CN101359612A - 管理和使用用于处理和设备控制的计量数据 - Google Patents

管理和使用用于处理和设备控制的计量数据 Download PDF

Info

Publication number
CN101359612A
CN101359612A CNA2007101358589A CN200710135858A CN101359612A CN 101359612 A CN101359612 A CN 101359612A CN A2007101358589 A CNA2007101358589 A CN A2007101358589A CN 200710135858 A CN200710135858 A CN 200710135858A CN 101359612 A CN101359612 A CN 101359612A
Authority
CN
China
Prior art keywords
parameter
patterning
metering
profile
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101358589A
Other languages
English (en)
Other versions
CN101359612B (zh
Inventor
曼纽尔·B·玛德瑞加
维·翁
鲍君威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to CN2007101358589A priority Critical patent/CN101359612B/zh
Publication of CN101359612A publication Critical patent/CN101359612A/zh
Application granted granted Critical
Publication of CN101359612B publication Critical patent/CN101359612B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

管理和使用用于处理和设备控制的计量数据的装置包括制造系统和计量处理器。制造系统包括制造集群、计量集群、计量模型优化器和实时轮廓评估器。制造集群对具有图案结构和不带图案结构的晶片进行处理。计量集群测量离开图案结构和不带图案结构的衍射信号。计量模型优化器使用测量衍射信号并浮动轮廓参数、材料折射参数和计量设备参数来优化光学计量模型。实时轮廓评估器使用经优化光学计量模型、测量衍射信号和材料折射参数和计量设备参数中至少一个参数的值域内的固定值。实时轮廓评估器产生包括下覆膜厚度、临界尺寸和轮廓的输出。计量数据处理器对来自材料折射参数和计量设备参数中至少一个参数的值域内的固定值进行接收、处理、储存和传送。

Description

管理和使用用于处理和设备控制的计量数据
技术领域
本发明大体上涉及对半导体晶片上形成的结构进行的光学计量,更具体地说,涉及对带图案结构的光学计量。
背景技术
在半导体制造中,通常将周期性栅格用于确保质量。例如,周期性栅格的一种典型使用方式包括在半导体芯片的工作结构附近制造周期性栅格。然后用电磁辐射对周期性栅格进行照明。偏转离开周期性栅格的电磁辐射作为衍射信号被收集。然后对衍射信号进行分析以确定周期性栅格的制造是否符合规格,并扩展到确定半导体芯片工作结构的制造是否复合规格。
在一种传统的系统中,将通过对周期性栅格进行照明而收集的衍射信号(测量衍射信号)与模拟衍射信号库进行比较。库中的每个模拟衍射信号与假想轮廓有关。当测量延伸信号与库中的模拟衍射信号之一之间建立匹配关系时,即认为与该模拟衍射信号有关的假想轮廓代表了周期性栅格的实际轮廓。
模拟衍射信号的库可以使用严格方法来产生,例如严格耦合波分析(RCWA)。更具体地说,在衍射建模技术中,模拟衍射信号是部分地根据求解麦克斯韦方程组来计算的。对模拟衍射信号的计算涉及到执行大量的复杂计算,这可能很耗费时间和成本。
发明内容
本发明提供了一种用光学计量模型对半导体衬底上形成的带图案结构进行检查的装置,该装置包括制造系统和计量处理器。制造系统包括制造集群、计量集群、计量模型优化器和实时轮廓评估器。制造集群设置成对晶片进行处理,晶片具有带图案结构和不带图案结构。带图案结构具有下覆膜厚度、临界尺寸和轮廓。计量集群包括一个或多个光学计量设备。计量集群设置成对离开带图案结构和不带图案结构的衍射信号进行测量。计量模型优化器设置成使用离开带图案结构的一个或多个测量衍射信号并通过对轮廓参数、材料折射参数和计量设备参数进行浮动来对带图案结构的光学计量模型进行优化。实时轮廓评估器设置成使用来自计量模型优化器的经优化光学计量模型、离开带图案结构的测量衍射信号和来自材料折射参数和计量设备参数中至少一个参数的值域内的固定值。实时轮廓评估器设置成产生输出,输出包括带图案结构的下覆膜厚度、临界尺寸和轮廓。计量数据处理器设置成对来自材料折射参数和计量设备参数中至少一个参数的值域内的固定值进行接收、处理、储存和传送。
附图说明
图1A是图示了一种示例性实施例的结构图,该实施例中可以采用光学计量来确定半导体晶片上结构的轮廓。
图1B图示了示例性一维重复结构。
图1C图示了示例性二维重复结构。
图2A图示了二维重复结构的单位元的示例性正交网格。
图2B图示了二维重复结构的俯视图。
图2C是对二维重复结构的俯视形状进行表征的一种示例性技术。
图3是用获得的光学计量变量值确定晶片结构的轮廓参数所用的一种示例性流程图。
图4A是获得晶片结构折射率的技术的一种示例性流程图。
图4B是获得计量设备变量的值所用的一种示例性流程图。
图5是实时轮廓评估器一种实施例的示例性结构图。
图6是用于创建和使用轮廓服务器数据库的一种实施例的示例性结构图。
图7是用于将两个或更多个带有计量处理器的制造系统与计量数据库相联系以确定带图案结构的轮廓参数所用的一种示例性结构图。
图8是对自动化处理和设备控制所用计量数据进行管理和使用的一种示例性流程图。
具体实施方式
为了便于对本发明进行说明,可以采用半导体晶片来示例性说明其原理的应用。这些方法和处理也同样适用于具有重复结构的其他工件。此外,在本申请中,术语“结构”在没有附加限制时表示带图案结构。
图1A是图示了一种示例性实施例的结构图,在该实施例中,可以采用光学计量来确定半导体晶片上结构的轮廓。光学计量系统40包括计量光束源41,计量光束源41将光束43投射到晶片47的目标结构59。计量光束43以入射角θi向目标结构59投射,并以衍射角θd发生衍射。衍射光束49由计量光束接收器51测量。衍射光束数据57被传送到轮廓应用服务器53。轮廓应用服务器53将测得的衍射光束数据57与模拟衍射光束数据的库60进行比较,所述模拟衍射光束数据代表了目标结构的临界尺寸与分辨率的各种组合。在一种示例性实施例中,库60中与测得的衍射光束数据57最佳地匹配的实例被选择。应当明白,尽管本发明常常使用衍射光谱或信号的库以及有关的假想轮廓来示例性说明概念和原理,但是本发明同样可以适用于包括模拟衍射信号及有关轮廓参数组的数据空间,例如通过回归、神经网络以及用于轮廓解算的类似方法。假想轮廓以及所选择的库60实例的有关临界尺寸被假定与目标结构59的实际截面轮廓和构件临界尺寸对应。光学计量系统40可以使用反射计、椭偏仪、或者对衍射光束或信号进行测量的其他光学计量设备。由Niu等提交的、题为GENERATION OF A LIBRARY OF PERIODIC GRATING DIFFRACTIONSIGNAL、并于2005年9月13日授权的美国专利No.6,913,900中描述了一种光学计量系统,该专利通过引用而全文结合于此。下文中会讨论在光学计量中不需要使用库的本发明其他示例性实施例。
一种替换形式是用机器学习系统(MLS)来产生模拟衍射信号的库。在产生模拟衍射信号的库之前,用已知的输入和输出数据对MLS进行训练。在一种示例性实施例中,可以用采用机器学习算法的机器学习系统(MLS)来产生模拟衍射信号,这些机器学习算法例如反向传播、径向基函数、支持向量、核回归等。对于机器学习系统和算法的更详细说明,可以参见Simon Haykin著、Prentice Hall于1999年出版的“NeuralNetworks”,其全部内容通过引用而结合于此。还可以参见2003年6月27日提交的题为OPTICAL METROLOGY OF STRUCTURES FORMEDON SEMICONDUCTOR WAFERS USING MACHINE LEARNINGSYSTEMS的美国专利申请No.10/608,300,其全部内容通过引用而结合于此。
这里使用的术语“一维结构”表示的结构具有只在一个维度上变化的轮廓。例如,图1B图示了一种周期性栅格,它具有在一个维度(即x方向)上变化的轮廓。图1B所示周期性栅格的轮廓在z方向上作为x方向的函数而变化。但是,图1B所示周期性栅格的轮廓在y方向上表现为大体上均匀或连续。
这里使用的术语“二维结构”表示的结构具有在至少两个维度上变化的轮廓。例如,图1C图示了一种周期性栅格,它具有在两个维度(即x方向和y方向)上变化的轮廓。图1C所示周期性栅格的轮廓在y方向上也变化。
下文中对图2A、2B和2C的讨论说明了用于光学计量建模的二维重复结构的特征。图2A的俯视图图示了二维重复结构的单位元的示例性正交网格。假想网格线叠加在重复结构的俯视图上,其中网格线沿着具有周期性的方向画出。假想网格线形成了称为单位元的区域。单位元可以布置成正交或非正交的结构。二维重复结构可以包括诸如重复的柱、接触孔、过孔、岛这样的构件,并可以在一个单位元内包括两个或更多个形状的组合。此外,构件可以具有各种形状,并可以是凹状构件、凸起构件或凹状构件与凸起构件的组合。参考图2A,重复结构300包括以正交方式布置有孔的单位元。单位元302包括单位元302内部的所有构件和元件,主要包括大体上位于单位元302中心的孔304。
图2B图示了一种二维重复结构的俯视图。单位元310包括凹状的椭圆孔。图2B示出的单位元310带有包括椭圆孔的构件320,椭圆孔中的尺寸逐渐变小,直到孔的底部。另外,椭圆316的长轴代表构件320的顶部,椭圆318的长轴代表构件320的底部,这些长轴可以用来表征该构件320。此外,也可以使用构件顶部与底部之间的中间长轴以及顶部、中部或底部椭圆的任何短轴(未示出)。
图2C是用于对二维重复结构的俯视图进行表征的一种示例性技术。重复结构的单位元330是构件332,构件332是从顶部看去呈花生状的岛。一种建模方式包括使用采用不定数目的椭圆和多边形或其组合来逼近该构件332。进一步假定在对构件332的俯视形状变动进行分析之后,确定了用两个椭圆(椭圆1和椭圆2)以及两个多边形(多边形1和多边形2)可以完全表征该构件332。接着,表征这两个椭圆和两个多边形所需的参数包括以下九个参数:用于椭圆1的T1和T2;用于多边形1的T3、T4和θ1;用于多边形2的T4、T5和θ2;用于椭圆2的T6和T7。也可能采用许多其他的形状组合来表征单位元330中构件332的俯视形状。对于对二维重复结构进行建模的详细说明,可以参考Vuong等人于2004年4月27日提交的题为OPTICAL METROLOGY OPTIMIZATION FORREPETITIVE STRUCTURES的美国专利申请No.11/061,303,该申请的全部内容通过引用而结合于此。
图3是对半导体晶片上形成的带图案结构进行检查的一种示例性流程图。参考图3,在步骤400,创建带图案结构的光学计量模型。光学计量模型包括对带图案结构的轮廓进行表征的参数(即轮廓参数)、与结构的层中所用材料折射有关的参数(即折射参数)、以及与计量设备和照明光束相对于重复结构的角度设定有关的参数(即计量设备参数)。
如上所述,轮廓参数可以包括高度、宽度、侧壁角度、轮廓构件特征,例如上层环形(top-rounding)、T形顶、基脚(footing)等。如上所述,重复结构的轮廓参数还可以包括用来对孔或岛等的俯视形状进行表征的单位元的X向间距和Y向间距、椭圆的长轴和短轴、以及多边形的尺寸。
继续参考图3,材料折射参数包括折射率、N参数、以及消光系数、K参数,如下面的式子所示:
N ( λ , a ) = a 1 + a 2 λ 2 + a 3 λ 4 - - - 1.1
K ( λ , b ) = b 1 λ + b 2 λ 3 + b 3 λ 5 - - - 1.2
a=[a1,a2,a3]                1.3
b=[b1,b2,b3]                1.4
其中λ为波长,a为材料的折射率常数,b为折射率材料的消光系数。也可以使光学计量模型中的常数a和b浮动而不是使N和K浮动。
在步骤402,限定轮廓参数、材料折射参数和计量设备参数的范围。在一种示例中,对材料折射参数(例如N和K参数)以及计量设备参数(例如入射光束相对于重复结构中周期性方向的入射角和方位角)的范围进行限定。如上所述,可以用常数a和b来代替N和K参数。
在步骤406,使用测量衍射信号以及轮廓参数、材料折射参数和计量设备参数的范围来优化光学计量模型。例如,可以定义初始光学计量模型。可以用步骤402中针对轮廓参数、材料折射参数和计量设备参数的限定范围内的值,根据初始光学计量模型产生一个或多个模拟衍射信号。可以将这一个或多个模拟衍射信号与测量衍射信号进行比较。可以用一个或多个终止判据对这种比较的结果进行评估,所述终止判据例如价值函数、配合适度(GOF)等。如果不满足这一个或多个终止判据,则随后可以变更初始光学计量模型来产生细化光学计量模型。产生一个或多个衍射信号以及将这一个或多个衍射信号与测量衍射信号进行比较的处理可以重复进行。变更光学计量模型的处理可以重复到满足所述一个或多个终止判据为止,以获得优化的计量模型。对于计量模型优化的详细说明,可以参见Vuong等人于2002年6月27日提交的题为OPTIMIZATION MODELAND PARAMETER SELECTION FOR OPTICAL METROLOGY的美国专利申请No.10/206,491;Vuong等人于2004年9月21日提交的题为OPTICAL METROLOGY MODEL OPTIMIZATION BASED ON GOALS的美国专利申请No.10/946,729;以及Vuong等人于2004年4月27日提交的题为OPTICAL METROLOGY OPTIMIZATION FOR REPETITIVESTRUCTURES的美国专利申请No.11/061,303,所有这些申请通过引用而全文结合于此。
在步骤408,对于来自材料折射参数和计量设备参数中的至少一个参数,将至少一个参数设定在该至少一个参数的值域内的固定值。图4A和图4B是获得光学计量模型的参数值所用技术的示例性流程图,所述参数值可以用作步骤408中的固定值。
图4A是用于获得N和K参数值的技术的一种示例性流程图。在步骤500,由经验数据获得N和K参数(包括常数a和b),所述经验数据例如以前使用相同材料的晶片结构所获的类似数据、由以前执行相同配方所获的及从出版物或手册所获的历史常数值。在步骤510,使用与制造设备相集成的光学计量设备根据测量获得N和K参数(包括常数a和b),所述制造设备例如刻蚀或涂胶显影(track)集成制造设备。在步骤520,使用离线(offline)光学计量设备获得N和K参数(包括a和b常数)。
在一种实施例中,步骤520中测量的位置是与带图案结构邻近的无图案区域。在另一种实施例中,所测量的位置不邻近带图案结构,而是可能在同一晶片的测试区域中或者测试晶片的某个区域中。在另一种实施例中,对每个或每批晶片测量一个位置,或者对同一晶片、整批晶片或者整个处理运行(process run)使用所获得的常数a和b。或者,一旦确定了层厚度,则可以使用层厚度与常数a和b的此前的关系来获得常数a和b的值。
参考图4a,在步骤540,对从各种来源使用各种技术获得的材料数据进行处理,以用于确定带图案结构的轮廓。例如,如果进行了若干个测量来确定常数a和b,则可以计算统计平均值。
图4B是用于获得计量设备参数值的流程图。在一种实施例中,在步骤600,根据所选择的计量设备,如果该计量设备具有可变入射角,则由销售说明书或者由用于该应用的设定来获得照明光束的入射角。类似地,在步骤610,根据所选择的光学计量设备和晶片结构应用来确定方位角。在步骤640,对光学计量所用的处理设备规格和设定数据进行处理。加入用正入射的反射计或者具有固定入射角的椭偏仪作为所选择的计量设备,则将正入射或者该固定角度转换成光学计量模型所需的形式。类似地,计量设备的方位角也被转换成光学计量模型所需的形式。
参考图3,在步骤410,可以使用经优化的光学计量模型和步骤408中的固定值来确定带图案结构的轮廓。具体地说,使用经优化的光学计量模型和步骤408中的固定值来确定带图案结构的至少一个轮廓参数。可以用回归处理或基于库的处理来确定所述至少一个轮廓参数。
如上所述,在回归处理中,将所测得的离开带图案结构的测量衍射信号与根据各组轮廓参数迭代产生的模拟衍射信号进行比较,以得到对于该组轮廓参数的收敛值,所述收敛值与测量衍射信号相比,产生了最接近地匹配的模拟衍射信号。对于基于回归的处理的更详细说明,可以参见2004年8月31日授权的题为METHOD AND SYSTEM OF DYNAMICLEARNING THROUGH A REGRESSION-BASED LIBRARYGENERATION PROCESS的美国专利NO.6,785,638,该申请的全部内容通过引用而结合于此。
在基于库的处理中,用经优化的计量模型产生光学计量数据库。光学计量数据库具有模拟衍射信号与相应组轮廓参数的对。对于产生光学计量数据(例如模拟衍射信号与相应组轮廓参数的库)的详细说明可以参见Niu等人提交的、于2005年9月13日授权的题为GENERATION OF ALIBRARY OF PERIODIC GRATING DIFFRACTION SIGNAL的美国专利No.6,913,900,该申请的全部内容通过引用而结合于此。
在一种实施例中,使用测量衍射信号与计量数据库的子集来确定带图案结构的轮廓,所述子集在步骤408中固定值的范围内。例如,如果在步骤408中固定了N和K参数的a和b常数值,则光学计量数据库中所用到的那部分可能是与固定值a和b对应的模拟衍射信号和轮廓参数组。
在另一种实施例中,用测量衍射信号与整个光学计量数据库来确定带图案结构的轮廓,即对整个数据空间进行搜索。例如,用测量衍射信号与全部计量数据来确定带图案结构的轮廓,即在使a和b常数浮动的同时搜索匹配最佳的模拟衍射信号。
图5是实时轮廓评估器的一种示例性结构图。第一制造集群916可以包括光刻、刻蚀、热处理系统、金属化、注入、化学气相沉积、化学机械抛光或其他制造单元中的一种或多种。第一制造集群916通过一个或多个处理步骤对晶片(未示出)进行处理。在各个处理步骤之后,可以在计量集群912中对晶片进行测量。计量集群912可以是在线的或离线的计量设备组,例如反射计、椭偏仪、混合反射计/椭偏仪、扫描电子显微镜、传感器等。
在对晶片结构进行测量之后,计量集群912将衍射信号811传送到模型优化器904。计量模型优化器904使用制造配方输入信息和优化参数803、来自计量数据库914的先前经验结构轮廓数据809、以及来自计量集群912的测量衍射信号811,来产生和优化所测结构的光学计量模型。配方数据803包括带图案和不带图案结构的堆叠层中的材料。优化参数803包括光学计量模型中浮动的轮廓参数、材料折射参数和计量设备参数。模型优化器904根据离开带图案结构的测量衍射信号811、配方数据和优化参数803、来自计量数据库914的经验数据809对光学计量模型进行优化,并产生经优化的光学计量模型815传送到实时轮廓评估器918。
参考图5,实时轮廓评估器918包括经优化的光学计量模型815、测量衍射信号817和经验计量数据805来确定带图案结构的轮廓、临界尺寸、以及下覆厚度(underlying thickness)843。经验计量数据805可以包括固定轮廓参数(例如间距)、N和K参数(例如常数a和b)、和/或计量设备参数(例如入射角和/或方位角)。实时轮廓评估器918的输出被进一步选择,作为数据841传送到第一制造集群916、作为数据827传送到计量数据库914用于储存、以及作为数据845传送到第二制造集群930。
传送到第一制造集群916的数据841可以包括带图案结构的下覆膜厚度、CD、和/或一个或多个轮廓参数值。带图案结构的下覆膜厚度、CD和/或一个或多个轮廓参数可以由第一制造集群用于更改一个或多个处理参数,这些处理参数例如对于光刻制造集群的聚焦和剂量、以及对于离子注入制造集群的掺杂浓度。传送到第二制造集群930的数据845可以包括带图案结构的CD,它可以用于更改刻蚀制造集群中的刻蚀剂浓度或沉积集群中的沉积时间。传送到计量数据库的数据827包括带图案结构的下覆膜厚度、CD和/或轮廓参数值,以及便于被其他应用获取的识别信息,所述识别信息例如晶片标识符(ID)、批次ID、配方和带图案结构的ID。
参考图5,如上所述,计量数据库914可以使用识别信息作为对计量数据进行组织和索引的方式,所述识别信息例如晶片ID、批次ID、配方、和带图案结构的ID。来自计量集群912的数据813包括与晶片、批次、配方的标识符;地点或晶片位置;以及带图案结构或不带图案结构这些内容有关的测量衍射信号。来自计量模型优化器904的数据809包括与带图案结构的轮廓有关的变量、计量设备类型和有关变量、以及变量在建模中所用的浮动范围和建模中固定的变量值。如上所述,经验计量数据805可以包括固定轮廓参数(例如间距)、N和K参数(例如常数a和b)和/或计量设备参数(例如入射角和/或方位角)。
图6是创建和使用轮廓服务器以确定与测量衍射信号对应的轮廓所用的一种实施例的示例性结构图。除了两处不同之外,图6与图5类似。首先,图6中模型优化器904除了对计量模型进行优化外,还可以创建两个数据集之一或者是全部两个数据集。第一数据集是模拟衍射信号与相应组轮廓参数的配对库。第二数据集是经训练的机器学习系统(MLS),其中可以用库的子集、上述第一数据集来训练MLS。第一和/或第二数据集819储存在计量数据库914中。其次,图5中的实时轮廓评估器918被图6中的轮廓服务器920代替。轮廓服务器920使用库数据集,或者使用可从计量模型优化器904获得的经训练的MLS数据集。或者,轮廓服务器920可以对计量数据库914中所储存的数据集进行访问。轮廓服务器920使用来自计量集群912的测量衍射信号817、来自计量数据库914的库或经训练的MLS来确定带图案结构843的下覆膜厚度、CD、以及轮廓参数。另外,轮廓服务器920还可以使用经验计量数据850来设定库或经训练MLS的边界,其中所述经验计量数据805包括固定轮廓参数(例如间距)、N和K参数(例如常数a和b)和/或计量设备参数(例如入射角和/或方位角),所述库或经训练MLS用于寻找与测量衍射信号817的最佳匹配。
图7是将两个或更多个带有计量处理器的制造系统与计量数据库联系起来判定带图案结构的轮廓参数所用的一种示例性结构图。第一制造系统940包括模型优化器942、实时轮廓评估器944、轮廓服务器946、制造集群948和计量集群950。第一制造系统940连接到计量处理器1010。计量处理器1010连接到计量数据源1000、计量数据库1040、制造主机处理器1020,并连接到处理模拟器1050。
参考图7,第一制造系统940的这些部件,即模型优化器942、实时轮廓评估器944、轮廓服务器946、制造集群948和计量集群950,被分别设置成执行与图5和图6所述相应设备相同的功能。计量处理器1010从离线的或远程的计量数据源1000接收计量数据864。离线计量数据源1000可以是制造地点的计量设备的离线集群,例如反射计、椭偏仪、SEM等。远程计量数据源1000可以包括远程数据服务器或远程处理器或者提供应用所需计量数据的网站。从第一制造系统940到计量处理器1010的数据860可以包括经优化的计量模型的轮廓参数范围和所产生的数据库以确定结构的轮廓参数。数据库1040可以包括模拟衍射信号与相应轮廓参数组的配对库或者经训练的MLS,所述经训练的MLS可以对输入的测量衍射信号产生轮廓参数组。从数据库1040到计量处理器1010的数据870包括轮廓参数组和/或模拟衍射信号。从计量处理器1010到第一计量系统940的数据860包括轮廓参数、材料折射参数和计量设备参数的值,以指定要在库中搜索的那部分数据空间或者计量数据库1040中储存的经训练的MLS。从第二制造系统970向计量处理器1010传送的、以及来自第二制造系统970的数据862类似于从第一制造系统940传送的和来自第一制造系统940的数据860。
继续参考图7,从计量处理器1010向制造主机处理器1020传送的和来自计量处理器1010的数据866可以包括与由第一制造系统940和第二制造系统970中的计量集群950、980测得的应用配方和处理数据有关的数据。数据868(例如用处理模拟器1050计算出的轮廓参数值)被传送到计量处理器1010,以用于将计量模型的所选择变量设定到固定值。处理模拟器的示例有ProlithTM、RaphaelTM、AthenaTM等。或者,可以由轮廓服务器946和976使用轮廓参数值来限定数据空间以在库中搜索,或者限定计量数据库1040中储存的经训练的MLS。图7的计量数据库1040是计量数据的仓库,第一制造系统940和/或第二制造系统970可以获得该计量数据。如上所述,第一制造系统940和/或第二制造系统970可以包括光刻、刻蚀、热处理系统、金属化、注入、化学气相沉积、化学机械抛光或其他制造单元中的一种或多种。
图8是对计量数据进行管理和使用、以确定带图案结构的轮廓并控制自动化处理和设备所用的一种示例性流程图。在步骤1100,用图3所述方法产生并优化光学计量模型。在步骤1110,用经优化的光学计量模型产生一个或多个数据库以确定结构轮廓参数。所述数据库可以包括模拟衍射信号与相应轮廓参数组的配对库或者经训练的MLS系统,所述经训练的MLS系统可以对输入的测量衍射信号产生轮廓参数组。在步骤1120,针对轮廓参数、材料折射参数和计量设备参数获得数据。如上所述,所选择的轮廓参数是那些不变的、或者可以用测量值或针对类似晶片应用的经验数据固定下来的轮廓参数。针对材料折射参数的值是用于折射率N和消光系数K的a和b常数。用于计量设备参数的值(例如入射角)是根据计量设备的销售说明书获得的。针对方位角的值是根据衍射测量中所用的设置获得的。在步骤1130,使用测量衍射信号来确定轮廓参数、临界尺寸(CD)和下覆厚度。
参考图8,在步骤1140,将轮廓参数和结构的材料数据与识别信息相联系。识别信息包括测量结构的地点、晶片、晶片批次、运行(run)、应用配方和其他与制造有关的数据。在步骤1150,将计量数据和有关的识别信息储存在计量数据库中。在步骤1160可以将计量数据和/或有关识别信息传送到此后或此前的制造处理步骤。在步骤1170,用所传送的计量数据和/或有关识别信息来改变此后或此前的制造处理步骤的至少一个处理变量,或者改变此前、当前或此后的制造处理步骤中的设备控制变量。例如,将结构在刻蚀处理步骤处的中间临界尺寸(MCD)值传送到此前的光刻处理步骤,在所述光刻处理步骤用该MCD值来改变光刻处理步骤中步进机(stepper)的剂量和/或焦点。或者,可以将结构的底部临界尺寸(BCD)传送到刻蚀处理步骤,并用BCD值来改变刻蚀长度或刻蚀剂浓度。在另一种实施例中,可以将MCD发送到当前处理,例如后曝光烘烤(PEB)处理步骤,在该步骤中用MCD值来改变PEB处理的温度。还可以用MCD来改变当前处理中的处理变量,例如刻蚀处理中反应室中的压力。
具体地说,应当明白,这里所述本发明的功能实现方式可以通过硬件、软件、固件和/或其他可能的功能部件或模块来等同地实施。例如,计量数据库可以在计算机存储器中,或者在实际的计算机储存装置或介质中。根据上述教导可以有其他改变形式和实施方式,因此本发明的范围不应由这些详细说明来限定,而是由权利要求来限定。

Claims (31)

1.一种使用光学计量模型对半导体晶片上形成的带图案结构进行检查的装置,所述装置包括:
第一制造系统,包括:
第一制造集群,设置成对晶片进行处理,所述晶片具有第一带图案结构和第一不带图案结构,所述第一带图案结构具有下覆膜厚度、临界尺寸、和轮廓;
第一计量集群,包括连接到所述第一制造集群的一个或多个光学计量设备,所述第一计量集群设置成对离开所述第一带图案结构和所述第一不带图案结构的衍射信号进行测量;
第一计量模型优化器,连接到所述第一制造集群和所述第一计量集群,所述第一计量模型优化器设置成使用离开所述第一带图案结构的一个或多个测量衍射信号并采用浮动的轮廓参数、材料折射参数以及计量设备参数来对所述第一带图案结构的光学计量模型进行优化;
第一实时轮廓评估器,连接到所述第一光学模型优化器和所述第一计量集群,并被设置成使用来自所述第一计量模型优化器的经优化光学计量模型、离开所述第一带图案结构的测量衍射信号、和来自所述材料折射参数和所述计量设备参数中至少一个参数的值域内的固定值,其中,所述第一实时轮廓评估器被设置以创建输出,所述输出包括所述第一带图案结构的下覆膜厚度、临界尺寸和轮廓;以及
计量处理器,连接到所述第一制造系统,所述计量数据处理器设置成对来自所述材料折射参数和所述计量设备参数中至少一个参数的值域内的固定值进行接收、处理、储存和传送。
2.根据权利要求1所述的装置,其中,所述计量处理器还设置成对所述经优化光学计量模型、以及所述第一带图案结构的下覆膜厚度、轮廓参数、临界尺寸、材料折射参数及计量设备参数进行接收、处理、储存和传送。
3.根据权利要求1所述的装置,其中,所述第一制造系统还包括:
第一轮廓服务器,连接到所述第一光学模型优化器和所述第一计量集群,并被设置成使用来自所述第一光学计量模型优化器的所述经优化光学计量模型、离开所述第一带图案结构的所述测量衍射信号以及所述固定值,其中,所述第一轮廓服务器设置以创建输出,所述输出包括所述第一带图案结构的下覆膜厚度、临界尺寸和轮廓。
4.根据权利要求1所述的装置,其中,所述材料折射参数包括折射率参数和消光系数参数。
5.根据权利要求4所述的装置,其中,所述折射率参数由表达式N(λ,a)通过向量a表示,所述消光系数参数由表达式K(λ,b)通过向量b表示,其中所述λ为波长。
6.根据权利要求5所述的装置,其中,所述折射率参数和所述消光系数参数被固定到使用所述第一光学计量集群测得的所述带图案结构的多层的折射率值和消光系数值。
7.根据权利要求6所述的装置,其中,所述第一带图案结构的多层的折射率值和消光系数值是从所述第一不带图案结构、或者同一晶片中的不带图案区域、或者测试晶片的不带图案区域测量的。
8.根据权利要求7所述的装置,其中,对晶片上至少2个位置进行测量并计算统计平均。
9.根据权利要求5所述的装置,其中,所述折射率参数和所述消光系数参数被固定到由经验或由理论得到的同一材料的折射率值和消光系数值。
10.根据权利要求9所述的装置,其中,所述计量设备参数包括入射角和/或方位角。
11.根据权利要求1所述的装置,还包括
计量数据库,连接到所述计量数据处理器,所述计量数据库设置成存储和访问所述第一带图案结构的所述经优化光学计量模型和所述固定值。
12.根据权利要求11所述的装置,其中,所述计量数据库设置成储存和访问成对的所述第一带图案结构的模拟衍射信号与相应的轮廓参数组。
13.根据权利要求11所述的装置,其中,所述计量数据库设置成储存和访问光学计量机器学习系统的训练数据组和/或所述第一带图案结构的经训练光学计量机器学习系统。
14.根据权利要求11所述的装置,其中,所述计量数据处理器连接到第二制造系统。
15.根据权利要求14所述的装置,其中,所述第二制造系统设置成对晶片进行处理,所述晶片具有第二带图案结构和第二不带图案结构,所述第二带图案结构具有下覆膜厚度、临界尺寸和轮廓,所述第二制造系统包括:
第二制造集群,设置成对晶片进行处理,所述晶片具有第二带图案结构和第二不带图案结构,所述第二带图案结构具有下覆膜厚度、临界尺寸、和轮廓;
第二计量集群,包括连接到所述第二制造集群的一个或多个光学计量设备,所述第二计量集群设置成对离开所述第二带图案结构和所述第二不带图案结构的衍射信号进行测量;
第二计量模型优化器,连接到所述第二制造集群和所述第二计量集群,所述第二计量模型优化器设置成使用离开所述第二带图案结构的一个或多个测量衍射信号并采用浮动的轮廓参数、材料折射参数以及计量设备参数来对所述第二带图案结构的第二光学计量模型进行优化;
第二实时轮廓评估器,连接到所述第二光学模型优化器和所述第二计量集群,并被设置成使用来自所述第二计量模型优化器的经优化光学计量模型、离开所述第二带图案结构的测量衍射信号、和来自所述材料折射参数和所述计量设备参数中至少一个参数的值域内的固定值,其中,所述第二实时轮廓评估器被设置以创建输出,所述输出包括所述第二带图案结构的下覆膜厚度、临界尺寸和轮廓。
16.根据权利要求15所述的装置,其中,所述第二制造系统还包括:
第二轮廓服务器,连接到所述第二光学模型优化器和所述第二计量集群,并被设置成使用来自所述第二光学计量模型优化器的所述经优化光学计量模型、离开所述第二带图案结构的所述测量衍射信号、和所述固定值,并被设置以创建输出,所述输出包括所述第二带图案结构的下覆膜厚度、临界尺寸和轮廓。
17.根据权利要求16所述的装置,其中,所述第一带图案结构的所述下覆膜厚度、所述临界尺寸、和所述轮廓中至少其一被用于更改所述第二制造集群的至少一个处理参数。
18.根据权利要求16所述的装置,其中,所述第二带图案结构的所述下覆膜厚度、所述临界尺寸、和所述轮廓中至少其一被用于更改所述第一制造集群的至少一个处理参数。
19.根据权利要求16所述的装置,其中,所述第一带图案结构的所述下覆膜厚度、所述临界尺寸、和所述轮廓中至少其一被用于更改所述第一制造集群的至少一个处理参数。
20.根据权利要求16所述的装置,其中,所述第二带图案结构的所述下覆膜厚度、所述临界尺寸、和所述轮廓中至少其一被用于更改所述第二制造集群的至少一个处理参数。
21.根据权利要求16所述的装置,其中,所述计量数据库被设置成存储和访问成对的所述第二带图案机构的模拟衍射信号和相应的轮廓参数组。
22.根据权利要求16所述的装置,其中,所述计量数据库设置成储存和访问光学计量机器学习系统的训练数据组和/或第二带图案结构的经训练光学计量机器学习系统。
23.根据权利要求16所述的装置,其中,所述计量处理器设置成从/向离线的或远程的计量数据源进行计量数据的接收、处理和传送。
24.根据权利要求16所述的装置,其中,所述计量处理器连接到处理模拟器。
25.根据权利要求16所述的装置,其中,所述计量处理器连接到处理模拟器,所述计量处理器设置成从其他来源接收和处理计量数据和/或处理来自所述处理模拟器的计量数据并向其他制造系统传送计量数据,所述记量数据包括轮廓参数、材料折射参数和计量设备参数。
26.一种对与经受一个或多个制造处理的晶片中的结构有关的计量数据进行管理的方法,所述方法包括:
a)创建用于带图案结构的光学计量模型,所述光学计量模型具有轮廓参数、材料折射参数和计量设备参数;
b)限定所述轮廓参数、材料折射参数和计量设备参数的值域;
c)获得所述带图案结构的一个或多个测量衍射信号;
d)用步骤b)中限定的所述值域和步骤c)中获得的所述带图案结构的所述一个或多个测量衍射信号来优化所述光学计量模型,以获得经优化的光学计量模型;
e)对于来自所述材料折射参数和所述计量设备参数中的至少一个参数,将所述至少一个参数设定到所述至少一个参数值域内的固定值;
f)用所述经优化的光学计量模型产生一个或多个计量数据库,其中,所述一个或多个计量数据库用于确定所述带图案结构的所述轮廓参数;
g)用离开所述带图案结构的测量衍射信号和产生的所述一个或多个计量数据库来确定所述带图案结构的所述轮廓参数;以及
h)将所确定的所述带图案结构的所述轮廓参数与所述晶片中跟材料数据、计量设备数据、带图案结构位置有关的识别信息、晶片标识符、和/或制造步骤标识符相联系。
27.根据权利要求26所述的方法,还包括:
i1)储存相联系的所述带图案结构的所述轮廓参数并在计量数据库中识别信息。
28.根据权利要求27所述的方法,还包括:
i2)使用所述带图案结构的所述轮廓参数和/或识别信息在所述制造系统中的制造集群中改变至少一个处理变量或改变制造设备的设定。
29.根据权利要求28所述的方法,还包括:
i3)将所述带图案结构的所述轮廓参数和/或识别信息传送到另外的制造系统,其中,所述轮廓参数用于改变所述另外的制造系统的至少一个处理变量。
30.根据权利要求28所述的方法,其中,所述另外的制造系统用于所述晶片应用的先前制造步骤。
31.根据权利要求30所述的方法,其中,所述另外的制造系统用于所述晶片应用的后来制造步骤。
CN2007101358589A 2007-07-30 2007-07-30 晶片图案结构的检查装置及其计量数据管理方法 Expired - Fee Related CN101359612B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101358589A CN101359612B (zh) 2007-07-30 2007-07-30 晶片图案结构的检查装置及其计量数据管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101358589A CN101359612B (zh) 2007-07-30 2007-07-30 晶片图案结构的检查装置及其计量数据管理方法

Publications (2)

Publication Number Publication Date
CN101359612A true CN101359612A (zh) 2009-02-04
CN101359612B CN101359612B (zh) 2012-07-04

Family

ID=40332011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101358589A Expired - Fee Related CN101359612B (zh) 2007-07-30 2007-07-30 晶片图案结构的检查装置及其计量数据管理方法

Country Status (1)

Country Link
CN (1) CN101359612B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117731B (zh) * 2009-12-31 2013-01-02 中芯国际集成电路制造(上海)有限公司 半导体工艺生产流程中的测量数据的监测方法和装置
TWI603052B (zh) * 2012-05-08 2017-10-21 克萊譚克公司 產生最佳化量測配方之方法、系統及電腦可讀媒體
WO2020248447A1 (zh) * 2019-06-11 2020-12-17 南开大学 材料光学常数的确定方法、材料数据库的扩展方法及装置
CN112655071A (zh) * 2018-09-12 2021-04-13 东京毅力科创株式会社 学习装置、推断装置以及已学习模型

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943900B2 (en) * 2000-09-15 2005-09-13 Timbre Technologies, Inc. Generation of a library of periodic grating diffraction signals
US6650422B2 (en) * 2001-03-26 2003-11-18 Advanced Micro Devices, Inc. Scatterometry techniques to ascertain asymmetry profile of features and generate a feedback or feedforward process control data associated therewith
US6775015B2 (en) * 2002-06-18 2004-08-10 Timbre Technologies, Inc. Optical metrology of single features
US7330279B2 (en) * 2002-07-25 2008-02-12 Timbre Technologies, Inc. Model and parameter selection for optical metrology
US20040267397A1 (en) * 2003-06-27 2004-12-30 Srinivas Doddi Optical metrology of structures formed on semiconductor wafer using machine learning systems
US7394554B2 (en) * 2003-09-15 2008-07-01 Timbre Technologies, Inc. Selecting a hypothetical profile to use in optical metrology

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117731B (zh) * 2009-12-31 2013-01-02 中芯国际集成电路制造(上海)有限公司 半导体工艺生产流程中的测量数据的监测方法和装置
TWI603052B (zh) * 2012-05-08 2017-10-21 克萊譚克公司 產生最佳化量測配方之方法、系統及電腦可讀媒體
US10354929B2 (en) 2012-05-08 2019-07-16 Kla-Tencor Corporation Measurement recipe optimization based on spectral sensitivity and process variation
CN112655071A (zh) * 2018-09-12 2021-04-13 东京毅力科创株式会社 学习装置、推断装置以及已学习模型
CN112655071B (zh) * 2018-09-12 2024-04-16 东京毅力科创株式会社 学习装置、推断装置以及已学习模型
WO2020248447A1 (zh) * 2019-06-11 2020-12-17 南开大学 材料光学常数的确定方法、材料数据库的扩展方法及装置

Also Published As

Publication number Publication date
CN101359612B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
US7526354B2 (en) Managing and using metrology data for process and equipment control
US7525673B2 (en) Optimizing selected variables of an optical metrology system
US7495781B2 (en) Optimizing selected variables of an optical metrology model
CN101413791B (zh) 在光学计量中用近似和精细衍射模型确定结构的轮廓参数
CN100559156C (zh) 使用抽样衍射信号选择假想剖面用于光学计量的方法
CN103026204B (zh) 用于自动确定最优参数化的散射测量模型的方法
CN101133297B (zh) 用于重复结构的光测量优化
CN107092958B (zh) 用于基于库的临界尺寸cd计量的精确和快速的神经网络训练
CN101393881B (zh) 检查形成在半导体晶片上的结构的系统和方法
US7171284B2 (en) Optical metrology model optimization based on goals
CN101331378B (zh) 在光学计量中为重复结构选择单位元配置
CN102918464A (zh) 衬底上结构的测量
CN101359611B (zh) 对光学计量系统的选定变量进行优化
CN107408519A (zh) 基于模型的单个参数测量
CN105917454B (zh) 包含可重复使用的子结构的半导体装置模型
CN104025275A (zh) 用于计量的基于过程变差的模型优化
KR20080111493A (ko) 2차원 구조물들에 대한 회절 차수를 선택하기 위한 최적화 방법
US20110288822A1 (en) Computation efficiency by iterative spatial harmonics order truncation
CN106030282A (zh) 用于光学度量衡的自动波长或角度修剪
US7949490B2 (en) Determining profile parameters of a structure using approximation and fine diffraction models in optical metrology
CN101359612B (zh) 晶片图案结构的检查装置及其计量数据管理方法
CN103443900A (zh) 用于计量的宽处理范围库
KR101357326B1 (ko) 패턴화 구조 검사 시스템
EP2567209B1 (en) Determination of material optical properties for optical metrology of structures
Mohammadikaji Simulation-based planning of machine vision inspection systems with an application to laser triangulation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20160730