CN101358294A - 一种制备高冰镍的方法 - Google Patents

一种制备高冰镍的方法 Download PDF

Info

Publication number
CN101358294A
CN101358294A CNA2008101324642A CN200810132464A CN101358294A CN 101358294 A CN101358294 A CN 101358294A CN A2008101324642 A CNA2008101324642 A CN A2008101324642A CN 200810132464 A CN200810132464 A CN 200810132464A CN 101358294 A CN101358294 A CN 101358294A
Authority
CN
China
Prior art keywords
nickel
slag
nickel matte
matte
oxidizing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008101324642A
Other languages
English (en)
Inventor
高占奎
王学宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHAOYANG HAOTIAN NONFERROUS METAL Co Ltd
Original Assignee
CHAOYANG HAOTIAN NONFERROUS METAL Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHAOYANG HAOTIAN NONFERROUS METAL Co Ltd filed Critical CHAOYANG HAOTIAN NONFERROUS METAL Co Ltd
Priority to CNA2008101324642A priority Critical patent/CN101358294A/zh
Publication of CN101358294A publication Critical patent/CN101358294A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开一种制备高冰镍的方法,包括步骤:a)将低冰镍放入温度为1100℃~1300℃的连续吹炼炉;b)将造渣剂放入所述连续吹炼炉,向炉内喷吹氧化性气体,所述氧化性气体与低冰镍和造渣剂反应得到高冰镍,炉渣和烟气,所述氧化性气体的气压为0.05MPa~0.2MPa。氧化性气体的气压可以控制吹炼反应进行的程度,决定是否能将低冰镍中的杂质充分提取出来,本发明通过选择合适的气体压力,使低冰镍、造渣剂和氧化性气体反应后制备出高冰镍、炉渣和烟尘,以较高回收率将低冰镍中的镍回收,并降低炉渣中的镍含量。

Description

一种制备高冰镍的方法
技术领域
本发明涉及富镍产品的制备方法,具体涉及制备高冰镍的方法。
背景技术
镍由于具有良好的机械强度、延展性和很高的化学稳定性而广泛用于不锈钢、电镀、电池等领域。目前可供人来开发利用的镍资源有两类,一类是红土镍矿,另一类是硫化镍矿。全球已探明的镍资源约1.6亿吨,其中30%为硫化镍矿、70%为红土镍矿,镍产品约有60%来自于硫化矿。然而世界可供近期开发的硫化镍资源,除了加拿大的沃伊斯湾(Voisey bay)镍矿外,其余寥寥无几,并且硫化镍资源勘探周期和建设周期均较长,开发和利用相对比较困难。而红土镍矿资源丰富,采矿成本低,选镍工艺趋于成熟,可生产氧化镍、硫镍、镍铁等多种中间产片,而且矿源靠海,便于运输。因此,开发利用红土镍矿具有重要的意义。
红土镍矿是铁、铝、硅等含水氧化物组成的疏松粘土状矿石,由含镍的岩石风化、浸淋、蚀变、富集而成。现已探明的红土镍矿资源多分布在南、北回归线一带,如澳大利亚、巴布亚新几内亚、新喀里多尼亚、印度尼西亚、菲律宾和古巴等地。红土镍矿可分为两种类型,一种是褐铁矿型,位于矿床的上部,铁高、镍低,硅镁较低,但钴含量较高,这种矿石宜采用湿法冶金工艺处理,冶炼镍铁产生的炉渣用于钢的生产。另一种为硅镁镍矿,位于矿床的下部,硅、镁含量较高,铁、钴含量较低,但镍含量较高,这种矿石宜采用火法冶金工艺处理。红土矿中一般含有30%~45%的水,其中结晶水占10%~15%,除水之外,上述两种类型的红土矿其主要成份可见表1,本文中所提到的成分含量全部为重量比。
表1红土镍矿两种矿型主要成分(%)
目前,硅镁红土镍矿的火法冶炼工艺有镍铁工艺和镍硫工艺两种工艺路线,主要熔炼设备有回转炉、电炉和鼓风炉。由硅镁红土镍矿制备的主要产品是低冰镍,其中镍含量一般为8%~20%。由于低冰镍可进一步制备镍含量为40%以上的高冰镍,该产品具有较大的灵活性:经焙烧脱硫后可直接还原熔炼生产不锈钢工业的通用镍,也可以作为常压粉基法精炼镍的原料生产镍丸和镍粉,还可以直接铸成阳极板送硫化镍电解精炼的工厂生产阴极镍。因此,镍硫工艺冶炼红土镍矿具有很好的市场前景。
在现有技术下,采用低冰镍吹炼高冰镍通常采用转炉,具体工艺为:将熔融的低冰镍送入转炉,添加石英作为造渣剂,再向转炉内通入压缩空气进行吹炼,氧化低冰镍中的杂质,使氧化物造渣,得到主要成分为Ni3S2的高冰镍。但由于转炉具有投资大、施工周期长、操作复杂等缺点,而且炉渣中的镍含量较高。
因此,需要一种操作简单、镍回收率高的连续吹炼制备高冰镍的方法。
发明内容
本发明解决的技术问题在于,提供一种操作简单、镍回收率高的连续吹炼制备高冰镍的方法。
为解决以上问题,本发明提供一种制备高冰镍的方法,包括步骤:
a)将低冰镍放入温度为1100℃~1300℃的连续吹炼炉;
b)将造渣剂放入所述连续吹炼炉,向炉内喷吹氧化性气体,所述氧化性气体与低冰镍以及造渣剂反应得到高冰镍、炉渣和烟气,所述氧化性气体的气压为0.05MPa~0.2MPa。
由硅镁红土矿制备的低冰镍的主要成分为镍、铁、硫,三种元素的大部分存在形式为Ni3S2·FeS,低冰镍中铁含量一般为40%以上,低冰镍吹炼的主要目的是尽可能的去除其中的铁和大部分的硫,在吹炼时,通入氧化性气体后,由于氧气的存在,主要发生如下反应:
2FeS+3O2+SiO2=2FeO·SiO2+2SO2↑(1)
另外,一部分硫化镍也会被氧化,发生如下反应:
2Ni3S2+7O2=6NiO+4SO2↑         (2)
由于氧化亚镍的密度小,因此会和炉渣一起排走,当炉内有硫化亚铁时,镍的氧化物会再变为硫化物,发生如下反应:
3NiO+3FeS+O2=3FeO+Ni3S2+SO2↑  (3)
这样,氧化亚镍会由渣进入镍锍中,当硫化亚铁很少时,反应(3)会终止,氧化亚镍进入渣中。因此,必须在高冰镍中保留一部分的铁。低冰镍的吹炼是剧烈的放热反应,吹炼时的热量靠自身反应来提供,温度过高会导致渣中镍含量增加,温度过低影响吹炼效果。
为了达到本发明的目的,向炉内喷入氧化性气体的目的主要是提供氧气将低冰镍中的FeS氧化,因此,可以通入空气或者富氧的空气,优选的,通入普通的空气,因为如果空气中氧气含量过高,会加剧反应,造成渣中镍含量过高。喷吹气体时,气体压力决定了气体的喷入速度,气体喷入的速度过高或者过低都不利于吹炼反应的进行。这是因为,如果气体压力过高,速度过快时,对于低冰镍的搅动过大,硫化镍被氧化的程度增加,可能使渣中镍含量增加。如果气体压力过低,对于低冰镍的搅动达不到要求,反应不能充分进行。本发明中向连续吹炼炉内喷吹氧化性气体时,优选的,氧化性气体的风压为0.05MPa~0.2MPa;更优选的,氧化性气体的风压为0.06MPa~0.16MPa;更优选的,氧化性气体的风压为0.08MPa~0.16MPa。
另外,为了控制反应进行的剧烈程度,需要控制氧化性气体中氧气量,优选的,本发明提供氧化性气体中氧气的吹入量为5~12m3/min·m2;更优选的,氧化性气体中氧气的吹入量为6~10m3/min·m2;更优选的,氧化性气体中氧气的吹入量为7~9m3/min·m2。当喷入空气时,可以根据空气中的氧气的体积百分含量计算应当喷吹空气的喷入量。如果风量过大,那么氧气量过多,反应(2)进行的比较剧烈,因此渣中的镍含量增加,而且风口的氧化亚铁容易被进一步生成Fe3O4,由于Fe3O4熔点高达1597℃,会使炉内熔体变得粘稠,炉渣性质变坏,给吹炼过程带来许多不利影响。如果风量过小,那么氧气量不够,造渣反应进行的不充分,也不利于镍的富集。
进行吹炼时,需要气体从低冰镍的液面以下进入发生反应,这样有利于使熔体维持搅动条件,因此低冰镍的液面需要高出进风口,但是,过高的距离会使反应剧烈程度加大,造成镍锍的过吹,使渣中镍含量增加;如果液面过低,反应速度过慢,还会减小造渣反应程度。因此,本发明中连续吹炼炉内低冰镍的液面高于连续吹炼炉的风口的优选距离为50mm~200mm,更优选的,低冰镍的液面在所述连续吹炼炉的风口以上70mm~120mm。
从以上反应可以看出,造渣剂的主要成分是二氧化硅,因此可以选用的造渣剂有石英砂等。另外,为了利于造渣反应,本发明提供的石英砂的粒度D90优选为4mm~20mm,更优选的,石英砂的粒度D90为5mm~10mm。如果石英砂的粒度过大或者过小,空气对熔体进行搅动时,都不利于石英砂的熔体中的均匀弥散,不利于造渣反应。
吹炼时的正常温度为1100℃~1300℃,过高或者过低的温度都不利于造渣反应的顺利进行。因此,本发明将低冰镍放入温度为1100℃~1300℃开始反应,低冰镍可以为熔融态的,也可以为固态的,如果是固态的,在连续吹炼炉内需要保温足够长的时间,使低冰镍的温度保持在1100℃~1300℃的范围内。优选的,将低冰镍放在温度为1170℃~1250℃的范围内。
由前述可知,对于低冰镍的吹炼主要目的是使低冰镍中的铁生成炉渣,而将其中的镍保留在熔体中,然后将炉渣与镍锍分离,因此吹炼的实质也是炼渣的过程,选择合适的渣型对于反应能否顺利进行以及炉渣与熔体的分离具有重要的意义。本文中,炉渣中包括以下重量百分比的成分:SiO2:15%~30%;Ni:≤4%;优选的,SiO2:18%~25%;Ni:≤2%。如果SiO2过多,渣发粘,流动性差。如果SiO2过少,造渣反应可能不充分,而且还会有其它不利效果,如产生过多的炉结。按照本发明,产生的高冰镍包括以下重量百分比的成分:Ni:≥45%;Fe≤7%,S:20%~25%。优选的,Ni:≥50%;Fe≤5%,S:21%~25%。更优选的,Ni:≥65%;Fe≤4.5%,S:22%~24%。
在向炉内加入低冰镍后,使其稳定一段时间,然后根据低冰镍中的铁含量根据反应(1)计算出需要的二氧化硅量,要添加适当过量的二氧化硅。一般实际添加量为实际需要量的101%~110%,如果添加的过多也是不合适的,不但会造成不必要的浪费,而且由于石英砂还会降低反应温度,而且还会导致渣中二氧化硅含量过多,增加渣分离的难度。添加石英时,如果一次性将石英全部加入反应炉内是不合适的,因为氧化性气体的喷入量是固定的,所以石英砂来不及全部参见反应,会导致更多的二氧化硅进入到炉渣中去。因此,需要将石英至少分为2次加入;优选的,将石英分为3次加入;更优选的,将石英分4次加入。但是应当注意,每次加入的石英量不能太少,如果加入的石英量不够,会有过多的硫化镍被氧化进入炉渣中。因此,加入石英的多少和频率可以根据反应进行当中炉渣中的镍含量和石英含量是否符合前述渣型。
因此,在吹炼反应时,需要每隔一段时间对镍锍和炉渣取样进行成分分析,根据目标渣型,如果炉渣中的镍含量超过了渣型中镍的目标值,将石英加入量调高,降低总的加入次数;如果炉渣中二氧化硅含量过高,说明二氧化硅未能完全反应,需要将二氧化硅的加入量调低,加入次数增加。
本发明提供一种高冰镍的制备方法。本发明采用将低冰镍送入连续吹炼炉,添加造渣剂后,在炉内通入氧化性气体对低冰镍进行吹炼。采用连续吹炼炉制备高冰镍时,氧化性气体的压力决定了造渣反应的程度,压力过大或者过小会影响炉渣中镍的含量,造成回收率下降,本发明提供氧化性气体的压力为0.05MPa~0.2MPa,可以使造渣反应顺利进行,得到的高冰镍中镍含量≥45wt%(重量百分比),铁含量≤7%。
本发明进一步提供喷入的氧化性气体中的氧气量为5~12m3/min·m2,以较高回收率将低冰镍中的镍富集制得高冰镍。
附图说明
图1为本发明制备高冰镍方法示意图;
图2为图1中吹炼炉沿A-A方向的剖面图;
图3为图1中吹炼炉沿B-B方向的剖面图。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
为了达到本发明的目的,使用连续吹炼炉吹炼高冰镍。请参见图1,为本发明实施例中所用连续吹炼炉主视图,连续吹炼炉包括基本为长方体形状的炉缸11、炉缸包括两个相对的长边侧壁和连接两个长边侧壁的短边侧壁,在一个短边侧壁上包括进料口11a,在两个相对的长边侧壁上,包括若干对相互对称的风管11b,在与进料口相对一侧的短边侧壁上,包括出渣口11c,为了有利于炉渣和高冰镍的分离,炉缸的炉底在靠近进料口的部分高于靠近出渣口的部分,炉缸上与竖直的烟道12连接。
请参见图2,图2为图1中吹炼炉沿A-A方向的剖视图,风管11b的风口端伸入到炉缸内并与水平成15度角
请参见图3,图3为图1中吹炼炉沿B-B方向的剖视图,在一个长边侧壁上,包括出料口11d,由于炉渣浮在高冰镍上面,因此出料口11d比出渣口11c低。
按照本发明,在对石英砂的粒度进行取样测量时,分别给出D10、D25、D50、D75和D90值。D10、D25、D50、D75和D90相应粒径值分别代表料块从最小料块累计的质量百分数分别达到10%、25%、50%、75%和90%中的最大粒径值。本文中的镍的回收率的计算方法为高冰镍中的镍含量占低冰镍中的镍含量的重量百分比。
实施例1
取原料1a低冰镍120kg,其主要成份含量见表2。将连续吹炼炉升温至1150℃后,将原料1a在熔化炉中熔化后放入连续吹炼炉,熔体液面高于风口距离约为98mm,保温1小时使熔体稳定。取原料1b石英砂38kg,其二氧化硅含量及粒度分布参见表3。将石英砂分成基本的3等分,每隔90分钟加入吹炼炉内。
向炉内喷吹空气,测量空气中氧气体积百分含量为20.9%,喷吹气压为0.1MPa、喷吹量为26.8m3/min·m2
反应进行5小时后,测量高冰镍中的铁含量为4.3%,结束熔炼,排出以下成份的高冰镍和炉渣:
高冰镍:69wt%Ni,4.3wt%Fe,23.6wt%S。
炉渣:2.22wt%Ni,31.2wt%SiO2,53.1wt%Fe。
共得高冰镍17.52kg,可以计算出镍的回收率为81.9%。
实施例2
取原料2a低冰镍120kg,其主要成份含量见表2。将连续吹炼炉升温至1200℃后,将原料2a在熔化炉中熔化后放在连续吹炼炉,熔体液面高于风口距离为98mm,保温1小时使熔体稳定。将空气以0.12MPa的速率吹入炉内,鼓风量为38m3/min·m2。取原料2b石英30kg,其二氧化硅含量及粒度分布参见表3。将石英砂分成基本的4等分,每隔60分钟加入吹炼炉内。
向炉内喷吹空气,测量空气中氧气体积百分含量为20.9%,气压为0.1MPa、喷吹量为50m3/min·m2
反应进行5小时后,测量镍锍中的铁含量为4.5%,结束熔炼,排出以下成份的高冰镍和炉渣:
高冰镍:70.5wt%Ni,4.5wt%Fe,22.8wt%S。
炉渣:2.02wt%Ni,30.5wt%SiO2,48.2wt%Fe。
共得高冰镍15.36kg,可以计算出镍的回收率为82.8%。
实施例3
取原料3a低冰镍120kg,其主要成份含量见表2。将连续吹炼炉升温至1180℃后,将原料3a在熔化炉中熔化后放在连续吹炼炉,熔体夜面高于风口距离为98mm,保温1小时使熔体稳定。将空气以0.12MPa的速率吹入炉内,鼓风量为40m3/min·m2。取原料3b石英29.5kg,其二氧化硅含量以及粒度分布参见表3。将石英砂分成基本的4等分,每隔60分钟加入吹炼炉内。
向炉内喷吹空气,测量空气中氧气体积百分含量为20.9%,气压为0.1MPa、喷吹量为38m3/min·m2
反应进行5小时后,测量高冰镍中的铁含量为3.5%,结束熔炼,从炉内排出以下成份的高冰镍和炉渣:
高冰镍:72.6wt%Ni,3.6wt%Fe,22.4wt%S。
炉渣:2.19wt%Ni,27.5wt%SiO2,44.5wt%Fe。
共得高冰镍18.98kg,可以计算出镍的回收率达到了85.1%。
实施例4
取原料4a低冰镍120kg,其主要成份含量见表2。将连续吹炼炉升温至1150℃后,将原料4a在熔化炉中熔化后放入连续吹炼炉,熔体液面高于风口距离约为132mm,保温1小时使熔体稳定。取原料1b石英砂33kg,将石英砂分成基本的3等分,每隔90分钟加入吹炼炉内。
向炉内喷吹空气,测量空气中氧气体积百分含量为20.9%,气压为0.06MPa、喷吹量为39m3/min·m2
反应进行5小时后,测量镍锍中的铁含量为5.2%,结束熔炼,将高冰镍和炉渣从炉内排出:
高冰镍:68.4wt%Ni,5.2wt%Fe,23.7wt%S。
炉渣:2.78wt%Ni,27.4wt%SiO2,48.3wt%Fe。
共得高冰镍22.52kg,可以计算出镍的回收率为82.3%。
实施例5
取原料1a低冰镍120kg,将连续吹炼炉升温至1200℃后,将原料1a在熔化炉中熔化后放在连续吹炼炉,熔体液面高于风口距离为98mm,保温1小时使熔体稳定。将空气以0.12MPa的速率吹入炉内,鼓风量为38m3/min·m2。取原料1b石英25.5kg,将石英砂分成基本的4等分,每隔60分钟加入吹炼炉内。
向炉内喷吹空气,测量空气中氧气体积百分含量为20.9%,气压为0.1MPa、喷吹量为38m3/min·m2
反应进行到5小时后,测量镍锍中的铁含量为5.3%,结束熔炼,排出以下成份的高冰镍和炉渣:
高冰镍:70.9wt%Ni,4.5wt%Fe,22.1wt%S。
炉渣:2.23wt%Ni,21.4wt%SiO2,56.2wt%Fe。
共得高冰镍17.38kg,可以计算出镍的回收率为83.5%。
实施例6
取原料2a低冰镍120kg,其主要成份含量见表2。将连续吹炼炉升温至1180℃后,将原料2a在熔化炉中熔化后放在连续吹炼炉,熔体液面高于风口距离为60mm,保温1小时使熔体稳定。将空气以0.12MPa的速率吹入炉内,鼓风量为40m3/min·m2。取原料2b石英砂32kg,将石英砂分成基本的4等分,每隔60分钟加入吹炼炉内。
向炉内喷吹空气,测量空气中氧气体积百分含量为20.9%,气压为0.17MPa、喷吹量为38m3/min·m2
反应进行5小时后,测量镍锍中的铁含量为3.5%,结束熔炼,排出以下成份的高冰镍和炉渣:
高冰镍:69.2wt%Ni:,3.5wt%Fe,23.9wt%S。
炉渣:2.05wt%Ni,32.4wt%SiO2,48.7wt%Fe。
共得高冰镍15.56kg,可以计算出镍的回收率达到了82.4%。
比较例1
取原料1a低冰镍120kg,将连续吹炼炉升温至1150℃后,将原料1a在熔化炉中熔化后放入连续吹炼炉,熔体液面高于风口距离约为21mm,保温1小时使熔融低冰镍稳定。取原料1b石英砂37.5kg,将石英砂分成基本的3等分,每隔90分钟加入吹炼炉内。
向炉内喷吹空气,测量空气中氧气体积百分含量为20.9%,喷吹压力为0.1MPa、喷吹量为60m3/min·m2
反应进行5小时后,测量高冰镍中的铁含量为23.8%,结束熔炼,从炉内排出以下成份的高冰镍和炉渣:
高冰镍:21.1wt%Ni,23.8wt%Fe,20.6wt%S。
炉渣:4.6wt%Ni,33.1wt%SiO2,51.2wt%Fe。
共得高冰镍47.2kg,可以计算出镍的回收率为67.4%。
比较例2
取原料2a低冰镍120kg,将连续吹炼炉升温至1180℃后,将原料2a在熔化炉中熔化后放入连续吹炼炉,熔体液面高于风口距离为220mm,保温1小时使熔融低冰镍稳定。取原料2b石英砂31kg,将石英砂分成基本的3等分,每隔90分钟加入吹炼炉内。
向炉内喷吹空气,测量空气中氧气体积百分含量为20.9%,喷吹压力为0.04MPa、喷吹量为39m3/min·m2
反应进行5小时后,测量高冰镍中的铁含量为20.8wt%,结束熔炼,排出以下成份的高冰镍和炉渣:
高冰镍:34.8wt%Ni,20.8wt%Fe,22.6wt%S。
炉渣:4.1wt%Ni,25wt%SiO2,41.7wt%Fe。
共得高冰镍23.4kg,可以计算出,镍的回收率为62.3%。
表2、原料低冰镍成分(wt%)
                                                  
      原料1a  原料2a  原料3a  原料4a
Ni    12.3    10.9    13.5    15.6
Fe    54.1    45.6    43.1    48.3
S     20.5    22.4    21.6    25.4
                                                  
表3、原料石英砂成分及粒度分布
                                              
原料1a         原料1b  原料2b  原料3b
SiO2(重量%)   92.5    95.5    94.6
粒度分布(mm)
D10            0.05    1.25    3.22
D25            1.35    2.63    5.18
D50            2.56    4.58    8.57
D75            3.12    5.36    11.3
D90            4.53    7.62    14.5
                                                  
从以上叙述可知,通过提供适当的气压将氧化性气体喷入连续吹炼炉内,可以使造渣反应顺利进行,以较高回收率将低冰镍中的镍元素富集。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1、一种制备高冰镍的方法,包括步骤:
a)将低冰镍放入温度为1100℃~1300℃的连续吹炼炉;
b)将造渣剂放入所述连续吹炼炉,向炉内喷吹氧化性气体,所述氧化性气体与低冰镍以及造渣剂反应得到高冰镍、炉渣和烟气,所述氧化性气体的气压为0.05MPa~0.2MPa。
2、根据权利要求1所述的方法,其特征在于所述氧化性气体的气压为0.06MPa~0.16MPa。
3、根据权利要求1所述的方法,其特征在于所述向炉内喷吹氧化性气体时喷入的氧气量为5~12m3/min·m2
4、根据权利要求1所述的方法,其特征在于所述向炉内喷吹氧化性气体时喷入的氧气量为6~10m3/min·m2
5、根据权利要求4所述的方法,其特征在于所述氧化性气体为空气。
6、根据权利要求1所述的方法,其特征在于所述造渣剂包括二氧化硅。
7、根据权利要求1至6任一项所述的方法,其特征在于所述高冰镍包括以下重量百分比的成分:Ni:≥45%;Fe≤7%,S:20%~25%。
8、根据权利要求7所述的方法,其特征在于所述高冰镍包括以下重量百分比的成分:Ni:≥50%;Fe≤5%,S:21%~25%。
9、根据权利要求1至6任一项所述的方法,其特征在于所述炉渣包括以下重量百分比的成分:SiO2:15%~30%;Ni:≤4%。
10、根据权利要求9所述的方法,其特征在于所述炉渣包括以下重量百分比的成分:SiO2:18%~25%;Ni:≤2%。
CNA2008101324642A 2008-07-16 2008-07-16 一种制备高冰镍的方法 Pending CN101358294A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008101324642A CN101358294A (zh) 2008-07-16 2008-07-16 一种制备高冰镍的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008101324642A CN101358294A (zh) 2008-07-16 2008-07-16 一种制备高冰镍的方法

Publications (1)

Publication Number Publication Date
CN101358294A true CN101358294A (zh) 2009-02-04

Family

ID=40330892

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008101324642A Pending CN101358294A (zh) 2008-07-16 2008-07-16 一种制备高冰镍的方法

Country Status (1)

Country Link
CN (1) CN101358294A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921661A (zh) * 2022-05-30 2022-08-19 金川集团股份有限公司 一种生产水淬合金的工艺方法
WO2024046244A1 (zh) * 2022-08-30 2024-03-07 中伟新材料股份有限公司 一种低冰镍生产高冰镍的方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921661A (zh) * 2022-05-30 2022-08-19 金川集团股份有限公司 一种生产水淬合金的工艺方法
CN114921661B (zh) * 2022-05-30 2024-01-02 金川集团股份有限公司 一种生产水淬合金的工艺方法
WO2024046244A1 (zh) * 2022-08-30 2024-03-07 中伟新材料股份有限公司 一种低冰镍生产高冰镍的方法和装置

Similar Documents

Publication Publication Date Title
CA2798302C (en) Process for recovering valuable metals from precious metal smelting slag
CN101514401B (zh) 一种从低品位红土镍矿高效富集镍钴的方法
CN101358296B (zh) 一种高冰镍的制备方法
CN101643858A (zh) 红土镍矿的高温氯化处理方法
CN101935761A (zh) 一种从铅铜锍中分离铜和硒碲的方法
CN109371252A (zh) 一种火法与湿法联合处理炼锑砷碱渣的装置及方法
CN110512095B (zh) 一种从钨冶金磷砷渣中提取和稳定砷的方法
CN104046782B (zh) 含钨、铁工业废料及低度难选钨铁矿回收方法
CN101418378A (zh) 红土镍矿还原焙烧过程中添加添加剂的方法
CN104946899B (zh) 一种边缘传动顶吹转炉—贫化沉降炉联合处理铅浮渣的方法
CN101358292B (zh) 一种制备高冰镍的投料方法
CN103993164A (zh) 氧硫混合铅锌多金属同时冶化分离的方法
CN103589939A (zh) 一种红土镍矿熔融还原冶炼镍铁合金的方法
CN103212569A (zh) 一种含砷混合盐无害化处理方法
CN105198008B (zh) 利用红土镍矿制备羰基镍粉的方法和系统
CN101358297B (zh) 一种高冰镍的制备方法
CN101358294A (zh) 一种制备高冰镍的方法
CN101358291A (zh) 一种制备低冰镍的原料
CN104525957B (zh) 一种利用镍残极制备合成羰基镍原料的方法
CN101358281B (zh) 一种红土矿预处理方法
CN101457303B (zh) 一种红土矿的冶炼方法
CN101358295B (zh) 一种硅镁红土镍矿的冶炼方法
CN101457302B (zh) 一种制备低冰镍的方法
CN101338373B (zh) 鼓风炉还原熔炼铜钴氧化矿的生产方法
CN105033263B (zh) 利用红土镍矿制备羰基镍粉的方法和系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20090204