CN101353711A - 含碳料块铁浴熔融还原炼铁脱硫方法 - Google Patents

含碳料块铁浴熔融还原炼铁脱硫方法 Download PDF

Info

Publication number
CN101353711A
CN101353711A CNA2007100939749A CN200710093974A CN101353711A CN 101353711 A CN101353711 A CN 101353711A CN A2007100939749 A CNA2007100939749 A CN A2007100939749A CN 200710093974 A CN200710093974 A CN 200710093974A CN 101353711 A CN101353711 A CN 101353711A
Authority
CN
China
Prior art keywords
material block
carbonaceous material
iron
molten iron
iron bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007100939749A
Other languages
English (en)
Other versions
CN101353711B (zh
Inventor
王东彦
李维国
李肇毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN2007100939749A priority Critical patent/CN101353711B/zh
Publication of CN101353711A publication Critical patent/CN101353711A/zh
Application granted granted Critical
Publication of CN101353711B publication Critical patent/CN101353711B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开一种含碳料块铁浴熔融还原炼铁脱硫方法。该方法包括含碳料块配料和成形、含碳料块预还原和铁浴熔融终还原,其中,所述的含碳料块配料中配入碱性物质,使四元碱度(CaO+MgO)/(SiO2+Al2O3)的数值在0.8~1.1之间;所述的含碳料块中单质碳原子摩尔数与铁、锌、铝等氧化物中原子氧的摩尔数之比为1~3。本发明方法有效克服现有技术引入脱硫剂后使铁水温度降低、增加能耗和脱硫剂成本、提高了铁水处理成本的问题。本发明的方法与现有技术中含碳球团-铁浴熔融还原两段式炼铁工艺相比,能降低10%以上的铁水硫负荷。

Description

含碳料块铁浴熔融还原炼铁脱硫方法
技术领域
本发明属于铁矿粉为主的高含铁物料的熔融还原技术领域,更具体地说,是涉及含碳料块铁浴熔融还原炼铁脱硫方法。
背景技术
熔融还原法作为一种非高炉炼铁法早在上世纪20年代就提出来了,但直至上世纪60年代才引起人们的关注,早期开发的“一步法’,即整个还原熔炼过程是在一个容器中完成。如,dored法、retored法、cip法,eketorp一vall法等。但这些方法由于资金或技术原因,都没有在生产中得到应用。上世纪70年代开始,瑞典、联邦德国和日本等国研究开发的熔融还原法基本上属于“二步法”。它是将还原过程分为固态下的预还原和熔融态的终还原两个阶段,且分别在两个紧密相连的反应容器中进行。
熔融还原是近代钢铁工业的前沿技术,是炼铁生产工艺的重大变革。熔融还原成为当代钢铁工业前沿技术的原因是:(1)熔融还原工艺不使用焦炭,不需建焦炉和化工设施,使用块矿和部分球团矿时可不建烧结设施,减少了较大污染源,为实现钢铁厂清洁生产、减少环境污染创造了条件;(2)焦煤资源少,且分布不均匀,炼铁不用焦煤有利于钢铁工业可持续性发展;(3)熔融还原炼铁流程短,投资少,具有降低生产成本的潜力。许多国家都在积极开发、研究熔融还原炼铁新工艺,典型工艺有DIOS、ROMELT、AISI和HIsmelt等。
含碳料块是由铁矿粉配加煤粉以及适量的粘结剂,经过充分混合后造球或者压球制成的一种生料团块。含碳料块中的硫主要与煤带入的硫量呈正比,其次是铁矿。铁矿中硫的存在方式单一,基本为硫铁矿;煤中硫的存在形态复杂,既有可燃硫(包括有机硫、硫化物硫及元素硫),又有不可燃硫(硫酸盐硫)。含碳料块还原过程中,硫的去向有两种:5~12%的硫以气态硫化物的形式随还原气体挥发出还原体系;88~95%的硫与金属化球团中的渣、铁结合。
近年来,随着含碳球团还原技术的发展,出现了将含碳球团与铁浴熔融还原结合起来的含碳球团—铁浴熔融还原炼铁工艺。如CN1087124A即给出了这样一个例子。
该方法给出的含碳球团在进入铁浴终还原时,固然有抗氧化能力强等优点,但因其在制作含碳球团和对含碳球团进行预还原时,未考虑使含碳球团在预还原过程中,残余硫含量应尽可能进入以脉石和氧化钙等碱性物质为主构成的”预成渣”(即以脉石和氧化钙等碱性物质为主构成的渣相),从而可为预还原球团在铁浴渣铁分离过程中尽可能使其残余硫量快速进入渣相创造条件。因此,终还原后的铁水中硫含量偏高。在这种只考虑发挥铁浴表面渣层脱硫作用的情况下,由于铁浴上方存在大于20%的二次燃烧,多数情况下不低于40%,使铁浴表面渣呈氧化性,因此,尽管渣的碱度已经较高,但铁水的硫含量依然偏高,如CN1087124A中,当渣碱度达1.5时,给出的铁水硫含量仍高达0.08%,大于炼钢过程对铁水原料硫含量小于0.05%的一般要求。为了解决此问题,现有技术采用了出铁后加入脱硫剂的方法降低铁水中含硫量,使其硫含量降到0.05%以下,为后续炼钢创造条件。但这样一来,一是引入脱硫剂使铁水生产成本提高,二是脱硫剂的加入使铁水温度降低,增加了能耗,提高了生产成本。
为了降低终还原后铁水的硫负荷,降低出铁后脱硫剂消耗,本发明旨在提供一种含碳料块铁浴熔融还原炼铁脱硫方法。
发明内容
本发明的目的是提供一种含碳料块铁浴熔融还原炼铁脱硫方法。
本发明的目的是这样实现的:
本发明的含碳料块铁浴熔融还原炼铁脱硫方法,包括含碳料块配料和成形、含碳料块预还原和铁浴熔融终还原,其中,所述的含碳料块配料中配入碱性物质,使四元碱度(CaO+MgO)/(SiO2+Al2O3)的数值在0.8~1.1之间;所述的含碳料块中单质碳原子摩尔数与可还原氧化物中原子氧的摩尔数之比为1~3;所述的含碳料块中全铁含量大于45%。
根据本发明所述的含碳料块铁浴熔融还原炼铁脱硫方法,其中较好地是,所述的含碳料块配料中配入碱性物质,使四元碱度(CaO+MgO)/(SiO2+Al2O3)的数值在0.85~0.95之间。
根据本发明所述的含碳料块铁浴熔融还原炼铁脱硫方法,其中较好地是,所述的碱性物质选用生石灰、石灰石、熟石灰、白云石的一种或一种以上的组合。
根据本发明所述的含碳料块铁浴熔融还原炼铁脱硫方法,其中较好地是,所述的含碳料块中全铁含量大于50%。
根据本发明所述的含碳料块铁浴熔融还原炼铁脱硫方法,其中较好地是,所述的含碳料块配料中原料包括高含铁物料、高含碳料粉和添加剂。
根据本发明所述的含碳料块铁浴熔融还原炼铁脱硫方法,其中较好地是,所述的高含铁物料选用铁矿粉、钢铁厂粉尘等。
根据本发明所述的含碳料块铁浴熔融还原炼铁脱硫方法,其中较好地是,所述的高含碳料粉选用煤粉、焦粉等。
根据本发明所述的含碳料块铁浴熔融还原炼铁脱硫方法,其中较好地是,所述的含碳料块还包括少量无机或有机粘结剂。
根据本发明所述的含碳料块铁浴熔融还原炼铁脱硫方法,其中较好地是,所述的粘结剂选用水玻璃、皂土、佩利多、糊精等。粘结剂加入量以满足成形后输送设备和预还原设备对成形料块的机械强度要求为准。
根据本发明所述的含碳料块铁浴熔融还原炼铁脱硫方法,其中较好地是,所述的含碳料块成形采用对辊、钢模、圆盘造球、圆筒造球等方法。
根据本发明所述的含碳料块铁浴熔融还原炼铁脱硫方法,其中较好地是,所述的含碳料块预还原工艺参数为:温度1200℃~1350℃下进行10~30分钟。本发明中,高温预还原须在不低于1200℃温度下进行10分钟以上。准确的还原温度确定应根据球团中含有的CaO、MgO、SiO2,、Al2O3等脉石成分(石灰石、熟石灰、白云石转换成相应的CaO和MgO)的半球熔化温度确定。
根据本发明所述的含碳料块铁浴熔融还原炼铁脱硫方法,其中较好地是,所述的含碳料块预还原中还原温度为半球熔化温度+20~100℃。
根据本发明所述的含碳料块铁浴熔融还原炼铁脱硫方法,其中更好地是,所述的含碳料块预还原中还原温度为半球熔化温度+40~50℃。
根据本发明所述的含碳料块铁浴熔融还原炼铁脱硫方法,其中较好地是,所述的铁浴熔融终还原中还原料块的金属化率大于70%,铁浴顶渣的四元碱度(CaO+MgO)/(SiO2+Al2O3)的数值不低于1.0。
本发明的特点和有益效果:
本发明采用含碳料块进行预还原+铁浴熔融终还原两步法,通过在含碳料块中配入适当量的碱性物质,如石灰、白云石等,充分利用预还原过程中的预成渣过程的特点,使含碳料块预还原后残硫量尽可能多地残留在预成渣中,从而在渣铁分离过程中能快速进入到铁浴顶渣中,从铁水中除掉较多的硫。
采用本发明所述的方法,铁浴熔融终还原后的铁水中的硫负荷,将较现有技术中含碳料块预还原--铁浴熔融终还原两段式炼铁工艺降低10%以上,有效降低了脱硫剂的消耗和能耗以及铁水处理的成本。
具体实施方式
下面更具体地说明本发明。
实施例中给出的两种碱性添加剂分别是生石灰和白云石,其中生石灰中CaO含量=83%;白云石中CaO+MgO=48%。
实施例1:
1、含碳料块配料和成形
生球团配比(wt):铁精矿粉(全铁65%,含硫0.05%)+1.62%生石灰=80%;无烟煤15%(含80%C,含硫0.5%);糊精5%。铁精矿粉的碱度为0.5,加入生石灰后,使混合料的四元碱度为0.9。
含碳料块采用对辊、钢模、圆盘造球、圆筒造球等方法制作成形。
2、含碳料块预还原
将上述制备的含碳料块在1250℃的温度下还原30分钟,预还原金属化率达到80%。
3、铁浴熔融终还原
将上述经过预还原的含碳料块在熔池内1500℃的温度下进行熔融终还原。终还原顶渣的碱度达1.3,每吨铁采用200公斤的顶渣。经检测,铁水中的硫含量为0.065%,比不加入生石灰的铁水(硫含量为0.08%)降低约19%。
实施例2:
1、含碳料块配料和成形
生球团配比(wt):铁精矿粉(全铁65%,含硫0.05%)+1.2%生石灰=80%;无烟煤15%(含80%C,含硫0.5%);糊精5%。铁精矿粉的碱度为0.5,加入生石灰后,使混合料的四元碱度为0.8。
含碳料块采用对辊、钢模、圆盘造球、圆筒造球等方法制作成形。
2、含碳料块预还原
将上述制备的含碳料块在1250℃的温度下还原30分钟,预还原金属化率达到80%。
3、铁浴熔融终还原
将上述经过预还原的含碳料块在熔池内1500℃的温度下进行熔融终还原。终还原顶渣的碱度达1.3,每吨铁采用200公斤的顶渣。经检测,铁水中的硫含量为0.07%,比不加入生石灰的铁水(硫含量为0.08%)降低约13%。
实施例3:
1、含碳料块配料和成形
生球团配比(wt):铁精矿粉(全铁65%,含硫0.05%)+2.41%生石灰=80%;无烟煤15%(含80%C,含硫0.5%);糊精5%。铁精矿粉的碱度为0.5,加入生石灰后,使配料的四元碱度为1.1。
含碳料块采用对辊、钢模、圆盘造球、圆筒造球等方法制作成形。
2、含碳料块预还原
将上述制备的含碳料块在1250℃的温度下还原30分钟,预还原金属化率达到80%。
3、铁浴熔融终还原
将上述经过预还原的含碳料块在熔池内1500℃的温度下进行熔融终还原。终还原顶渣的碱度达1.3,每吨铁采用200公斤的顶渣。经检测,铁水中的硫含量为0.068%,比不加入生石灰的铁水(硫含量为0.08%)降低15%。
实施例4:
1、含碳料块配料和成形
生球团配比(wt):铁精矿粉(全铁65%,含硫0.05%)+2.77%白云石=80%;无烟煤15%(含80%C,含硫0.5%);糊精5%。铁精矿粉的碱度为0.5,加入白云石后,使配料的四元碱度为0.9。
含碳料块采用对辊、钢模、圆盘造球、圆筒造球等方法制作成形。
2、含碳料块预还原
将上述制备的含碳料块在1250℃的温度下还原30分钟,预还原金属化率达到80%。
3、铁浴熔融终还原
将上述经过预还原的含碳料块在熔池内1500℃的温度下进行熔融终还原。终还原顶渣的碱度达1.3,每吨铁采用200公斤的顶渣。经检测,铁水中的硫含量为0.067%,比不加入白云石的铁水(硫含量为0.08%)降低约16%。
实施例5:
1、含碳料块配料和成形
生球团配比(wt):铁精矿粉(全铁65%,含硫0.05%)+2.08%白云石=80%;无烟煤15%(含80%C,含硫0.5%);糊精5%。铁精矿粉的碱度为0.5,加入白云石后,使配料的四元碱度为0.8。
含碳料块采用对辊、钢模、圆盘造球、圆筒造球等方法制作成形。
2、含碳料块预还原
将上述制备的含碳料块在1250℃的温度下还原30分钟,预还原金属化率达到80%。
3、铁浴熔融终还原
将上述经过预还原的含碳料块在熔池内1500℃的温度下进行熔融终还原。终还原顶渣的碱度达1.3,每吨铁采用200公斤的顶渣。经检测,铁水中的硫含量为0.073%,比不加入白云石的铁水(硫含量为0.08%)降低约9%。
实施例6:
1、含碳料块配料和成形
生球团配比(wt):铁精矿粉(全铁65%,含硫0.05%)+4.17%白云石=80%;无烟煤15%(含80%C,含硫0.5%);糊精5%。铁精矿粉的碱度为0.5,加入白云石后,使混合料的四元碱度为1.1。
含碳料块采用对辊、钢模、圆盘造球、圆筒造球等方法制作成形。
2、含碳料块预还原
将上述制备的含碳料块在1250℃的温度下还原30分钟,预还原金属化率达到80%。
3、铁浴熔融终还原
将上述经过预还原的含碳料块在熔池内1500℃的温度下进行熔融终还原。终还原顶渣的碱度达1.3,每吨铁采用200公斤的顶渣。经检测,铁水中的硫含量为0.07%,比不加入白云石的铁水(硫含量为0.08%)降低约13%。
实施例7:
1、含碳料块配料和成形
生球团配比(wt):铁精矿粉(全铁65%,含硫0.05%)+0.81%生石灰+1.38%白云石=80%;无烟煤15%(含80%C,含硫0.5%);糊精5%。铁精矿粉的碱度为0.5,加入生石灰、白云石后,使配料的四元碱度为0.9。
含碳料块采用对辊、钢模、圆盘造球、圆筒造球等方法制作成形。
2、含碳料块预还原
将上述制备的含碳料块在1250℃的温度下还原30分钟,预还原金属化率达到80%。
3、铁浴熔融终还原
将上述经过预还原的含碳料块在熔池内1500℃的温度下进行熔融终还原。终还原顶渣的碱度达1.3,每吨铁采用200公斤的顶渣。经检测,铁水中的硫含量为0.068%,比不加入生石灰和白云石的铁水(硫含量为0.08%)降低约15%。
实施例8:
1、含碳料块配料和成形
生球团配比(wt):铁精矿粉(全铁65%,含硫0.05%)+0.6%生石灰+1.04%白云石=80%;无烟煤15%(含80%C,含硫0.5%);糊精5%。铁精矿粉的碱度为0.5,加入生石灰、白云石后,使配料的四元碱度为0.8。
含碳料块采用对辊、钢模、圆盘造球、圆筒造球等方法制作成形。
2、含碳料块预还原
将上述制备的含碳料块在1250℃的温度下还原30分钟,预还原金属化率达到80%。
3、铁浴熔融终还原
将上述经过预还原的含碳料块在熔池内1500℃的温度下进行熔融终还原。终还原顶渣的碱度达1.3,每吨铁采用200公斤的顶渣。经检测,铁水中的硫含量为0.071%,比不加入生石灰和白云石的铁水(硫含量为0.08%)降低约11%。
实施例9:
1、含碳料块配料和成形
生球团配比(wt):铁精矿粉(全铁65%,含硫0.05%)+1.2%石灰石+2.09%白云石=80%;无烟煤15%(含80%C,含硫0.5%);糊精5%。指铁精矿粉的碱度为0.5,加入石灰石、白云石后,使混合料的四元碱度为1.1。
含碳料块采用对辊、钢模、圆盘造球、圆筒造球等方法制作成形。
2、含碳料块预还原
将上述制备的含碳料块在1250℃的温度下还原30分钟,预还原金属化率达到80%。
3、铁浴熔融终还原
将上述经过预还原的含碳料块在熔池内1500℃的温度下进行熔融终还原。终还原顶渣的碱度达1.3,每吨铁采用200公斤的顶渣。经检测,铁水中的硫含量为0.071%,比不加入石灰石和白云石的铁水(硫含量为0.08%)降低约11%。
采用本发明方法,经过终还原的铁水中硫含量比现有技术一般降低10%以上,大大降低脱硫能耗和铁水处理成本。

Claims (14)

1、含碳料块铁浴熔融还原炼铁脱硫方法,包括含碳料块配料和成形、含碳料块预还原和铁浴熔融终还原,其特征在于,所述的含碳料块配料中配入碱性物质,四元碱度(CaO+MgO)/(SiO2+Al2O3)的数值在0.8~1.1之间;所述的含碳料块中单质碳原子摩尔数与可还原氧化物中原子氧的摩尔数之比为1~3;所述的含碳料块中全铁含量大于45%。
2、如权利要求1所述的含碳料块铁浴熔融还原炼铁脱硫方法,其特征在于,所述的含碳料块配料中配入碱性物质,四元碱度(CaO+MgO)/(SiO2+Al2O3)的数值在0.85~0.95之间。
3、如权利要求1所述的含碳料块铁浴熔融还原炼铁脱硫方法,其特征在于,所述的碱性物质选用生石灰、石灰石、熟石灰、白云石的一种或一种以上的组合。
4、如权利要求1所述的含碳料块铁浴熔融还原炼铁脱硫方法,其特征在于,所述的含碳料块中全铁含量大于50%。
5、如权利要求1所述的含碳料块铁浴熔融还原炼铁脱硫方法,其特征在于,所述的含碳料块配料中原料包括高含铁物料、高含碳料粉和添加剂。
6、如权利要求1或5所述的含碳料块铁浴熔融还原炼铁脱硫方法,其特征在于,所述的高含铁物料选用铁矿粉、钢铁厂粉尘。
7、如权利要求1或5所述的含碳料块铁浴熔融还原炼铁脱硫方法,其特征在于,所述的高含碳料粉选用煤粉、焦粉。
8、如权利要求1所述的含碳料块铁浴熔融还原炼铁脱硫方法,其特征在于,所述的含碳料块还包括少量无机或有机粘结剂。
9、如权利要求1或8所述的含碳料块铁浴熔融还原炼铁脱硫方法,其特征在于,所述的粘结剂选用水玻璃、皂土、佩利多、糊精。
10、如权利要求1所述的含碳料块铁浴熔融还原炼铁脱硫方法,其特征在于,所述的含碳料块成形采用对辊、钢模、圆盘造球、圆筒造球方法。
11、如权利要求1所述的含碳料块铁浴熔融还原炼铁脱硫方法,其特征在于,所述的含碳料块预还原工艺参数为:预还原温度1200℃~1350℃下进行10~30分钟。
12、如权利要求1所述的含碳料块铁浴熔融还原炼铁脱硫方法,其特征在于,所述的含碳料块预还原中还原温度为半球熔化温度+20~100℃。
13、如权利要求1所述的含碳料块铁浴熔融还原炼铁脱硫方法,其特征在于,所述的含碳料块预还原中还原温度为半球熔化温度+40~50℃。
14、如权利要求1所述的含碳料块铁浴熔融还原炼铁脱硫方法,其特征在于,所述的铁浴熔融终还原中还原料块的金属化率大于70%,铁浴顶渣的四元碱度(CaO+MgO)/(SiO2+Al2O3)的数值不低于1.0。
CN2007100939749A 2007-07-23 2007-07-23 含碳料块铁浴熔融还原炼铁脱硫方法 Active CN101353711B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007100939749A CN101353711B (zh) 2007-07-23 2007-07-23 含碳料块铁浴熔融还原炼铁脱硫方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007100939749A CN101353711B (zh) 2007-07-23 2007-07-23 含碳料块铁浴熔融还原炼铁脱硫方法

Publications (2)

Publication Number Publication Date
CN101353711A true CN101353711A (zh) 2009-01-28
CN101353711B CN101353711B (zh) 2011-01-19

Family

ID=40306726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100939749A Active CN101353711B (zh) 2007-07-23 2007-07-23 含碳料块铁浴熔融还原炼铁脱硫方法

Country Status (1)

Country Link
CN (1) CN101353711B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104278125A (zh) * 2014-10-31 2015-01-14 中南大学 一种含铁渣料熔池熔炼熔体还原制铁的方法
CN104878147A (zh) * 2015-06-04 2015-09-02 中冶南方工程技术有限公司 熔融还原炼铁方法
CN105969925A (zh) * 2016-07-14 2016-09-28 北京科技大学 一种可调控生铁渗碳量的冶炼工艺
CN111286575A (zh) * 2020-04-23 2020-06-16 郭瑛 一种还原炼铁复合剂及其制备方法和应用
WO2022042027A1 (zh) * 2020-08-27 2022-03-03 山东墨龙石油机械股份有限公司 适用于铁浴熔融还原中泡沫渣炉况的控制方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1087124A (zh) * 1993-11-16 1994-05-25 冶金工业部钢铁研究总院 含碳球团-铁浴熔融还原炼铁法
CN1073630C (zh) * 1999-10-27 2001-10-24 冶金工业部钢铁研究总院 煤氧熔融还原炼铁方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104278125A (zh) * 2014-10-31 2015-01-14 中南大学 一种含铁渣料熔池熔炼熔体还原制铁的方法
CN104878147A (zh) * 2015-06-04 2015-09-02 中冶南方工程技术有限公司 熔融还原炼铁方法
CN105969925A (zh) * 2016-07-14 2016-09-28 北京科技大学 一种可调控生铁渗碳量的冶炼工艺
CN105969925B (zh) * 2016-07-14 2019-01-08 北京科技大学 一种可调控生铁渗碳量的冶炼工艺
CN111286575A (zh) * 2020-04-23 2020-06-16 郭瑛 一种还原炼铁复合剂及其制备方法和应用
WO2022042027A1 (zh) * 2020-08-27 2022-03-03 山东墨龙石油机械股份有限公司 适用于铁浴熔融还原中泡沫渣炉况的控制方法及装置

Also Published As

Publication number Publication date
CN101353711B (zh) 2011-01-19

Similar Documents

Publication Publication Date Title
CN100432240C (zh) 电炉冶金复合剂
CN102382927B (zh) 一种铁水冶炼方法及含钒铁水的冶炼方法
CN101353711B (zh) 含碳料块铁浴熔融还原炼铁脱硫方法
CN102162019A (zh) 一种含钒铁水多段组合式预处理的方法
CN101177722A (zh) Al-Ca质转炉渣还原改质剂
CN103498016A (zh) 以脱碳炉炉渣为原料制备的脱磷剂及铁水脱磷方法
CN105506226A (zh) 一种在铁水罐内进行铁水预脱硅、预脱碳和预脱磷的方法
CN103060522A (zh) 一种适用于中高磷半钢脱磷的造渣剂及制备方法
CN101845536A (zh) 基于lf炉精炼废渣的钢水复合渣洗剂及其制备方法
CN104060016B (zh) 用脱硫渣、钢渣替代部分废钢的转炉冶炼耐候钢的方法
CN103509940B (zh) 一种用于制造低硫粒铁的含碳球团
CN103555886A (zh) 一种含钒铁水冶炼超低硫钢的方法
CN110643760B (zh) 一种超高Al2O3炉渣的高炉冶炼方法
CN101020943A (zh) 氧化镍矿冶炼镍铬生铁工艺的降磷方法
CN101818229A (zh) 一种发泡脱磷球团及其制备方法
CN114657326B (zh) 一种脱磷剂及其应用
CN1041328C (zh) 一种可以直接炼钢的铁矿石冷固球团
CN113957185B (zh) 一种高炉冶炼钒钛磁铁矿的炉料配方
CN111154934A (zh) 一种调整高炉炉渣MgO的炉料结构配比
CN105132630A (zh) 一种用于电炉、转炉的复合渣洗剂及其制备方法
CN110042227B (zh) 烧结矿及其制备方法
CN113278765A (zh) 一种转炉用脱硫剂以及脱硫方法
CN1271221C (zh) 采用低温还原铁矿粉生产海绵铁的方法
CN107227402A (zh) 一种水淬镍渣复配铜尾渣综合利用的方法
CN103667583B (zh) 一种炼钢用造渣剂的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant