CN101319968B - 一种空调器冷媒浸透起动的试验方法 - Google Patents

一种空调器冷媒浸透起动的试验方法 Download PDF

Info

Publication number
CN101319968B
CN101319968B CN2008100292470A CN200810029247A CN101319968B CN 101319968 B CN101319968 B CN 101319968B CN 2008100292470 A CN2008100292470 A CN 2008100292470A CN 200810029247 A CN200810029247 A CN 200810029247A CN 101319968 B CN101319968 B CN 101319968B
Authority
CN
China
Prior art keywords
air conditioner
temperature
environment temperature
time
constant environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008100292470A
Other languages
English (en)
Other versions
CN101319968A (zh
Inventor
冯利峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisense Home Appliances Group Co Ltd
Original Assignee
Hisense Kelon Electrical Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisense Kelon Electrical Holdings Co Ltd filed Critical Hisense Kelon Electrical Holdings Co Ltd
Priority to CN2008100292470A priority Critical patent/CN101319968B/zh
Publication of CN101319968A publication Critical patent/CN101319968A/zh
Application granted granted Critical
Publication of CN101319968B publication Critical patent/CN101319968B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

本发明属于空调器可靠性技术领域,涉及一种空调器冷媒浸透起动的试验方法,其在制热及制冷工况下,将空调器室内机及室外机分别置于不同恒定环境温度中,并放置一定时间,使空调器的所有部件、制冷剂完全浸透到与环境温度相同,后再对空调器室外机的环境温度进行升温,再放置一定时间,当冷凝器中部温度与压缩机底部温度之差达到最大值后,空调器低压且高温启动,根据噪音、振动及电流脉冲的情况判断设计是否满足要求。本发明所采用的试验方法温度范围宽、简单易行、试验时间短、成本低,可以很快捷的发现空调器设计中是否存在因冷媒沉积而引起的启动故障。

Description

一种空调器冷媒浸透起动的试验方法
技术领域
本发明属于空调器可靠性技术领域,特别涉及一种空调器冷媒浸透起动的试验方法。
背景技术
制冷压缩机的起动性能是其主要性能指标之一,它指的是从压缩机转动开始到不断加速直到转速升到额定值进入稳定运行状况这样一个复杂的过程。启动过程一般发生在很短的时间内,而且,启动转矩很大。压缩机一般在以下三种情况下较难起动:一是环境温度较高,空调器系统压力很高、而供电电压又较低的情况下,负载很大,而压缩机转矩却又降低,这时空调器难于起动;其二是压缩机瞬间断电,系统压差比较大的情况下,难于起动。对于这种情况,一般空调器都有3min延时,很容易解决。第三也就是浸透起动,压缩机长时间停机后再次启动,尤其是室外侧温度低于室内侧温度停机较长时间后,室外温度又升高一段时间时,回液液击引起的难于起动。
压缩机长时间停机后再次启动的负载转矩主要有:1)摩擦转矩。在起动开始瞬间,随着气体被压缩,运动部分从静摩擦转矩变为动摩擦转矩,转矩急剧增加。以后润滑油润滑各摩擦面,摩擦转矩下降并变为恒定值。2)加速转矩。具有一定质量的运动部件,起动加速时要得到所需要的转矩,转速恒定时,加速度为零,加速转矩也变为零。3)压缩转矩。这转矩最初随排气压力的升高而增加,在吸气压力降低的同时,这种转矩减小,即压缩转矩随吸气压力和排气压力比的增加而增加。
压缩机起动过程供油。一是油面高度;其油面高度随时间变化而变化,影响着润滑的效果。油面的波动情况也至关重要。第二是油的粘性。由于制冷剂在润滑油中的溶解,以及电机与润滑油间的热交换,使得油的粘性不断变化。
压缩机液击分为液态制冷剂液击和液态润滑油液击,主要指较大量的液态润滑油或制冷剂进入压缩机气缸或涡旋盘间,造成压缩机在运行过程中振动及噪音加大、电流急剧增加对于旋转式压缩机来说,严重时甚至会造成压缩机气缸损坏,泵体紧固螺栓松动、丧失冷媒气体压缩能力等。而对涡旋式压缩机来说,过量液态冷媒造成的液压缩会将涡旋盘击碎。
压缩机在长期停机后,尤其是当热泵空调器室外机在低温环境中放置较长时间后,制冷剂会大量的迁移并溶入压缩机内部的润滑油中甚至以液态形式存留在压缩机内部,这也被称为冷媒沉积。除此之外,气液分离器、吸气管以及蒸发器也都可能会有液态的制冷剂沉积。一方面,如何防止压缩机以外其它部位沉积的液态制冷剂在压缩机起动时被急剧吸入气缸或涡旋盘间有着重要意义;另一方面,对于涡旋式压缩机来说,当压缩机内部沉积较多的制冷剂时,润滑油和制冷剂将出现分层,上层润滑油较多,下层制冷剂较多。在压缩机再次启动时会因制冷剂大量从润滑油中蒸发而夹带出大量润滑油油滴,此时大量的油滴将进入涡旋盘而造成严重的液击事故。对于第一种情况,即压缩机以外沉积有液态制冷剂时,需要尽量减少制冷剂充注量以避免液击。有时即使制冷剂的充注量满足要求,起动时回液也不可避免。
对于第二种情况,即压缩机内沉积较多制冷剂时会将润滑油稀释,而泵油机构将稀释后的润滑油送至个机械运动部件后会使部件磨损。所以在制冷剂充注量较大且压缩机内部易沉积制冷剂的场合,压缩机需增设电加热带,以便保证压缩机内部润滑油的稀释度在规定范围内。
空调器停机后润滑油会在重力的作用下沿室内外连管壁流动并汇集到室外机吸气管处,当压缩机再次起动时可能造成液击。另一方面,当制冷剂充注较多时,可能会有部分的液态制冷剂从蒸发器迁移至吸气管处,同样地造成压缩机在起动时的液击。
直流变频空调器多采用开环起动技术进行起动,通常采用“三段式”起动,既首先对转子进行定位,然后采用外同步方式,使电机逐步加速至预定速度,当可以稳定得到反电动势过零信号时,切换到自同步方式进行。既:定位——加速——切换。在外同步方式运行时,若施加的电源电压不同,即使转速保持恒定,反电势也会发生变化,其滤波后的波形也不同,检出过零点的位置会因为这种差异而偏移,如果偏移过大,会导致外同步向内同步切换失败,电机将会产生失步故障,将造成转子磁石的退磁,压缩机性能低下,严重的将直接导致压缩机电机堵转。
综上所述,空调器在冷媒沉积状况下的起动性能,直接反映了空调器性能设计的可靠性,直接影响到空调器的使用可靠性。虽然采取了一些措施,如:对冷暖空调气在压缩机底部增加电热带、尽量减少冷媒关注量,然而,这些措施都是在牺牲了空调器的部分性能的情况下才达到的,因此,应尽量不使用或最低程度的使用。空调器在冷媒沉积状况下的起动性能,是一个复杂的环境工况过程,与空调器的结构设计、性能匹配、控制方式密切相关。空调器的冷媒沉积情况很难通过计算或测量获得,只能通过试验验证的方式。然而,目前还没有比较有效的试验方法。
发明内容
针对现有技术的缺点,本发明的目的是提供一种温度范围宽、实验方法简单易行、试验时间短、成本低的空调器冷媒浸透起动的试验方法,该方法可以很快捷的发现空调器设计中是否存在因冷媒沉积而引起的启动故障。
为实现上述目的,本发明的技术方案为:一种空调器冷媒浸透起动的试验方法,当在制热工况试验时,执行步骤a,当在制冷工况试验时,执行步骤b;
a.制热浸透起动,其包括以下步骤:
1)将空调器室内机或室内侧置于一恒定环境温度A1中、空调器室外机或室外侧置于另一恒定环境温度A2中,放置一时间TI,使空调器的所有部件、制冷剂完全浸透到与环境温度相同;
2)空调器室内机或室内侧仍置于所述的恒定环境温度A1不变,空调器室外机或室外侧由原来的恒定环境温度A2升高一温度A3,再放置另一段时间T2,在冷凝器中部温度与压缩机底部温度之差达到最大值后,将空调器的供电电压调至一电压U1;
3)空调器设定温度调至最高,开机起动运行,执行步骤c;
b.制冷浸透起动,其包括以下步骤:
1)将空调器室内机或室内侧置于一恒定环境温度B1中、空调器室外机或室外侧置于另一恒定环境温度B2中,放置一段时间T3,使空调器的所有部件、制冷剂完全浸透到与环境温度相同;
2)空调器室内机或室内侧仍置于所述的恒定环境温度B1不变,空调器室外机或室外侧由原来的恒定环境温度B2升高一温度B3,再放置另一段时间T4,在冷凝器中部温度与压缩机底部温度之差达到最大值后,将空调器的供电电压调至一电压U2;
3)空调器设定温度调至最低,开机起动运行,执行步骤c;
c.压缩机起动一时间T5后,根据噪音、振动及电流脉冲的情况判断设计是否满足要求。
在步骤a中,恒定环境温度A1为0℃~10℃,恒定环境温度A2为-35℃~-10℃,温度A3为10℃~25℃,时间T1为8小时以上,时间T2为20分钟至2小时之间,电压U1为空调器额定电压的85%。
在步骤b中,恒定环境温度B1为25℃~35℃,恒定环境温度B2为0℃~15℃,温度B3为10℃~25℃,时间T3为8小时以上,时间T4为20分钟至2小时之间,电压U1为空调器额定电压的85%。
时间T5为30s。
根据冷凝器中部温度与压缩机底部温度之差判断制冷剂在压缩机内部是否冷凝。
与现有技术相比,本发明具有如下优点:
(1)本发明所述的试验方法,可使空调器部件和制冷剂在充分浸透的情况下,在压缩机底部温度与冷凝器中部温度差最大的情况下进行起动试验,完全涵盖了空调器有可能出现的最恶劣的冷媒沉积现象,充分地验证了空调器设计中潜在的故障问题,大大地提高了空调器的使用可靠性。
(2)结合了低电压起动进行试验,为额定电压的85%,在冷媒最大沉积的状况下,压缩机转矩却又降低,在这种极端严酷的条件下进行起动试验,能够更加全面的暴露空调器的这类潜在故障问题,大大提高空调器在各种可能出现边界条件下的使用可靠性。
(3)本发明所述的试验方法,其适用温度范围宽、实验方法简单易行、试验时间短、成本低。
具体实施方式
下面结合附图对本发明作进一步的详细说明。
一种空调器冷媒浸透起动的试验方法,当在制热工况试验时,执行步骤a,当在制冷工况试验时,执行步骤b;
a.制热浸透起动,其包括以下步骤:
1)将空调器室内机或室内侧置于一恒定环境温度A1中、空调器室外机或室外侧置于另一恒定环境温度A2中,放置一时间TI,使空调器的所有部件、制冷剂完全浸透到与环境温度相同;
2)空调器室内机或室内侧仍置于所述的恒定环境温度A1不变,空调器室外机或室外侧由原来的恒定环境温度A2升高一温度A3,再放置另一段时间T2,在冷凝器中部温度与压缩机底部温度之差达到最大值后,将空调器的供电电压调至一电压U1;
3)空调器设定温度调至最高,开机起动运行,并执行步骤c。
b.制冷浸透起动,其包括以下步骤:
1)将空调器室内机或室内侧置于一恒定环境温度B1中、空调器室外机或室外侧置于另一恒定环境温度B2中,放置一段时间T3,使空调器的所有部件、制冷剂完全浸透到与环境温度相同;
2)空调器室内机或室内侧仍置于所述的恒定环境温度B1不变,空调器室外机或室外侧由原来的恒定环境温度B2升高一温度B3,再放置另一段时间T4,在冷凝器中部温度与压缩机底部温度之差达到最大值后,将空调器的供电电压调至一电压U2;
3)空调器设定温度调至最低,开机起动运行,并执行步骤c。
c.压缩机起动一时间T5后,根据噪音、振动及电流脉冲的情况判断设计是否满足要求。
在步骤a中,恒定环境温度A1为0℃~10℃,恒定环境温度A2为-35℃~-10℃,温度A3为10℃~25℃,时间T1为8小时以上,时间T2为20分钟至2小时之间,电压U1为空调器额定电压的85%。本实施例中,为了达到最佳的试验效果,恒定环境温度A1最佳为10℃,恒定环境温度A2为-20℃,放置的时间T1最佳为15小时,升高的温度A3为10℃,时间T2为30分钟
在步骤b中,恒定环境温度B1为25℃~35℃,恒定环境温度B2为0℃~15℃,温度B3为10℃~25℃,时间T3为8小时以上,时间T4为20分钟至2小时之间,电压U1为空调器额定电压的85%。本实施例中,为了达到最佳的试验效果,恒定环境温度B1为25℃,恒定环境温度B2为15℃,时间T3为15小时,温度B3为10℃,时间T4为30分钟。
在上述的试验条件下,根据以下几点来判断空调器是否满足设计要求:
(1)在规定工况下压缩机起动一时间T5后,无异常噪音、振动及电流脉冲的结果,则看作设计满足要求,其中,T5为30s。
(2)根据冷凝器中部温度与压缩机底部温度之差判断制冷剂在压缩机内部是否冷凝:冷凝器中部温度与压缩机底部温度之差过低的情况表示有制冷剂在压缩机内部冷凝,当冷凝器中部温度与压缩机底部温度之差过低时,会将使润滑油稀释度降低,使相应的部件磨损。
(3)起动的电流波形应完全符合设计要求,应能在30s内正常起动运行。
如果上述这3项不满足要求,则空调器应重新调整设计参数。

Claims (6)

1.一种空调器冷媒浸透起动的试验方法,其特征在于:当在制热工况试验时,执行步骤a,当在制冷工况试验时,执行步骤b;
a.制热浸透起动,其包括以下步骤:
1)将空调器室内机或室内侧置于一恒定环境温度A1中、空调器室外机或室外侧置于另一恒定环境温度A2中,放置一时间T1,使空调器的所有部件、制冷剂完全浸透到与环境温度相同;
2)空调器室内机或室内侧仍置于所述的恒定环境温度A1不变,空调器室外机或室外侧由原来的恒定环境温度A2升高一温度A3,再放置另一段时间T2,在冷凝器中部温度与压缩机底部温度之差达到最大值后,将空调器的供电电压调至一电压U1;
3)空调器设定温度调至最高,开机起动运行,执行步骤c;
b.制冷浸透起动,其包括以下步骤:
1)将空调器室内机或室内侧置于一恒定环境温度B1中、空调器室外机或室外侧置于另一恒定环境温度B2中,放置一段时间T3,使空调器的所有部件、制冷剂完全浸透到与环境温度相同;
2)空调器室内机或室内侧仍置于所述的恒定环境温度B1不变,空调器室外机或室外侧由原来的恒定环境温度B2升高一温度B3,再放置另一段时间T4,在冷凝器中部温度与压缩机底部温度之差达到最大值后,将空调器的供电电压调至一电压U2;
3)空调器设定温度调至最低,开机起动运行,执行步骤c;
c.压缩机起动一时间T5后,根据噪音、振动及电流脉冲的情况判断设计是否满足要求;根据冷凝器中部温度与压缩机底部温度之差判断制冷剂在压缩机内部是否冷凝。
2.根据权利要求1所述的空调器冷媒浸透起动的试验方法,其特征在于:在步骤a中,恒定环境温度A1为0℃~10℃,恒定环境温度A2为-35℃~-10℃,温度A3为10℃~25℃。
3.根据权利要求2所述的空调器冷媒浸透起动的试验方法,其特征在于:时间T1为8小时以上,时间T2为20分钟至2小时之间,电压U1为空调器额定电压的85%。
4.根据权利要求1所述的空调器冷媒浸透起动的试验方法,其特征在于:在步骤b中,恒定环境温度B1为25℃~35℃,恒定环境温度B2为0℃~15℃,温度B3为10℃~25℃。
5.根据权利要求4所述的空调器冷媒浸透起动的试验方法,其特征在于:时间T3为8小时以上,时间T4为20分钟至2小时之间,电压U2为空调器额定电压的85%。
6.根据权利要求1所述的空调器冷媒浸透起动的试验方法,其特征在于:时间T5为30s。
CN2008100292470A 2008-07-04 2008-07-04 一种空调器冷媒浸透起动的试验方法 Expired - Fee Related CN101319968B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100292470A CN101319968B (zh) 2008-07-04 2008-07-04 一种空调器冷媒浸透起动的试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100292470A CN101319968B (zh) 2008-07-04 2008-07-04 一种空调器冷媒浸透起动的试验方法

Publications (2)

Publication Number Publication Date
CN101319968A CN101319968A (zh) 2008-12-10
CN101319968B true CN101319968B (zh) 2010-09-01

Family

ID=40180141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100292470A Expired - Fee Related CN101319968B (zh) 2008-07-04 2008-07-04 一种空调器冷媒浸透起动的试验方法

Country Status (1)

Country Link
CN (1) CN101319968B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10532632B2 (en) * 2016-06-30 2020-01-14 Emerson Climate Technologies, Inc. Startup control systems and methods for high ambient conditions
US10569620B2 (en) 2016-06-30 2020-02-25 Emerson Climate Technologies, Inc. Startup control systems and methods to reduce flooded startup conditions
US10414241B2 (en) 2016-06-30 2019-09-17 Emerson Climate Technologies, Inc. Systems and methods for capacity modulation through eutectic plates
CN107505110B (zh) * 2017-10-10 2024-02-09 奥克斯空调股份有限公司 空调器振动测试方法及系统

Also Published As

Publication number Publication date
CN101319968A (zh) 2008-12-10

Similar Documents

Publication Publication Date Title
CN101512254B (zh) 改善制冷系统可靠性的关机季节启动
JP5787792B2 (ja) 熱源システムの台数制御装置及びその方法並びに熱源システム
CN108548281B (zh) 空调器的控制方法
CN204006853U (zh) 空调系统
CN103471275A (zh) 补气增焓的空调循环系统及其控制方法
CN101319968B (zh) 一种空调器冷媒浸透起动的试验方法
CN104110792A (zh) 空调系统的控制方法和控制装置
CN104864555B (zh) 一种采用r290冷媒的空调系统的控制方法及装置
JP2009204262A (ja) ターボ冷凍機および熱源システムならびにこれらの制御方法
CN103216963A (zh) 空调及其启动控制方法
CN110207420B (zh) 多联机系统及其控制方法
CN104764156B (zh) 移动式空调器的控制方法及控制装置
CN103216909A (zh) 变频多联式空调机组制热时室外风机的控制方法
CN102147144A (zh) 防止直流变频热泵空调排气温度过高的控制方法
CN108954710A (zh) 一种空调器低温制热启动方法和空调器
CN104653444A (zh) 一种控制变频空调启动的方法和装置
CN110529981A (zh) 一种防止压缩机积液的方法和空调器
CN103162392A (zh) 一种变频空调压缩机主动式保护控制方法
CN103557578A (zh) 风冷模块式冷热水机组缺氟的保护方法
CN104567106A (zh) 变频空调高温回油方法
CN114811860A (zh) 多联机空调系统控制方法及多联机空调系统
KR101909974B1 (ko) 스크류 압축기의 공기열 및 오일열 회수 발전기
JP2014085078A (ja) 空気調和装置
CN107024014A (zh) 具有高压腔变频压缩机的制冷系统及其启动控制方法
CN103335376B (zh) 空调系统控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100901

Termination date: 20210704