CN101349614B - 一种空调器的多应力强化仿真试验方法 - Google Patents

一种空调器的多应力强化仿真试验方法 Download PDF

Info

Publication number
CN101349614B
CN101349614B CN2008100300797A CN200810030079A CN101349614B CN 101349614 B CN101349614 B CN 101349614B CN 2008100300797 A CN2008100300797 A CN 2008100300797A CN 200810030079 A CN200810030079 A CN 200810030079A CN 101349614 B CN101349614 B CN 101349614B
Authority
CN
China
Prior art keywords
air conditioner
time
voltage
test method
simulation test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008100300797A
Other languages
English (en)
Other versions
CN101349614A (zh
Inventor
冯利峰
闫志恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Kelon Air Conditioner Co Ltd
Hisense Home Appliances Group Co Ltd
Original Assignee
Guangdong Kelon Air Conditioner Co Ltd
Hisense Kelon Electrical Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Kelon Air Conditioner Co Ltd, Hisense Kelon Electrical Holdings Co Ltd filed Critical Guangdong Kelon Air Conditioner Co Ltd
Priority to CN2008100300797A priority Critical patent/CN101349614B/zh
Publication of CN101349614A publication Critical patent/CN101349614A/zh
Application granted granted Critical
Publication of CN101349614B publication Critical patent/CN101349614B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

本发明属于空调器可靠性测试技术领域,涉及一种空调器的多应力强化仿真试验方法,空调器室内、外机置于高温高、低电压制冷情况及常温高、低压制热情况下,通过提高其工作负荷及不断的开、停动作对空调器进行仿真试验,在根据压缩机的各种运转情况来判断空调器的设计是否满足要求。本发明的方法可以很快捷的发现空调器设计中是否存在潜在的设计缺陷。

Description

一种空调器的多应力强化仿真试验方法
技术领域
本发明属于空调器可靠性测试技术领域,特别涉及一种空调器的多应力强化仿真试验方法。
背景技术
对于定频空调器,在实际的使用环境状况下,刚开机时由于房间温度较高,压缩机能持续运行一段时间,室内温度达到设定温度后,对于定频机压缩机和室外风扇即工作于较频繁地开、停之中。变频机处于低频运行,因此,不断的起动、停止是定频空调器的主要工作形式。低频运行是变频机的主要工作形式。
而空调器在起、停过程中发生故障的几率却远远大于其连续运行时的故障发生率。
压缩机、室外风扇电机在起、停过程中产生的尖峰电流、浪泳电流、脉冲电压,容易激发电器部件的应力强度型失效,尤其是容易激发控制器单片机软件的口令型失效。口令型失效的一个典型例子是软件中的“臭虫”,它能引起空调器死机,程序错乱等。
由风扇电机自然机械特性可知,空调器每次起、停过程中都有较大的峰值电磁转矩,风扇有一个最大值的加速度,由此,而引起振动、晃动,冲击能够激发风扇等的损伤积累型失效。
压缩机与风扇有类似的自然机械特征,启动转矩更大,转矩峰值可达到全负荷转矩的140%~200%,由此而引起的压机管路系统压力变化率可达90%~150%,整个管路的振动、振幅、机械应力冲击强度可达到正常运转时的1倍~2倍。因此,空调器在起、停过程中最容易激发系统裂漏等应力强度型失效。
因此,空调器整机运行是否可靠,在很大程度上取决于起、停过程中
空调器的可靠度,起、停试验对于空调器的可靠性试验就显得非常重要。
室内、外风扇电机以及压缩机的电磁转矩: M = C SR R 2 + ( SX 0 ) 2 U 2
(S-转差率;X0-线圈漏抗;R-绕组电阻;C-常数;U-是电压;M-电磁转矩)
由上式可以看出:电磁转矩M与电压的平方成正比,电压的大小严重的影响到电机及压缩机的运转性能,同时,电压升高电机转速加快,风扇转速也加快,风向板摆动加快,损伤累积型失效加快,压机系统的容差型失效加快。
电压直接影响到运行电容、交流接触器、继电器、四通阀、功率模块、变压器等电子部件可靠运行。在高电压下起、停,脉冲电流、尖峰电压等幅度及频度都会增大,能达到快速激发应力强度型失效及口令型失效的目的,大大缩短试验的时间。
当空调器的供电电压较低时,压缩机要维持其输出功率,就必须增大电流。较大的压缩机运行电流,引起压缩机线包温度升高,线包线阻增大。而供电电压较低的情况下,压机转矩降低,这时空调器难于起动,所以,低电压运行可以加速暴露压缩机在恶劣使用条件下的潜在故障。
因此,空调器的供电电压直接影响到空调器的可靠性试验效果。
电器部件的寿命与温度的关系符合Arrhenius方程:t=AeΔE/(KT)。A为常数,ΔE为失效机构的激活能,是从正常状态移向退化状态的能量,T为热力学温度,K为波尔兹曼常数。因此,系统温度及环境温度越高其使用寿命越短。
空调器制冷系统及电器部件的寿命与压力、载荷和电压的关系符合逆幂率:t=1/dpc(d为常数,c为与温度有关的常数,p为与压力、载荷和电压)。在较高的系统及环境温度下,压缩机及管路系统内压力较常温时高很多,压缩机的载荷也大很多。
从机械振动方面来看,在高温环境下系统本身压力较高,起、停时由突变的力矩变化产生最大振幅的振动,系统管路受到最大强度的机械应力。
压缩机的寿命与其供油有着直接的关系。压缩机起动过程供油。一是油面高度;其油面高度随时间变化而变化,影响着润滑的效果。油面的波动情况也至关重要。第二是油的粘性。由于制冷剂在润滑油中的溶解,以及电机与润滑油间的热交换,使得油的粘性不断变化。压缩机润滑油中制冷剂溶解量与压力及温度有关。一般的对于低压腔,溶解为冷冻机油重量的2%~5%;对于高压腔,溶解量为冷冻机油重量的10%~15%。系统压力越高(温度越高),压机油在冷媒中的溶解量越多,且蒸发器中的冷媒量也越多。
压缩机较频繁的起、停会使吐油量增加。因此,在高温环境下进行高温起、停能快速有效的激发损伤积累型失效及应力强度型失效。
对于直流变频空调器,压缩机是通过准确确定转子的位置,对定子三相线圈实施适时相序变换实现的。因此转子位置信号的获取及判断,对电机驱动控制而言至关重要。如果电机运转时发生“丢失转子位置”问题,电机将会发生失步故障,将造成转子磁石的退磁,压缩机性能低下,严重的将直接导致压缩机堵转。
转子位置信号的获取及判断目前多采用反电势检测法中的端电压法。无位置传感器无刷直流电机的起动,是直流变频空调器控制系统的难点之一。电机在静止或转速较低时,由于反电动势为零或较小,无法通过检测反电动势的过零点来判定转子的位置,均需采用一定的起动方法,使电机能够运转到可以稳定获得反电势过零点的速度。
目前,变频空调器中多采用开环起动技术进行起动,它通常采用“三段式”起动,即首先对转子进行定位,然后采用外同步方式试电机逐步加速至预定速度,当可以稳定得到反电动势过零信号时,切换到自同步方式进行。在外同步方式运行时,若施加的电源电压不同,即使转速保持恒定,反电动势也会发生变化,其滤波后的波形也不同,检出过零点的位置回应为这种差异而偏移,如果偏移过大,会导致外同步向内同步切换失败,电压较高或较低时都会产生偏差。
对于变频机压缩机的频率越低,蒸发器中的制冷剂越多,冷凝器中的制冷剂越少,对压力回油越不利。变频机每起、停一次,都要经历一个升降频过程。
因此,直流变频空调器,在高系统压力(高环境温度)下,高、低电压下起动性能的好坏,大大地影响着其使用可靠性。
综上所述,空调器在高温、高、低电压下的运转性能,直接反映了空调器性能设计的可靠性,直接影响到空调器的使用可靠性。而这方面的性能设计的可靠性,只能通过试验验证的方式。然而,目前还没有比较有效的试验方法。
发明内容
针对现有技术的缺点,本发明的目的是提供一种高效的空调器的多应力强化仿真试验方法,通过该方法可以很快捷的发现空调器设计中是否存在潜在的设计缺陷。
为实现上述目的,本发明的技术方案为:一种空调器的多应力强化仿真试验方法,当在制冷工况试验时,执行步骤a,当在制热工况试验时,执行步骤b;
a.制冷工况启动,其包括以下步骤:
1)将空调器室内、外机置于一环境温度A1中,并提高室内、外机的工作负荷;
2)将空调器的供电电压调至一电压U1;
3)将空调器设定温度调至最低,室内机以最低风速开机起动运行,并使空调器处于每次停机一小段时间T1、运行一小段时间T2的工作状态,并连续试验一段时间T3;
4)将空调器的供电电压转调至另一电压U2;
5)空调器设定温度调至最低,室内机以最低风速开机起动运行,并使空调器处于每次停机一小段时间T4、运行一小段时间T5的工作状态,并连续试验一段时间T6,执行步骤c;
b.制热工况启动,其包括以下步骤:
1)将空调器室内置于一环境温度A2中,并提高室内、外机的工作负荷;
2)将空调器的供电电压调至一电压U3;
3)将空调器设定温度调至最高,室内机以最低风速开机起动运行,并使空调器处于每次停机一小段时间T7、运行一小段时间T8的工作状态,并连续试验一段时间T9;
4)将空调器的供电电压转调至另一电压U4;
5)将空调器设定温度调至最高,室内机以最低风速开机起动运行,并使空调器处于每次停机一小段时间T10、运行一小段时间T11的工作状态,并连续试验一段时间T12,执行步骤c;
c.试验结果判断,其包括以下步骤:
1)压缩机起动一时间T13后,根据噪音、振动及电流脉冲的情况判断设计是否满足要求;
2)根据压缩机油面的情况判断设计是否满足要求;
3)根据压缩机起动的电流波形的情况判断设计是否满足要求;
4)根据空调器是否出现死机及控温失效判断设计是否满足要求;
5)试验过程中和试验结束后,根据其中任何元器件是否失效判断设计是否满足要求。
在步骤a中,环境温度A1为20℃~55℃。
在步骤a中,室内、外机的工作负荷是通过将空调器室外机进风口遮蔽60%~100%、将室内机过滤网部位遮蔽100%的方法提高的。
在步骤a中,电压U1及电压U2分别为空调器供电的额定电压的85%及115%。
在步骤a中,时间T1、T4均为3分钟,时间T2、T5均为5~15分钟,时间T3、T6均为48~200小时。
在步骤b中,环境温度A2为-15℃~30℃。
在步骤b中,室内、外机的工作负荷是通过将空调器室外机进风口遮蔽100%、将室内机过滤网部位遮蔽60%~100%的方法提高的。
在步骤b中,电压U3及电压U4分别为空调器供电的额定电压的85%及115%。
在步骤b中,时间T7、T10均为3分钟,时间T8、T11均为5~15分钟,时间T9、T12均为48~200小时。
在步骤c中,时间T13为30秒。
与现有技术相比,本发明具有如下优点:
1)本发明所述试验方法,由于引入了温度、电压、起停冲击三种较大的加速应力,可以大大的减少试验数量,缩短试验时间,降低试验成本;
2)本发明所述试验方法,室内机模仿用户的实际使用状态进行控温运行,而又大大缩短了实际的使用过程,起到了加速寿命试验的目的;
3)本发明所述试验方法,可以替代一般的起/停试验,无须专门的起停试验设备,大大地节省了试验的物力和人力投入;
4)本发明所述试验方法,可以完全替代高负荷试验及其他起停试验,来进行压缩机供油合理性的确认试验;
5)对于本发明所述试验方法,无需建高温库体,不受试验数量、场地的限制,成本低,易进行;
6)本发明所述试验方法,室内、外机进风口遮蔽后,换热面积大大缩小,负荷增大,进而使试验的加速因子提高;
7)本发明所述的试验方法,结合了高、低电压进行起停试验,能够更加全面的暴露直流变频空调器潜在的“失步”故障问题,大大提高空调器在各种可能出现边界条件下使用可靠性。
具体实施方式
本发明提供了一种空调器的多应力强化仿真试验方法,当在制冷工况试验时,执行步骤a,当在制热工况试验时,执行步骤b;
a.制冷工况启动,进行高温高、低电压制冷仿真试验,其包括以下步骤:
1)将空调器室内、外机置于一环境温度A1中,并提高室内、外机的工作负荷;
2)将空调器的供电电压调至一电压U1;
3)将空调器设定温度调至最低,室内机以最低风速开机起动运行,并使空调器处于每次停机一小段时间T1、运行一小段时间T2的工作状态,并连续试验一段时间T3;这里的最低温度指生产厂家设定的最低温度,最低风速是指生产厂家设定的空调器室内机的最低风速,以下所指的最低温度及最低风速都与此相同。
4)将空调器的供电电压转调至另一电压U2;
5)空调器设定温度调至最低,室内机以最低风速开机起动运行,并使空调器处于每次停机一小段时间T4、运行一小段时间T5的工作状态,并连续试验一段时间T6,执行步骤c;
b.制热工况启动,进行常温高、低电压制热仿真试验,其包括以下步骤:
1)将空调器室内置于一环境温度A2中,并提高室内、外机的工作负荷;
2)将空调器的供电电压调至一电压U3;
3)将空调器设定温度调至最高,室内机以最低风速开机起动运行,并使空调器处于每次停机一小段时间T7、运行一小段时间T8的工作状态,并连续试验一段时间T9;这里的最高温度指生产厂家设定的最高温度,以下所指的最高温度都与此相同。
4)将空调器的供电电压转调至另一电压U4;
5)将空调器设定温度调至最高,室内机以最低风速开机起动运行,并使空调器处于每次停机一小段时间T10、运行一小段时间T11的工作状态,并连续试验一段时间T12,执行步骤c;
c.试验结果判断,其包括以下步骤:
1)压缩机起动一时间T13后,根据噪音、振动及电流脉冲的情况判断设计是否满足要求;
2)根据压缩机油面的情况判断设计是否满足要求;
3)根据压缩机起动的电流波形的情况判断设计是否满足要求,应能在30秒内正常起动运行,瞬间起动电流小于5倍的额定电流;
4)根据空调器是否出现死机及控温失效判断设计是否满足要求;
5)试验过程中和试验结束后,根据其中任何元器件是否失效判断设计是否满足要求。
在步骤a中,环境温度A1为20℃~55℃。
在步骤a中,室内、外机的工作负荷是通过将空调器室外机进风口遮蔽60%~100%、将室内机过滤网部位遮蔽100%的方法提高的。其中,室外机(或室外侧)进风口遮蔽的最佳比例为80%,室内机用2倍于室内机(或室内侧)所料包装袋包起来,如果不能连续运行5分钟的话,适当放开。
在步骤a中,电压U1及电压U2分别为空调器供电的额定电压的85%及115%。
在步骤a中,时间T1、T4均为3分钟,时间T2、T5均为5~15分钟,时间T3、T6均为48~200小时。其中,时间T3、T6最佳为100小时。
在步骤b中,环境温度A2为-15℃~30℃。
在步骤b中,室内、外机的工作负荷是通过将空调器室外机进风口遮蔽100%、将室内机过滤网部位遮蔽60%~100%的方法提高的。空调器室外机(或室外侧)进风口遮蔽的最佳比例为100%,室内机(或室内侧)用2倍于室内机(或室内侧)所料包装袋包起来,如果不能连续运行5分钟的话,适当放开。
在步骤b中,电压U3及电压U4分别为空调器供电的额定电压的85%及115%。
在步骤b中,时间T7、T10均为3分钟,时间T8、T11均为5~15分钟,时间T9、T12均为48~200小时。时间T9、T12最佳为100小时。
在步骤c中,时间T13为30秒。

Claims (10)

1.一种空调器的多应力强化仿真试验方法,其特征在于:当在制冷工况试验时,执行步骤a,当在制热工况试验时,执行步骤b;
a. 制冷工况启动,其包括以下步骤:
1)将空调器室内、外机置于一环境温度A1中,并提高室内、外机的工作负荷;
2)将空调器的供电电压调至一电压U1;
3)将空调器设定温度调至最低,以最低风速开机起动运行,并使空调器处于每次停机一小段时间T1、运行一小段时间T2的工作状态,并连续试验一段时间T3;
4)将空调器的供电电压转调至另一电压U2;
5)空调器设定温度调至最低,以最低风速开机起动运行,并使空调器处于每次停机一小段时间T4、运行一小段时间T5的工作状态,并连续试验一段时间T6,执行步骤c;
b. 制热工况启动,其包括以下步骤:
1)将空调器室内置于一环境温度A2中,并提高室内、外机的工作负荷;
2)将空调器的供电电压调至一电压U3;
3)将空调器设定温度调至最高,室内机以最低风速开机起动运行,并使空调器处于每次停机一小段时间T7、运行一小段时间T8的工作状态,并连续试验一段时间T9;
4)将空调器的供电电压转调至另一电压U4;
5)将空调器设定温度调至最高,室内机以最低风速开机起动运行,并使空调器处于每次停机一小段时间T10、运行一小段时间T11的工作状态,并连续试验一段时间T12,执行步骤c;
c. 试验结果判断,其包括以下步骤:
1)压缩机起动一时间T13后,根据噪音、振动及电流脉冲的情况判断设计是否满足要求;
2)根据压缩机油面的情况判断设计是否满足要求;
3)根据压缩机起动的电流波形的情况判断设计是否满足要求;
4)根据空调器是否出现死机及控温失效判断设计是否满足要求;
5)试验过程中和试验结束后,根据其中任何元器件是否失效判断设计是否满足要求。
2.根据权利要求1所述的空调器的多应力强化仿真试验方法,其特征在于:在步骤a中,环境温度A1为20℃~55℃。
3.根据权利要求1所述的空调器的多应力强化仿真试验方法,其特征在于:在步骤a中,室内、外机的工作负荷的提高是通过将空调器室外机进风口遮蔽60%~100%、将室内机过滤网部位遮蔽100%的方法而实现。
4.根据权利要求1所述的空调器的多应力强化仿真试验方法,其特征在于:在步骤a中,电压U1及电压U2分别为空调器供电的额定电压的85%及115%。
5.根据权利要求1所述的空调器的多应力强化仿真试验方法,其特征在于:在步骤a中,时间T1、T4均为3分钟,时间T2、T5均为5~15分钟,时间T3、T6均为48~200小时。
6.根据权利要求1所述的空调器的多应力强化仿真试验方法,其特征在于:在步骤b中,环境温度A2为-15℃~30℃。
7.根据权利要求1所述的空调器的多应力强化仿真试验方法,其特征在于:在步骤b中,室内、外机的工作负荷的提高是通过将空调器室外机进风口遮蔽100%、将室内机过滤网部位遮蔽60%~100%的方法而实现。
8.根据权利要求1所述的空调器的多应力强化仿真试验方法,其特征在于:在步骤b中,电压U3及电压U4分别为空调器供电的额定电压的85%及115%。
9.根据权利要求1所述的空调器的多应力强化仿真试验方法,其特征在于:在步骤b中,时间T7、T10均为3分钟,时间T8、T11均为5~15分钟,时间T9、T12均为48~200小时。
10.根据权利要求1所述的空调器的多应力强化仿真试验方法,其特征在于:在步骤c中,时间T13为30秒。
CN2008100300797A 2008-08-08 2008-08-08 一种空调器的多应力强化仿真试验方法 Expired - Fee Related CN101349614B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100300797A CN101349614B (zh) 2008-08-08 2008-08-08 一种空调器的多应力强化仿真试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100300797A CN101349614B (zh) 2008-08-08 2008-08-08 一种空调器的多应力强化仿真试验方法

Publications (2)

Publication Number Publication Date
CN101349614A CN101349614A (zh) 2009-01-21
CN101349614B true CN101349614B (zh) 2011-03-30

Family

ID=40268486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100300797A Expired - Fee Related CN101349614B (zh) 2008-08-08 2008-08-08 一种空调器的多应力强化仿真试验方法

Country Status (1)

Country Link
CN (1) CN101349614B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104655179B (zh) * 2013-11-21 2017-11-14 珠海格力电器股份有限公司 应力应变测试方法、装置及系统
CN106152389B (zh) * 2015-04-22 2019-04-16 Tcl空调器(中山)有限公司 空调器控制方法、装置及系统
CN107423477B (zh) * 2017-05-11 2019-09-17 珠海格力电器股份有限公司 空调压缩机仿真方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414360A (zh) * 2001-10-23 2003-04-30 广东科龙电器股份有限公司 空调器试验方法
CN1414348A (zh) * 2001-10-23 2003-04-30 广东科龙电器股份有限公司 缩短空调器可靠性试验时间的方法
CN1414359A (zh) * 2001-10-23 2003-04-30 广东科龙电器股份有限公司 缩短冷暖空调器可靠性试验时间的方法
CN1415912A (zh) * 2002-12-03 2003-05-07 广东科龙电器股份有限公司 空调器的高温、高电压启/停试验方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414360A (zh) * 2001-10-23 2003-04-30 广东科龙电器股份有限公司 空调器试验方法
CN1414348A (zh) * 2001-10-23 2003-04-30 广东科龙电器股份有限公司 缩短空调器可靠性试验时间的方法
CN1414359A (zh) * 2001-10-23 2003-04-30 广东科龙电器股份有限公司 缩短冷暖空调器可靠性试验时间的方法
CN1415912A (zh) * 2002-12-03 2003-05-07 广东科龙电器股份有限公司 空调器的高温、高电压启/停试验方法

Also Published As

Publication number Publication date
CN101349614A (zh) 2009-01-21

Similar Documents

Publication Publication Date Title
CN106500241B (zh) 空调器的停机控制方法及装置和空调器
CN1135337C (zh) 空调器
CN202883418U (zh) 用于空调室外风机的故障检测装置
CN101876474B (zh) 空调器缺少制冷剂的自动检测方法
CN100366902C (zh) 电动压缩机的驱动装置
US20170250629A1 (en) Drive control method for electronic expansion valve
CN101349614B (zh) 一种空调器的多应力强化仿真试验方法
CN106575930A (zh) 用于制动压缩机的方法及制冷器具、空调器具或热泵的压缩机以及具有所述压缩机的制冷器具、空调器具或热泵
CN102062458A (zh) 空调压缩机故障判断和控制停机的方法
CN109424547B (zh) 一种油温加热带控制方法及空调器
CN101726135A (zh) 具有两种工作模式的空调系统及其控制方法
CN107248724B (zh) 一种空调压缩机运行时电源缺相检测方法
CN111536666B (zh) 一种空调系统
CN111059037B (zh) 压缩机控制方法、装置、设备、压缩机系统及冰箱
CN103335376B (zh) 空调系统控制方法
CN100397779C (zh) 电动机的节能服务的提供方法及冷冻空调装置
CN101319968B (zh) 一种空调器冷媒浸透起动的试验方法
CN116255710A (zh) 一种空调器自检方法
JP2010203745A (ja) 空気調和装置
CN106438317B (zh) 一种空调压缩机控制电路、空调压缩机控制方法及空调器
CN207249004U (zh) 一种用于电磁阀中的步进电机的缺相检测装置
CN1296690C (zh) 缩短冷暖空调器可靠性试验时间的方法
CN1179163C (zh) 空调器的高温、高电压启/停试验方法
EP3288176B1 (en) Motor drive device and refrigerator employing same
CN101943510A (zh) 带冷藏室停机功能的电子化霜系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110330

CF01 Termination of patent right due to non-payment of annual fee