积电势和时间的函数关系图(对于Pt电极)。图2是在E=-0.9V和t=10s下在Pt电极上获得的HT薄膜的光学显微照片,其是非常清澈稳定的薄膜。
图3A)公开了对于两种不同的Pt电极,在E=-0.9V下在Ni/Al-NO3水滑石化合物电合成过程中,电强度与时间的关系图。
图3B)公开了在用Ni/Al-NO3水滑石化合物(该化合物经恒电势方式电合成,E=-0.9V,10秒)改性的铂中,对于两种电极,在1/10克分子量苏打水溶液(0.1M NaOH)中的循环伏安图(20次循环);电势扫描速率=50mVs-1。这两个图均证明该技术的可再现性高。
这些改性电极已经在流动系统中用于糖和醇的电流法测定[B.Ballarin,M.Berrettoni,I.Carpani,E.Scavetta和D.Tonelli,Anal.Chim.Acta 538(2005)219]。还报道了混合氧化物本体电合成,特别是铁电锆钛酸铅(PZT)[Zhitomirsky,A.Kohn和L.Gal-Or,Mater.Letters 25(1995)223]、稀土铬酸盐Ln2Cr3Oi2 x 7H2O(Ln=La,Pr,Nd)[G.H.Annal Therese和P.Vishnu Kamath,Mater.Res.Bulletin 33(1998)1]或Ba5Ru3Na2O14 10H-钙钛矿相关结构[E.Quarez和O.Mentré,Solid State Science 5(2003)1105.]。
因此,本发明的目的是提出一种新方法,其通过在合金泡沫体上的直接“活性致密陶瓷涂层”显著减少工艺步骤数。
根据第一实施方案,本发明的主题是催化物质的制备方法,该催化物质基本由涂有陶瓷活性相层的金属载体构成,所述方法基本由所述陶瓷活性相在所述金属载体上的电沉积步骤(a)组成。
在本发明中,词语“陶瓷活性相层”用于表示在结晶学结构中存在贵金属和/或Ni、Co的所有陶瓷相。在运行过程中,这些金属元素的一部分离开结晶学结构到达表面。
这类陶瓷活性相层的实例包括至少氧化镁型相化合物和至少硅酸镁型相化合物的混合物的固溶体,Al、和Rh和/或Ni阳离子溶于其中;或至少钙钛矿结晶学结构与镍和/或铑金属的混合物的固溶体。
在本发明中,词语“金属载体”主要用于表示产生大的比表面积并在最高达1000℃的温度下稳定的金属泡沫体。这类载体的实例包括FeCrAlY、NiCrAlY的金属泡沫体。这类泡沫体可以是用于填充反应器的丸粒形式或填料形式。
在本发明中,词语“电沉积”主要用于表示通过电化学反应和后续的煅烧合成上述陶瓷相以及受控的、附着的薄层。
根据一个具体实施方案,在上述方法中,陶瓷活性相层是通式(I)的化合物:
[RhxNiyMglAlm(OH)2]z+(An- z/n)kH2O,  (I)
其中An-主要是硅酸根或多硅酸根阴离子;
0≤x≤0.3;
0≤y≤0.9;
0≤l≤0.9;
0≤m≤0.5;
0≤k≤10;
x+y>0;
0.5≤y+l≤0.9;
x+y+l+m=1;且
z是阳离子元素的总电荷。
作为通式(I)的化合物的实例,可提到如上定义的式(I)的化合物,其中:
0≤x≤0.1;
0≤y≤0.3;
0.3≤l≤0.8;
0.1≤m≤0.4;
0≤k≤5;
x+y>0;
0.6≤y+l≤0.8;
x+y+l+m=1,
更特别是选自下列那些化合物:
[Ni0.08Mg0.60Al0.32(OH)2]0.32+(SiO3 2-)0.16kH2O,
[Ni0.08Rh0,0015Mg0.60Al0.3185(OH)2]0.32+(SiO3 2-)0.16kH2O,
[Rh0.005Mg0.71Al0.285(OH)2]0.32+(SiO3 2-)0.16kH2O,
[Ni0.01Rh0.0002Mg0.67Al0.3198(OH)2]0.32+(SiO3 2-)0.16kH2O,
[Ni0.02Mg0.63Al0.35(OH)2]0.35+(SiO3 2-)0.175kH2O,
[Rh0.0004Mg0.65Al0.3496(OH)2]0.35+(SiO3 2-)0.175kH2O,
[Ni0.02Mg0.78Al0.20(OH)2]0.35+(SiO3 2-)0.175kH2O,和
[Rh0.0004Mg0.80Al0.1996(OH)2]0.20+(SiO3 2-)0.10kH2O。
根据另一具体实施方案,在如上定义的方法中,陶瓷活性相层是通式(II)的化合物:
[AzA′1-z][B1-x-yNix Rhy]O3-δ  (II)
其中:
A和A′不同,并选自镧系或锕系或选自门捷列夫元素周期表的第IIa族;
B选自门捷列夫元素周期表的第IIIb、IVb、Vb、VIb、VIIb、Ib和IIb纵列和第VIIIb族的过渡金属;
0≤x≤0.7,
0≤y≤0.5,
0≤x+y≤0.8,
0≤z≤1且
δ是获得钙钛矿化合物的电中性所需的氧的亚化学计量值。
作为通式(II)的化合物的实例,可提到A和A′独立地选自镧(La)、铈(Ce)、钙(Ca)或锶(Sr)的如上定义的式(II)的那些;A为La的如上定义的式(II)的那些;或B选自锰(Mn)、铁(Fe)或钴(Co)的如上定义的式(II)的那些。
根据另一具体实施方案,在如上定义的方法中,陶瓷活性相层是式(IIa)所示的化合物:
[LazA′1-z][Fe1-x-yNixRhy]O3-δ  (IIa)
其中A′、x、y和z和δ如上文对式(II)所定义,
或式(IIb)所示的化合物:
[LazCe1-z][Fe1-x-yNixRhy]O3-δ  (IIb)
其中x、y和z和δ如上文对式(II)所定义。
根据另一具体实施方案,在如上定义的方法中,陶瓷活性相层是式(II)所示的化合物,其中0≤x≤0.5;或其中0≤y≤0.25。
根据另一具体实施方案,在如上定义的方法中,陶瓷活性相层是选自下列化合物的化合物:
La Fe0.7Ni0.25Rh0.05O3-δ
La0.8Ce0.2Fe0.7Ni0.25Rh0.05O3-δ
La Fe0.7Ni0.3O3-δ
La Fe0.95Rh0.05O3-δ
La0.8Ce0.2Fe0.7Ni0.3O3-δ
如上定义的方法可以包括将步骤a)中获得的物质煅烧的步骤b)。
根据另一具体实施方案,本发明的主题是催化物质的用途,该催化物质通过如上定义的方法制成,用于气态烃的催化剂氧化而制造合成气。
根据最后一个实施方案,本发明的主题是通过在由如上定义的方法制成的催化物质存在下氧化气态烃流来制造合成气的方法。
如上定义的催化物质的制备方法的优点是“活性陶瓷催化剂”直接沉积在金属载体上,可以控制沉积层的厚度,使用常规操作条件时获得了均匀的层,并简化了制造法。
下列描述是权利要求的方法的举例说明,而非限制。
实验报道
介绍
在本制备中,使用试剂纯化学品;以Ni和Al硝酸盐在双蒸馏水中的新制溶液为原料,电合成Ni/Al水滑石化合物。将两个薄铜线插在多孔丸粒内,从而在PORVAIR(USA)出售的FeCrAlY的金属泡沫体的单丸粒上进行电接触。
通过含有0.225M硝酸镍[Ni(NO3)2]、0.075M硝酸铝[Al(NO3)3]和0.3M硝酸钾[K(NO3)]的水溶液的阴极还原,在丸粒表面上沉积Ni/Al水滑石化合物的薄膜。以恒定的电势在H形小室的阴极室中进行电化学反应,电势相对于饱和甘汞电极(SCE)为-1.2V,进行不同沉积时间(30至1000秒)。
结果
a)以1000秒的沉积时间,进行Ni/Al水滑石在FeCrAlY泡沫体上的电化学沉积试验。丸粒被新生层覆盖,该层通常是含Ni的水滑石前体(如图4所示),即使丸粒的整体外观不均匀。这可能是由于电极连接在泡沫体一侧。
b)在900℃将所得丸粒煅烧12小时(如图5所示),以形成沉积在FeCrAlY丸粒上的ex HT Ni/Al,并在H2/N2流中在750℃将其还原。
c)在CPO实验室实验中测试样品,以评测其活性。
图6以甲烷转化率(CH4转化率)以及氢(H2选择性)、CO(CO选择性)的选择性值报道了在不同反应条件下沉积在FeCrAlY(通过电化学法沉积)上的ex HT Ni/Al的催化活性(在整料第一层上的温度:对于混合物CH4/O2/He=2/1/20v/v在500℃炉温下的试验,该温度为500℃;对于混合物CH4/O2/He=2/1/20v/v在750℃炉温下的试验,该温度为766℃;对于混合物CH4/O2/He=2/1/4v/v在750℃炉温下的试验,该温度为790℃;且对于混合物CH4/O2/He=2/1/1v/v在750℃炉温下的试验,该温度为762℃)。
该样品在500℃并使用CH4/O2/He=2/1/20v/v混合物的情况(远非热力学条件)下为非活性,但提高炉温至750℃,活性提高。不同进料(CH4/O2/He=2/1/20,2/1/4和2/1/1v/v)在750℃下的活性与样品ex-HTNi0.02Mg0.63Al0.35(在前述CPO研究过程中获得的最佳制剂)和典型催化剂(在Al2O3上0.1重量%Rh)的相当。
d)将负载在合金泡沫体上的水滑石的性能与下列进行比较:
1-通过沉积在涂有spheralite/Disperal的α-Al2O3珠上的ex-HT silNi8Rh0.15Mg60Al31.85浆料(在900℃煅烧)制成的最佳样品(最佳制剂),并如上在CPO研究中测试。性能结果列在图7中。
2-浸渍在a-氧化铝上的0.1%Rh的标准催化剂。CPO性能列在图8中。
在金属泡沫体上通过电化学法沉积的非最佳水滑石的性能接近通过标准方法沉积在氧化铝上的水滑石的最佳样品,或接近由在a-氧化铝上的0.1%Rh构成的标准商业催化剂。通过电化学法沉积在金属泡沫体上的最佳水滑石肯定提c高了这些性能。

Claims (17)

1.制备催化物质的方法,该催化物质基本由涂有陶瓷活性相层的金属载体构成,所述方法基本由将所述陶瓷活性相电沉积在所述金属载体上的步骤(a)组成。
2.根据权利要求1的方法,其中所述金属载体选自在最高达1000℃的温度稳定的金属泡沫体。
3.根据权利要求2的方法,其中所述金属载体选自FeCrAlY或NiCrAlY的金属泡沫体。
4.根据权利要求1或3之一的方法,其中所述陶瓷活性相层是通式(I)的化合物:
[RhxNiyMglAlm(OH)2]z+(An- z/n)kH2O,           (I)
其中An-主要是硅酸根或多硅酸根阴离子;
0≤x≤0.3;
0≤y≤0.9;
0≤l≤0.9;
0≤m≤0.5;
0≤k≤10;
x+y>0;
5≤y+l≤0.9;
x+y+l+m=1;且
z是阳离子元素的总电荷。
5.根据权利要求4的方法,其中所述陶瓷活性相层是通式(I)的化合物,其中:
0≤x≤0.1;
0≤y≤0.3;
3≤l≤0.8;
1≤m≤0.4;
0≤k≤5;
x+y>0;
6≤y+l≤0.8;
x+y+l+m=1。
6.根据权利要求5的方法,其中所述陶瓷活性相层是选自下列化合物的化合物:
[Ni0.08Mg0.60Al0.32(OH)2]0.32+(SiO3 2-)0.16kH2O,
[Ni0.08Rh0.0015Mg0.60Al0.3185(OH)2]0.32+(SiO3 2-)0.16kH2O,
[Rh0.005Mg0.71Al0.285(OH)2]0.32+(SiO3 2-)0.16kH2O,
[Ni0.01Rh0.0002Mg0.67Al0.3198(OH)2]0.32+(SiO3 2-)0.16kH2O,
[Ni0.02Mg0.63Al0.35(OH)2]0.35+(SiO3 2-)0.175kH2O,
[Rh0.0004Mg0.65Al0.3496(OH)2]0.35+(SiO3 2-)0.175kH2O,
[Ni0.02Mg0.78Al0.20(OH)2]0.35+(SiO3 2-)0.175kH2O,和
[Rh0.0004Mg0.80Al0.1996(OH)2]0.20+(SiO3 2-)0.10kH2O。
7.根据权利要求1或6之一的方法,其中所述陶瓷活性相层是通式(II)的化合物:
[AzA′1-z][B1-x-yNix Rhy]O3-δ     (II)
其中:
A和A′不同,并选自镧系或锕系或选自门捷列夫元素周期表的第IIa族;
B选自门捷列夫元素周期表的第IIIb、IVb、Vb、VIb、VIIb、Ib和IIb纵列和第VIIIb族的过渡金属;
0≤x≤0.7,
0≤y≤0.5,
0≤x+y≤0.8,
0≤z≤1且
δ是获得所述钙钛矿化合物的电中性所需的氧的亚化学计量值。
8.根据权利要求7的方法,其中所述陶瓷活性相层是通式(II)的化合物,其中A和A′独立地选自La、Ce、Ca或Sr。
9.根据权利要求8的方法,其中所述陶瓷活性相层是通式(II)的化合物,其中A为La。
10.根据权利要求7至9之一的方法,其中所述陶瓷活性相层是通式(II)的化合物,其中B选自Mn、Fe或Co。
11.根据权利要求9的方法,其中所述陶瓷活性相层是式(IIa)所示的化合物:
[LazA′1-z][Fe1-x-yNixRhy]O3-δ          (IIa)
其中A′、x、y和z和δ如上文对式(II)所定义,
或是式(IIb)所示的化合物:
[LazCe1-z][Fe1-x-yNixRhy]O3-δ         (IIb)
其中x、y、z和δ如上文对式(II)所定义。
12.根据权利要求7至11的方法,其中所述陶瓷活性相层是通式(II)的化合物,其中0≤x≤0.5。
13.根据权利要求7至12的方法,其中所述陶瓷活性相层是通式(II)的化合物,其中0≤y≤0.25。
14.根据权利要求7至13之一的方法,其中所述陶瓷活性相层是选自下列化合物的化合物:
La Fe0.7Ni0.25Rh0.05O3-δ
La0.8Ce0.2Fe0.7Ni0.25Rh0.05O3-δ
La Fe0.7Ni0.3O3-δ
La Fe0.95Rh0.05O3-δ
La0.8Ce0.2Fe0.7Ni0.3O3-δ
15.根据权利要求1至14之一的方法,还包括将步骤a)中获得的物质煅烧的步骤b)。
16.催化物质的用途,该催化物质通过如权利要求1至15之一定义的方法制成,用于气态烃的催化剂氧化而制造合成气。
17.通过在催化物质的存在下将气态烃流氧化而制造合成气的方法,所述催化物质通过权利要求1至15之一定义的方法制成。
CN2007800023656A 2006-01-12 2007-01-10 使用电沉积制备催化物质的方法 Expired - Fee Related CN101370585B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06300029A EP1808229A1 (en) 2006-01-12 2006-01-12 Process for the preparation of a catalytic specie using electro-deposition.
EP06300029.3 2006-01-12
PCT/EP2007/050223 WO2007080175A1 (en) 2006-01-12 2007-01-10 Process for the preparation of a catalytic specie using electro-deposition

Publications (2)

Publication Number Publication Date
CN101370585A true CN101370585A (zh) 2009-02-18
CN101370585B CN101370585B (zh) 2011-06-22

Family

ID=36540232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800023656A Expired - Fee Related CN101370585B (zh) 2006-01-12 2007-01-10 使用电沉积制备催化物质的方法

Country Status (4)

Country Link
US (2) US8092716B2 (zh)
EP (2) EP1808229A1 (zh)
CN (1) CN101370585B (zh)
WO (1) WO2007080175A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103877972A (zh) * 2012-12-21 2014-06-25 中国科学院大连化学物理研究所 一种提高电极中MnOX催化剂氧还原活性的方法
WO2015042982A1 (en) * 2013-09-30 2015-04-02 Hewlett-Packard Development Company,L.P. Coatings of metal surfaces
CN106268834A (zh) * 2015-06-04 2017-01-04 中国科学院金属研究所 一种金属基体表面稀土钙钛矿型催化剂涂层及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1808229A1 (en) * 2006-01-12 2007-07-18 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for the preparation of a catalytic specie using electro-deposition.
ATE539814T1 (de) * 2006-11-08 2012-01-15 Air Liquide Verfahren zur herstellung einesträgerkatalysators
EP2602024A1 (en) * 2011-12-08 2013-06-12 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Catalytic architecture with high S/V ratio, low DP and high void fraction for industrial applications
EP2606960A1 (en) * 2011-12-21 2013-06-26 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Rhodium catalysts for ethanol reforming

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3719739A (en) * 1970-01-29 1973-03-06 Exxon Research Engineering Co Method of preparing a catalyst
US3833386A (en) * 1972-07-07 1974-09-03 Grace W R & Co Method of prepairing porous ceramic structures by firing a polyurethane foam that is impregnated with inorganic material
US3923696A (en) * 1973-08-22 1975-12-02 Int Nickel Co Catalyst structure
US4021373A (en) * 1973-11-12 1977-05-03 The International Nickel Company, Inc. Method of preparing a catalytic structure
US4162235A (en) * 1976-06-17 1979-07-24 Johnson, Matthey & Co., Limited Catalysts
SE7800987L (sv) * 1977-02-04 1978-08-05 Johnson Matthey Co Ltd Katalysator
CA1123818A (en) * 1977-08-05 1982-05-18 Anthony Gartshore Catalyst for purification and/or control of exhaust gases
GB2080135B (en) * 1980-07-16 1984-05-10 Dyson Refractories A method of preparing a supported catalyst
GB2080136B (en) * 1980-07-16 1984-05-16 Dyson Refractories Coprecipitated modified nickel catalysts
US4410454A (en) * 1982-03-02 1983-10-18 Uop Inc. Noble metal and rare earth metal catalyst
DE3482094D1 (de) * 1983-07-01 1990-06-07 Hitachi Ltd Bei hoher temperatur stabiler katalysator, verfahren zu dessen herstellung und verfahren zur durchfuehrung von chemischen reaktionen unter dessen verwendung.
DE3542633C3 (de) 1985-12-03 1996-12-19 Lenox Europa Maschinen Gmbh Verfahren und Vorrichtung zum Wickeln von Papierrollen
YU47516B (sh) * 1990-06-21 1995-10-03 Ihtm-Oour Institut Za Katalizu I Hemijsko Inženjerstvo, Rj Kataliza Perovskitni materijali, katalizatori i postupak dobijanja perovskita
US5232357A (en) * 1990-11-26 1993-08-03 Catalytica, Inc. Multistage process for combusting fuel mixtures using oxide catalysts in the hot stage
JPH05186203A (ja) 1992-01-07 1993-07-27 Toshiba Corp 水蒸気改質用触媒エレメント
US5977017A (en) * 1996-04-10 1999-11-02 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds
US7014825B2 (en) * 1996-04-10 2006-03-21 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds and methods of making and using thereof
US6238816B1 (en) * 1996-12-30 2001-05-29 Technology Management, Inc. Method for steam reforming hydrocarbons using a sulfur-tolerant catalyst
FR2763259A1 (fr) * 1997-05-16 1998-11-20 Ecia Equip Composants Ind Auto Catalyseur en materiau composite, convertisseur muni d'un tel catalyseur et procede pour sa fabrication
JPH11138020A (ja) * 1997-11-05 1999-05-25 Toyota Motor Corp ハニカム状の触媒担持体とその製造方法
US6013599A (en) * 1998-07-15 2000-01-11 Redem Corporation Self-regenerating diesel exhaust particulate filter and material
US6607678B2 (en) 1999-08-17 2003-08-19 Battelle Memorial Institute Catalyst and method of steam reforming
US7335346B2 (en) 1999-08-17 2008-02-26 Battelle Memorial Institute Catalyst and method of steam reforming
AU3978501A (en) 2000-02-18 2001-08-27 Conoco Inc. Reticulated ceramic foam catalysts for synthesis gas production
ITMI20011519A1 (it) * 2001-07-17 2003-01-17 Uni Degli Studi Di L Aquila Soluzioni solide a struttura perovskitica comprendenti metali nobili utili come catalizzatori
KR100697354B1 (ko) * 2001-12-04 2007-03-20 신닛뽄세이테쯔 카부시키카이샤 금속 산화물 및/또는 금속 수산화물 피복 금속재료와 그제조방법
US7550611B2 (en) 2002-11-14 2009-06-23 Catalytic Materials, Llc Carbon nanochips as catalyst supports for metals and metal oxides
EP1419814A1 (en) * 2002-11-15 2004-05-19 L'AIR LIQUIDE, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Perovskite catalyst for the partial oxidation of natural gas
US7008560B2 (en) 2003-02-10 2006-03-07 Conocophillips Company Silicon carbide-supported catalysts for partial oxidation of natural gas to synthesis gas
WO2004087312A1 (de) 2003-03-31 2004-10-14 Forschungszentrum Jülich GmbH Verfahren zur belegung eines metallischen nickelhaltigen trägerwerkstoffs mit nickelkatalysator
EP1484108A1 (en) * 2003-06-06 2004-12-08 L'air Liquide, S.A. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Supported catalyst for producing H2 and/or CO from low molecular weight hydrocarbons
JP2005007298A (ja) * 2003-06-19 2005-01-13 Mitsubishi Materials Corp 多孔質金属触媒
US7214331B2 (en) * 2004-02-26 2007-05-08 The Boc Group, Inc. Catalyst configuration and methods for syngas production
EP1808229A1 (en) * 2006-01-12 2007-07-18 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for the preparation of a catalytic specie using electro-deposition.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103877972A (zh) * 2012-12-21 2014-06-25 中国科学院大连化学物理研究所 一种提高电极中MnOX催化剂氧还原活性的方法
CN103877972B (zh) * 2012-12-21 2016-09-14 中国科学院大连化学物理研究所 一种提高电极中MnOX催化剂氧还原活性的方法
WO2015042982A1 (en) * 2013-09-30 2015-04-02 Hewlett-Packard Development Company,L.P. Coatings of metal surfaces
CN106268834A (zh) * 2015-06-04 2017-01-04 中国科学院金属研究所 一种金属基体表面稀土钙钛矿型催化剂涂层及其制备方法

Also Published As

Publication number Publication date
EP1976634A1 (en) 2008-10-08
WO2007080175A1 (en) 2007-07-19
EP1808229A1 (en) 2007-07-18
CN101370585B (zh) 2011-06-22
US8092716B2 (en) 2012-01-10
US20110017953A1 (en) 2011-01-27
US20120149548A1 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
Shi et al. A review of different catalytic systems for dry reforming of methane: Conventional catalysis-alone and plasma-catalytic system
CN101370585B (zh) 使用电沉积制备催化物质的方法
KR101319137B1 (ko) 탄화수소를 분해하는 촉매, 상기 촉매를 이용한 탄화수소의분해 방법 및 수소의 제조 방법, 및 발전 시스템
CN101462058B (zh) 天然气-二氧化碳重整制合成气的工业用催化剂
Yin et al. A Ce–Fe oxygen carrier with a core–shell structure for chemical looping steam methane reforming
Liao et al. One-step growth of CuO/ZnO/CeO2/ZrO2 nanoflowers catalyst by hydrothermal method on Al2O3 support for methanol steam reforming in a microreactor
Nagao et al. Magneli-phase titanium suboxide nanocrystals as highly active catalysts for selective acetalization of furfural
KR100858924B1 (ko) 액화천연가스의 수증기 개질반응에 의한 수소가스 제조용담지 촉매, 그 제조방법 및 상기 담지 촉매를 이용한수소가스 제조방법
EP4010115A1 (en) Mesoporous support-immobilized metal oxide-based nanoparticles
Jeon et al. Autothermal reforming of heavy-hydrocarbon fuels by morphology controlled perovskite catalysts using carbon templates
RU2292237C1 (ru) Катализатор, способ его приготовления и способ получения синтез-газа
EP3256249A1 (en) Use of nickel-manganese olivine and nickel-manganese spinel as bulk metal catalysts for carbon dioxide reforming of methane
KR101910091B1 (ko) 촉매 부착성 및 반응특성이 향상된 smr 반응용 금속 다공체 코팅 니켈계 촉매 및 이의 제조방법 및 용도
KR101872728B1 (ko) Smr 반응용 메탈 폼 코팅 촉매의 제조방법 및 이에 의해 제조된 메탈 폼 코팅 촉매
CN114308056B (zh) 乙酸自热重整制氢用钐锰莫来石型镍基催化剂
KR100927105B1 (ko) 피셔­트롭쉬 액화공정용 합성가스 제조공정에 사용되는메탄 자열개질촉매 및 이를 이용한 메쉬형 촉매층, 그리고이를 이용한 피셔­트롭쉬용 합성가스 제조방법
KR101400889B1 (ko) 탄화수소 개질촉매 및 이의 제조방법
KR101469455B1 (ko) 합성가스 제조용 나노복합체 촉매, 이의 제조방법 및 이를 이용한 합성가스 제조방법
Yusuf et al. Recent Advances in Bimetallic Catalysts for Methane Steam Reforming in Hydrogen Production: Current Trends, Challenges, and Future Prospects
JP2005044651A (ja) 水素リッチガスの製造方法
Rogozhnikov et al. Structured catalysts for the conversion of liquefied petroleum gas to hydrogen-rich gas and for anode off-gas afterburning
RU2594161C1 (ru) Способ получения синтез-газа высокотемпературным каталитическим окислительным превращением метана
CN114308057B (zh) 乙酸自热重整制氢用钨锰矿型氧化物负载钴基催化剂
CN113117675B (zh) 一种铑铒复合金属光热催化剂及其制备方法和应用
KR20100120773A (ko) 피셔-트롭쉬 액화공정용 합성가스 제조를 위한 자열개질 촉매층용 금속구조체, 금속구조체의 제조방법 및 금속구조체촉매

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110622

Termination date: 20150110

EXPY Termination of patent right or utility model