CN101346494B - 电解 - Google Patents

电解 Download PDF

Info

Publication number
CN101346494B
CN101346494B CN2006800493549A CN200680049354A CN101346494B CN 101346494 B CN101346494 B CN 101346494B CN 2006800493549 A CN2006800493549 A CN 2006800493549A CN 200680049354 A CN200680049354 A CN 200680049354A CN 101346494 B CN101346494 B CN 101346494B
Authority
CN
China
Prior art keywords
air
heap group
heat
product
heap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800493549A
Other languages
English (en)
Other versions
CN101346494A (zh
Inventor
C·巴莱斯特里诺
G·D·阿格纽
M·博佐洛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Fuel Cell Systems Inc
Original Assignee
Rolls Royce PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce PLC filed Critical Rolls Royce PLC
Publication of CN101346494A publication Critical patent/CN101346494A/zh
Application granted granted Critical
Publication of CN101346494B publication Critical patent/CN101346494B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

使用固体氧化物堆组作为燃料电池,以利用氢气或其它燃料来源产生电能。通过电解工艺,可使此种标准燃料电池运行以产生氢气或其它电化学副产物。遗憾的是,堆组1通常在相对较高的温度下运行,其将难以完全经济地持续进行。在这些情况下,在空气比电阻(air-specific resistance)会较高的较低温度下通过与电能输入达到平衡,可实现效率较低的运行,以促成所需的分解。在这些情况下,通过提供入射热源,无论是通过热交换器来加热压缩空气流、或对来自所述堆组的排气的一部分进行再循环、抑或燃烧来自堆组分解的产物,其结果都是发生持续的电解运行,减少为实现分解所需的昂贵的电能供应量。

Description

电解
技术领域
本发明涉及电解以及例如利用燃料电池技术来产生氢气作为用于其它用途的燃料。
背景技术
电解装置已知用于众多应用,并建议使用水电解作为生产氢气的简单、洁净的技术。电解是燃料电池中的燃料氧化的相反工艺。图1中显示该工艺的示意图。在电解工艺中,蒸汽在阴极上分解并形成氢气分子。在固体氧化物电池中,阴极反应如下:
H2O+2e-=H2+O2-
氧离子迁移通过电解质,在阳极表面形成氧气分子,并释放电子。
O2-=1/2O2+2e-
于是,蒸汽的总体电解反应如下:
H2O=H2+1/2O2
在上述情况下,将理解,需要电源克服电化学反应电势将电子从阳极拖到阴极。
尽管商业水电解通过使用已知的技术在低温下可用,但这些电解电池的运行效率相对较低。高温燃料电池的使用受到如下情况限制:这些高温燃料电池有必要在超过800℃且通常介于800℃-1000℃的温度下运行。在所述情况下,有必要使用特殊的加热器,这会减小所述方法的效率和实用性。
目前,在生产氢气方面最发达的技术与蒸汽转化有关。在该工艺中,利用化石燃料源,且该工艺会产生大量的CO2排放。建议使用水电解作为“无温室气体”的氢气生产技术,从而能够利用非化石燃料电源,例如核电源或可再生电源。遗憾的是,当前通过水电解进行氢气生产有显著的不利之处,如上文中所述,效率相对较低。由于该低效率,有必要消耗相对高的电能,从而使利用水电解来生产氢气的成本相对于当前通过蒸汽转化生产氢气而言过于昂贵,以致在商业上不可行。还将理解,当前用于水电解的设备成本很高,与天然气或其它烃的蒸汽转化相比,使用水电解进行氢气生产是昂贵的可选方案。
发明内容
根据本发明的一个方面,提供一种用于生产产物的电解装置,所述装置包括电解电池(electrolysis cell),所述电解电池通常可在800℃-1000℃温度下运行以通过氧化提供电能,但其被布置为通过电解以在堆组(stack)的阴极处提供产物,通过提供的供料和空气供应以及在阳极和阴极之间由电源提供的电能,电解电池用于生产产物,所述装置的特征在于,用于堆组的空气在提供给电解电池之前使用入射热源进行预热。
根据本发明的另一方面,还提供一种用于生产氢气的水电解装置,所述装置包括电解电池,所述电解电池通常可在800℃-1000℃温度下运行以通过氢气的氧化提供电能,但其被布置为通过电解以在堆组的阴极处提供氢气产物,通过提供的蒸汽供应和空气供应以及在阳极和阴极之间由电源提供的电能,该电解电池用于生产氢气产物,所述装置的特征在于,用于堆组的空气在提供给电解电池之前使用入射热源进行预热。通常,电解电池是电化学电池,例如燃料电池。
通常,入射热源由来自电源或其它工艺的经过处理的热提供。入射热源可通过燃烧一部分所产生的产物提供。
可将空气压缩并预热至500℃-800℃的温度。
可在阴极处提供一小部分所产生的产物,以维持还原能力。
通常,流出堆组的空气的一部分重新循环进入该堆组。
通常,使用涡轮发动机将空气朝向该堆组驱动。
通常,使用热交换器来加热空气。可提供回收构造来接收来自燃气涡轮发动机排气的热,以产生用于堆组的入射热。
通常,提供分离器来将产物流与堆组分离。
可提供过热器来回收热,以用于加热被提供给堆组的蒸汽供应。
附图说明
现在,将参照附图以举例的方式来说明本发明的实施例,附图中:
图2是根据本发明的某些方面的水电解装置的第一实施例的示意图;
图3是根据本发明的某些方面的第二备选水电解装置的示意图;
图4是根据本发明的某些方面适配的开式回路循环电解装置的示意图;以及
图5是根据本发明的某些方面的第五水电解装置的示意图。
具体实施方式
固体氧化物燃料电池系统的运行已为人们所知,且一个实例在国际专利申请第PCT/GB 2003/004089号(Rolls Rocce Plc)中给出。在这些构造中,以燃料电池堆组(fuel cell stack)的形式提供电解电池或电化学电池,该电解电池或电化学电池包括夹在阳极和阴极之间的电解质以消耗通过氧化产生的氢气,从而发电。所述装置涉及利用电解电池(例如电化学电池)中的电解,以作为(例如)电解装置来产生作为燃料本身使用的氢气。将理解,氢气在汽车或其它方面中可用作燃料,在所述车辆或机械设备中为原动机产生能源。迄今为止,氢气的成本一直相对较高,使用燃料电池技术通过水电解来生产氢气时尤其如此。在这些情况下,考虑到经济成本,氢气燃料电池技术在相对较小的机械设备和汽车中的低排放的优点尚存在疑问。
图2提供根据本发明的某些方面的水电解装置的第一实施例的示意图。该实施例和其它实施例作为实例给出,且所说明的方法可在电解装置中使用来产生氢气以外的产物。因此,堆组1包括阳极部分和阴极部分,向该阳极部分和阳极部分分别提供来自喷射器3的压缩空气和来自喷射器2的蒸汽。下面将说明水电解装置的运行,但应了解,本发明利用典型的固体氧化物燃料电池结构(对其修改极小)。
所说明的堆组1包括具有阳极侧和阴极侧的固体氧化物电解质。在这种情况下,在根据本发明的一个方面的水电解实施例中,来自喷射器3的压缩空气被射向阳极1a。这将是燃料电池运行中的阴极。提供给阳极的压缩空气将处于高于700℃-800℃的温度,以便于电化学电池以电解模式运行。至阴极侧1b(燃料电池运行中的阳极)的供料由喷射器2提供的高温过热蒸汽组成。可向所述阴极提供小部分氢气(通常为所分离出来的氢气的大约10%),以满足水电解电池要求。水在堆组1内经历电化学反应并产生氢气分子。应理解,所分离出来的氧离子迁移经过堆组1中的电解质层,因此,阳极侧的空气中富含氧成份。通常,蒸汽利用率约为0.85,这意味着在阴极出口处的富氢气混合物中的蒸汽成份约为15%。将理解,所述电解装置仅需要根据燃料电池结构的运行切换阳极和阴极,并向阳极和阴极提供不同的供料,从而在电池和堆组设计、几何尺寸和规模方面,不需要对基本燃料电池构造进行重大的或主要的修改。通常,在承压容器内提供堆组1。
如上面所述,用于向堆组1供应蒸汽的喷射器2通常将安排对所产生的富氢气混合物12中的一小部分进行再循环,该小部分富氢气混合物12在阴极1b入口处提供。之所以需要少量的氢气,是为确保使阴极1b入口保持还原环境并避免被从喷射器2供应至堆组的蒸汽中夹带的少量氧氧化,该少量氧是因为水除盐不彻底及/或蒸汽供应管线中空气泄漏引起的。
所指示的喷射器3向堆组1的阳极1a提供加热后的压缩空气。通常,来自堆组1的夹带有氧的空气中的一部分会发生再循环。来自堆组1的空气的大部分将处于相对高温下,且所述空气将驱动涡轮机4。涡轮机4用于输送来自堆组1的二次流,以便因没有内部重整装置和废气燃烧器而使空气再循环回路33中存在低压降。在这些情况下,可使用与典型的燃料电池运行中相同的再循环比率以及较低压降(亦即,压缩机4a和涡轮机4b之间的较低压降)。将理解,富含氧的空气经过再循环回路33循环至喷射器时将处于很高的温度,因此该再循环空气将增大供应至阳极1a的压缩空气的温度,从而减小热交换器5的容量和需求,并增大至堆组1的压缩空气供应。
如上面所述,使用燃气涡轮发动机来对供应至堆组的空气加压。将来自堆组的阳极1a侧的高温产物导向涡轮机4b,涡轮机4b驱动压缩机4a,以便使供应的空气如上所述被加压。应理解,来自涡轮机4的过剩功率可用于驱动交流发电机发电,而交流发电机又会减小系统的电源的电能消耗。如上面所述,为驱动堆组1中的电化学反应,有必要在阳极和阴极之间提供电能。所述电源可为核反应堆。
如上面所述,提供热交换器5以向供应至堆组1的压缩空气提供必要的热输入。升高供应空气的温度可促进电解工艺。在这些情况下,来自压缩机4a的空气15被引导至热交换器5的冷侧,同时外部热矢量(thermal vector)被供应至热交换器5的热侧。所述热矢量可来自诸多工艺-或者来自该装置的电源(例如核电反应堆)产生的入射热或其它工艺热或传统上提供给电解装置的热,或者通过燃烧富含氢气的流量的一部分产生的热。将理解,不需要极高的温度,以便使热交换器5能够利用各种潜在的源以提供热矢量,以升高空气的温度,空气随后通过供应管25提供给喷射器3。可见,热矢量11以传统方式提供至热交换器5两侧,且如果需要可自循环。
关于热矢量,将了解,如果所述装置与高温核反应堆形成一体,则可能由于以下原因在该核反应堆内反应堆一次冷却剂回路与所述电解电池装置之间需要中间氦回路。直接使用反应堆一次冷却剂可能导致对于交换器5而言温度过高,从而产生基本的安全问题以及与辐射保护有关的其它问题。设计两级热交换器能够减轻反应堆内的一次冷却剂回路的压力(通常约为40-70bar)与电解电池循环中的空气压力(通常约为7bar)之间增大的压差。
通过再循环回路33对空气进行再循环意味着对热交换器内的一次空气15进行必要的预热可能是足够的(如果一次空气15的温度仅为500-600℃),从而能够实现紧凑的回热式热交换器5设计,以向系统提供必要的热输入,获得很高的运行效率。另外,由于该终端温度,使热交换器5的结构能够使用先进的金属材料,而不需要可能产生问题的陶瓷材料。
如上面所述,通常来自压缩机的空气中的一部分可能绕过中间热交换器,并被用作容纳堆组1的承压容器的内壁的冷却剂。
通常,在所述装置中提供蒸汽蒸发器6,以接收来自燃气涡轮机4b排气的热。然后,利用回收的该热来产生供应至堆组1的蒸汽热使用。
通常,利用蒸汽过热器来使用堆组1的阴极1b侧释放的蒸汽中的热。该过热器通常定位在堆组1的壳体容器的外侧,且将由最高蒸汽温度达500-550℃的标准蒸汽过热器组成。在蒸汽供应至堆组之前,将需要更多的蒸汽过热度。这可通过所述压力容器内的内部热交换来实现。
针对堆组1产生的富含氢气的混合物提供水冷凝器和分离器7。将废气冷却和蒸汽冷凝中释放的热用于水加热。将理解,除盐水对于所述电解装置而言非常重要,因而,为降低对水电解循环中除盐的要求,对冷凝器7冷凝的循环水进行再循环,并将其与所述装置中的“补给”水进行混合。将理解,视电解循环的尺寸和构造而定,可能需要来自另一热冷却器的更多的废热,以实现冷凝器分离器7内35℃的假定温度,并获得期望的水冷凝和氢气纯度(即大于99%)。
为驱动循环,提供进给泵9,其对供应给蒸汽发生设备的水进行加压。该泵9通常在水中产生超过10bar的压力。另外,如上面所述,除盐和除气的给水对于所述水电解工艺而言很重要,且在这些情况下,针对产生蒸汽的水提供除盐/除气装置10。
将理解,至热交换器5的热输入对图1中所示的装置而言是关键限制因素,对于使用中间热交换器的情况尤其如此。当来自热交换器5的出口温度较低时,能够实现更紧凑的设计,尽管效率会被降低。还将理解,向容纳堆组1的压力容器供应极热的空气本身会在可接受的材料和成本方面产生问题。然而,如上面所述,可使用入射热源来升高至堆组的压缩空气供应温度,这对于本发明而言很重要。在这些情况下,可提供两级热交换工艺,其由压缩机处的用于获得输出的回热式热交换器和承压容器内的高温热交换器组成。尽管该方法可能需要设计关键的热交换器和用于向压力容器供料的热管线。
将理解,由于堆组1内的功率耗散产生的热会降低供应至水电解循环的一次空气所需的温度,以便持续运行。堆组1的面积比电阻(ASR,area-specific resistance)通常随温度降低而增大,所以增大堆组1内的内部热产生量将补偿热输入通过中间热交换器的减小量。将理解,由于电阻损耗,热从堆组1释放出来,且通过空气再循环回路33重新循环至堆组1。
与燃料电池的运行相比而言,由于水电解反应的吸热性,而水电解反应往往会降低来自堆组1的空气13的出口温度,所述装置的水电解循环需要每个堆组1具有较低的空气流。在这些情况下,当同一涡轮机4在混合系统(亦即既能实现燃料电池运行、又能实现水电解运行的构造)中使用时,供应至堆组相同的总空气质量流被等分。有利的是,增大待安装在每一压力容器内的堆组1的数量以增大堆组1内的平均空气温度以及化学反应的效率。尽管如此,该运行受到来自燃气涡轮机排气的热回收的可再生蒸汽以及由堆组1消耗的可再生蒸汽的最大数量限制。
可见,至堆组1的一次空气的温度降低还将降低堆组1的平均温度,而堆组1的平均温度降低又将如上面所述增大堆组1的面积比电阻(ASR),并因此增大堆组1内的电阻发热量,且当空气通过再循环回路33返回堆组1时,其温度会升高。在这些情况下,空气再循环会缓解供应至堆组1的空气进气温度的降低。
还可见,只要有如上面所述的空气再循环,来自交换器5的空气的出口温度的总体效应可达到最小,因此降低温度更易实现在所述装置的可行性和成本效益方面的优点。还将理解,尽管总体目标是减小燃料电池模块的空气比电阻(ASR,air-specific resistance)值以达到高效率水平,但水电解装置性能对该参数的敏感性较小,可仅通过改变阳极和阴极两侧的电能以及至系统的热功率输入来调整该参数,从而可实现大体上一致的性能。在这些情况下,相对昂贵的电能输入可通过使用附带的工艺热(若可用)来补偿,从而与廉价的入射热(例如工艺热或以其它方式加热空气输入)相比,可减少昂贵的用电数量。将理解,热输入通常始终远便宜于阳极和阴极两侧的电能。
每个堆组1的压缩空气流受到从水电解循环内的内部热回收工艺(亦即,燃气涡轮机出口的回收量)获得的最大可再生蒸汽流限制。图3显示一种水电解装置的备选或第二实施例,其中通过利用取自热交换器55(利用热交换器55来提供用于产生蒸汽的热)的热可提供更大的蒸汽产生能力。将理解,热交换器55的出口的温度将通常介于至少350-400℃之间,以便足够接近与来自压缩机的空气的输入温度差ΔT。
图3与图2中类似的标号表示类似的部件,并对该第二实施例的更多特征进行更多的说明。在这些情况下,通过使用来自热交换器55的输出热,每单位面积上堆组1的数量能够达到其它技术限制的极限,从而使堆组1能够在较高平均温度、较低面积比电阻(ASR)以及较高效率下运行。应将图3中绘示的水电解循环与图2中所绘示的进行比较,因为其中提供有一额外的蒸汽发生器来接收更多的工艺热。因此,将来自热交换器55的热提供给蒸汽蒸发器56,以便除蒸发器6提供的蒸汽外还产生更多的蒸汽57。从而,如上面所述,图3中绘示的装置的蒸汽发生能力显著大于图2中的蒸汽发生能力。还将理解,通过热交换器55和蒸发器56,进一步回收工艺热可实现更大的效率。为进一步提高效率,进给水在蒸发器6,56中加热蒸发之前提供另一额外的热回收节省器58。可设置节省器58,以便接收来自涡轮机4排气或通过独立的热工艺热源提供的热。
如上面所述,通过利用入射热源,无论其是来自于为水电解产生电能的机构还是毗邻水电解装置的工艺,都可调节供应至电解装置的压缩空气。另外,通过为来自堆组的出口空气中的一部分提供再循环,可将堆组空气供应温度维持至有效运行所接受的温度。在这些情况下,可相对地调节双重平衡工艺-电能以及空气供应/蒸汽温度,以便获得期望的水电解运行效率,从而产生燃料品质的氢气。
本发明水电解装置具有如下所述的多个固有特征。
A)电解反应的吸热性补偿堆组1中的电阻损失产生的热。与燃料电池运行模式相比,这会减小堆组1中的温度梯度,从而减小热应力,热应力通常是与高温燃料电池运行有关的关键问题。通过电能输入以及供料温度的平衡,在某些情况下可接近堆组的等温运行。
B)通过使用供应至堆组入口的供应空气的较低温度,面积比电阻(ASR)和堆组1的电阻损耗产生的热会平缓增大。通过使用再循环回路33,对装置的效率的总体影响极低。
C)堆组1在面积比电阻(ASR)方面的具体目标对水电解装置的性能的影响极其有限。由于空气比电阻与温度的依存关系,当堆组的标称空气比电阻高于目标值30%时,其可在较高的平均温度下运行,从而增大电阻损耗,使面积比电阻(ASR)的实际增大被限制至大约10%且系统效率几乎恒定。如上所述的电阻损耗增大会升高从堆组1排出的空气温度,且然后将一部分空气通过回路33再循环,以调节通过喷射器3提供的供应空气。还将理解,堆组1的最高温度和涡轮机入口温度被维持为远低于容许极限。
D)超过堆组的氢气泄漏目标将对装置的性能具有有限的影响。较高的泄漏将使堆组具有较高的运行温度,但仍处于最大的允许值,该运行温度将降低面积比电阻(ASR)。
E)为实现水电解运行,几乎不需对现有燃料电池结构进行修改。
将了解,通常在装置内提供多个堆组1,以利用各组件之间的合适管道和管子提供水电解。
图4示意性显示一开式回路电解装置。该装置是开式回路,其中没有空气从堆组1再循环至所述堆组的供料点。在这些情况下,如前所述,堆组1由阳极侧1a和阴极1b之间的氧化物电解电池形成。喷射器2也提供阴极再循环以在阴极侧1b处提供氢气。提供燃气涡轮发动机4,以提供供应至阳极1a的压缩空气25。由入射工艺热提供合适热矢量的中间热交换器5运行,以便预热供应至电解电池堆组的空气25。蒸汽发生器6接收来自涡轮机4排气的热,以通过蒸发产生蒸汽。用于夹带在水电解电池装置产品内的水冷凝器7作为供应至水电解电池的水/蒸汽节省器。提供蒸汽过热器9,以将蒸汽通过喷射器2循环至阴极1b内。如前面所述,提供有用于水电解工艺中的水的进给泵9和除盐/除气装置。
在上述情况下,与图2和3中绘示的前面实施例相比,应注意,没有空气再循环回路(图2和3中的33)。在该情况下,图4中绘示的装置对交换器5处的空气的温度更灵敏。由于该温度与循环构造中堆组入口处空气的温度相同,所以最低容许值为750-800℃。这使中间热交换器5的设计更为关键,中间热交换器5需要提供如下双重功能:包含堆组1的承压容器外部的回热器型热交换器,其用于低温热交换;以及承压容器内部的高温热交换器。这将需要设计用于热矢量的热管线,在大多数情况下,该热矢量来自核设备,以供应至承压容器,因此需要考虑设计安全。
现在,使用一个两级热交换器可实现利用两台低效率热交换器实现的与空气的热传输效果。然而,通过使用该开式循环构造,尽管可实现至系统的热输入和电气输入之间较高的比率,但与涉及空气再循环的构造(图2和3)相比,其通常效率较低,且更重要的是,其将需要利用现有的燃料电池运行构造进行整个系统的重新设计。
图5提供根据本发明的某些方面的电解装置的第四备选实施例,该实施例不需要外部热交换器或热源,且通过燃烧空气再循环回路43中产生的氢气的一小部分提供用于加热供给堆组1的压缩空气的热。因此,提供燃烧器65以燃烧所产生的该部分氢气。
如前面所述,在堆组1的相应的阳极侧1a和阴极侧1b处向堆组1提供压缩空气和蒸汽。喷射器2将再循环的氢气提供至阴极1b入口。喷射器3通过弯管43提供空气再循环,弯管43内包含废气燃烧器65。如前面所述,该燃烧器65燃烧所产生的氢气的一小部分,且然后将热传输经过回路43,以便在喷射器3内与压缩空气流35混合,而所述混合气体又提供给堆组1的阳极1a。然后,将该混合气体提供给堆组1的阳极1a。如前面所述,提供蒸汽发生器6,其利用来自涡轮机4的排气将水蒸发。用于夹带在电解装置产物内的水的冷凝器7作为供应至水电解电池的水/蒸汽的节省器。提供蒸汽过热器8,以向喷射器2提供蒸汽,用于与来自堆组1的阴极1b的再循环氢气混合。进给泵9和除盐/除气装置也对供水操作,以确保供水可接受。
很明显,增大每单位空气的堆组数量将使堆组能够在较高温度下运行,且因此其效率更高。然而,对于自保持系统,每单位压缩空气流的最大堆组数量由燃气涡轮发动机排气的热回收所决定的最大合理蒸汽流确定。由于产生蒸汽仅需要热,所以增加辅助燃烧的蒸汽发生器或利用外部入射热源(即使在相对较低的温度下)也将增大整个电解装置的效率。
本发明的某些方面利用入射热以升高供应至堆组的空气的温度,以补偿减小的电能输入,电能输入的成本通常较为昂贵。通常,能够利用根据图2中绘示的实施例直接输入至堆组的入射工艺热所需的最低温度大约为600℃,但包括后续实施例中所述的外部源和废气燃烧或使用用于产生蒸汽的工艺热的混合构造仅能够加宽可能的应用范围,所以可能仅需要整合可提供大约30℃的入射工艺热源。在这些情况下,用于与本系统整合以便提供用于热交换的热矢量的入射处理器将包括:
精炼和化学处理器
高温核反应堆
燃气涡轮机循环
组合的热和电设备
垃圾焚烧
太阳能源
将理解,除通过蒸汽电解工艺生产氢气外,还可将固体氧化物电解过程应用于多个技术领域,其中包括:
a)对多个适合使用氧离子导电膜进行电化学分解的工艺副产物进行电解,以提高期望的产物含量。
b)通过水电解共同生产氧气和氢气。用于富含氧气的空气的一种可能的方式是设计包含燃气涡轮机的闭式空气回路,其中在压缩机入口“补给”环境空气,在涡轮机出口抽出富含氧气的气流。原则上,在堆组阳极侧设计一闭式回路并在开始时填充纯氧气。该系统使用阳极侧的氧气运行,并产生高纯度氧气,该高纯度氧气是可出售的副产物。然而,该构造可能具有很大的安全问题,以确保装置的每个部分中富含氧气和氢气的气流严格分离,从而避免潜在的爆炸问题等,
本发明装置通过使用峰值电能还能够实现再生式燃料电池运行,换言之,对可再生能源进行耦接,以在需要时在燃料电池中提供通过电解被消耗的燃料。
所属领域的技术人员将理解本发明的修改和变更。因此,如上所述,通常在承压容器内可提供多个堆组,且可改变运行温度/电气输入,以提供更加有效、经济的工艺。
将理解,可使用包括鼓风机或任何其它合适机构的喷射器构造或装置来实施阳极和阴极的再循环。
尽管前面的说明书旨在引起人们对本发明的那些重要特征的注意,但应理解,申请人要求对前面所述及/或附图中所示的任何可申请专利的特征或特征组合进行保护,无论是否已对所述特征或特征组合予以特别强调。

Claims (10)

1.一种用于产生产物的电解装置,所述装置包括可在800℃-1000℃下运行以通过氧化提供电能的电解电池,但其设置成通过电解而在堆组中的阴极处提供所述产物,所述电解电池用于通过对阴极提供供料和对阳极提供空气供应以及在阳极和阴极之间由电源提供的电能来产生所述产物,所述装置的特征在于,所述空气由涡轮发动机朝向所述堆组驱动,用于所述堆组的空气在提供至所述电解电池之前使用入射热源预热,其中来自所述堆组的空气的一部分被再循环进入所述堆组的阳极。
2.一种用于产生氢气的电解装置,所述装置包括可在800℃-1000℃下运行以通过氢气的氧化提供电能的电解电池,但其设置成通过电解在堆组中的阴极处提供氢气产物,所述电解电池用于通过给阴极提供蒸汽供应和给阳极提供空气供应以及在阳极和阴极之间由电源提供的电能来产生所述氢气产物,所述装置的特征在于,所述空气由涡轮发动机朝向所述堆组驱动,用于所述堆组的空气在提供至所述电解电池之前使用入射热源预热,其中来自所述堆组的空气的一部分被再循环进入所述堆组。
3.如权利要求1或2所述的装置,其特征在于,所述入射热源由来自所述电源或其它过程的经过处理的热提供。
4.如权利要求1所述的装置,其特征在于,通过在燃烧器中燃烧所述产物的一部分来提供所述入射热源。
5.如权利要求1所述的装置,其特征在于,所述空气被压缩并预热至500℃-800℃的温度。
6.如权利要求1所述的装置,其特征在于,来自所述堆组的所述产物的一部分被再循环进入所述堆组的阴极。
7.如权利要求6中所述的装置,其特征在于,再循环进入所述堆组的所述产物的一部分维持所述堆组中的还原环境。
8.如权利要求1所述的装置,其特征在于,所述空气被热交换器加热。
9.如权利要求1所述的装置,其特征在于,提供回收构造以接收来自涡轮发动机排气的热,以产生用于所述堆组的所述入射热。
10.如权利要求1所述的装置,其特征在于,提供分离器以使产物流与所述堆组分离。
CN2006800493549A 2005-10-28 2006-09-29 电解 Expired - Fee Related CN101346494B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB0521984.5A GB0521984D0 (en) 2005-10-28 2005-10-28 Electrolysis
GB0521984.5 2005-10-28
PCT/GB2006/003614 WO2007048997A2 (en) 2005-10-28 2006-09-29 Electrolysis

Publications (2)

Publication Number Publication Date
CN101346494A CN101346494A (zh) 2009-01-14
CN101346494B true CN101346494B (zh) 2011-04-13

Family

ID=35515882

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800493549A Expired - Fee Related CN101346494B (zh) 2005-10-28 2006-09-29 电解

Country Status (13)

Country Link
US (1) US8048276B2 (zh)
EP (1) EP1941078B1 (zh)
JP (1) JP2009513829A (zh)
KR (1) KR101326105B1 (zh)
CN (1) CN101346494B (zh)
AT (1) ATE552363T1 (zh)
AU (1) AU2006307713B2 (zh)
BR (1) BRPI0617890A2 (zh)
CA (1) CA2626751C (zh)
GB (1) GB0521984D0 (zh)
RU (1) RU2008120859A (zh)
SG (1) SG185176A1 (zh)
WO (1) WO2007048997A2 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0801268D0 (en) * 2008-01-24 2008-02-27 Itm Power Research Ltd Improvements to electrolysis
KR100998733B1 (ko) * 2008-04-18 2010-12-07 삼성전기주식회사 수소 발생 장치 및 이를 구비한 연료 전지 발전기
FR2930770B1 (fr) * 2008-04-30 2011-06-03 Mediterranee Const Ind Installation de production et de distribution d'hydrogene associee a au moins un incinerateur de dechets menagers
US8936770B2 (en) * 2010-01-22 2015-01-20 Molycorp Minerals, Llc Hydrometallurgical process and method for recovering metals
US9027342B2 (en) * 2011-04-21 2015-05-12 Nicholas Frederick Foy Supplementary intercooler for internal combustion engines
GB2494666B (en) 2011-09-15 2014-11-05 Rolls Royce Fuel Cell Systems Ltd A solid oxide fuel cell system
GB2494667A (en) 2011-09-15 2013-03-20 Rolls Royce Fuel Cell Systems Ltd A solid oxide fuel cell system
IL220629A0 (en) 2012-06-25 2017-01-31 Yeda Res & Dev Device and apparatus for performing chemical decomposition reactions at high temperatures
US9509026B2 (en) * 2012-08-14 2016-11-29 Siemens Aktiengesellschaft Power station arrangement with high-temperature storage unit
AU2013388391B2 (en) * 2013-05-02 2018-01-25 Haldor Topsoe A/S Gas inlet for SOEC unit
WO2015002953A1 (en) * 2013-07-01 2015-01-08 Sustainable Innovations, LLC Hydrogen system and method of operation
FR3037082B1 (fr) * 2015-06-02 2017-06-23 Electricite De France Systeme de production de dihydrogene, et procede associe
GB2547927B (en) * 2016-03-03 2018-05-23 Rolls Royce Plc Supercritical fluid heat engine
FR3056230B1 (fr) * 2016-09-19 2020-02-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme d'electrolyse reversible de l'eau a haute temperature comportant un reservoir d'hydrures couple a l'electrolyseur
US10749201B2 (en) * 2017-01-11 2020-08-18 Xergy Inc. Regenerative fuel cell
AT519848B1 (de) * 2017-04-13 2020-03-15 Avl List Gmbh Brennstoffzellensystem für einen SOEC-Betriebszustand
FR3074971B1 (fr) * 2017-12-13 2019-11-29 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme reversible de stockage et destockage d'electricite comprenant un convertisseur electrochimique (sofc/soec) couple a un systeme de stockage/destockage d'air comprime (caes)
WO2020011748A1 (en) * 2018-07-12 2020-01-16 Haldor Topsøe A/S Expander for soec applications
AT521903B1 (de) * 2018-11-27 2021-04-15 Avl List Gmbh Brennstoffzellensystem und Verfahren zur Rezirkulation von Abgas in einem Brennstoffzellensystem
FR3105797B1 (fr) * 2019-12-26 2021-12-31 Entrepose Group Système d’électrolyse réversible de l’eau
CN113373468A (zh) * 2021-05-26 2021-09-10 江苏国富氢能技术装备股份有限公司 一种基于光伏电池的质子交换膜电解制氢装置
JP7374150B2 (ja) * 2021-06-30 2023-11-06 三菱重工業株式会社 水素製造システムおよび水素製造方法
TW202315200A (zh) * 2021-07-16 2023-04-01 美商博隆能源股份有限公司 具蒸氣產生之電解系統及操作其之方法
JP7374152B2 (ja) * 2021-08-27 2023-11-06 三菱重工業株式会社 水素製造システムおよび水素製造方法
EP4159894B1 (en) 2021-09-30 2024-05-08 SolydEra SA Steam electrolyser system for the production of hydrogen and corresponding method
GB2616256A (en) * 2022-02-24 2023-09-06 Ceres Ip Co Ltd Treatment plant electrolyser system
US20240044264A1 (en) * 2022-08-02 2024-02-08 Mitsubishi Power Americas, Inc. Electrolyzer heating system for integrated power plants
JP7282968B1 (ja) 2022-09-09 2023-05-29 三菱重工業株式会社 水素生成システムおよび水素生成システムの制御方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479462A (en) * 1991-01-29 1995-12-26 Mitsubishi Jukogyo Kabushiki Kaisha Method for producing methanol by use of nuclear heat and power generating plant

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993653A (en) * 1974-12-31 1976-11-23 Commissariat A L'energie Atomique Cell for electrolysis of steam at high temperature
US4087976A (en) * 1976-08-13 1978-05-09 Massachusetts Institute Of Technology Electric power plant using electrolytic cell-fuel cell combination
JPH03208259A (ja) * 1990-01-10 1991-09-11 Mitsubishi Heavy Ind Ltd 固体電解質燃料電池システム
JP3253985B2 (ja) * 1991-10-11 2002-02-04 関西電力株式会社 電力貯蔵装置
US20030012997A1 (en) * 1994-08-08 2003-01-16 Hsu Michael S. Pressurized, integrated electrochemical converter energy system
JPH08127888A (ja) * 1994-10-31 1996-05-21 Mitsubishi Heavy Ind Ltd セル構造
US7118818B2 (en) 2002-10-01 2006-10-10 Rolls-Royce Plc Solid oxide fuel cell system
US7331179B2 (en) * 2004-09-30 2008-02-19 General Electric Company System and method for production of hydrogen
US7491309B2 (en) * 2005-12-21 2009-02-17 General Electric Company System and method for the production of hydrogen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479462A (en) * 1991-01-29 1995-12-26 Mitsubishi Jukogyo Kabushiki Kaisha Method for producing methanol by use of nuclear heat and power generating plant

Also Published As

Publication number Publication date
RU2008120859A (ru) 2009-12-10
ATE552363T1 (de) 2012-04-15
EP1941078A2 (en) 2008-07-09
EP1941078B1 (en) 2012-04-04
KR101326105B1 (ko) 2013-11-20
AU2006307713A1 (en) 2007-05-03
US8048276B2 (en) 2011-11-01
WO2007048997A3 (en) 2007-08-02
CA2626751C (en) 2014-03-11
AU2006307713B2 (en) 2011-09-15
BRPI0617890A2 (pt) 2011-08-09
US20080289955A1 (en) 2008-11-27
KR20080074142A (ko) 2008-08-12
WO2007048997A2 (en) 2007-05-03
SG185176A1 (en) 2012-11-29
GB0521984D0 (en) 2005-12-07
CA2626751A1 (en) 2007-05-03
JP2009513829A (ja) 2009-04-02
CN101346494A (zh) 2009-01-14

Similar Documents

Publication Publication Date Title
CN101346494B (zh) 电解
JP7170630B2 (ja) 電解槽と結合された水素化物タンクを含む水の高温可逆電解用システム
CN111244501B (zh) 基于双功能水循环的一体式可逆燃料电池系统及其电堆
US4657829A (en) Fuel cell power supply with oxidant and fuel gas switching
CN101427408B (zh) 具有减少co2排放的联合高效化石燃料发电设备/燃料电池系统
EP0304949B1 (en) Fuel cell power plant with increased reactant pressures
US20040219400A1 (en) Hybrid fuel cell/desalination systems and method for use
CN87103747A (zh) 综合化发电设备及操作该设备的方法
CN113278993B (zh) 一种高安全性燃料电池电解槽系统及其工作方法
CN101326310A (zh) 电解装置
US4080791A (en) Fuel cell power generating stations
WO2009058112A1 (en) Integration of an organic rankine cycle with a fuel cell
CN113278992B (zh) 一种水蒸气涡轮增压的燃料电池电解槽系统及其工作方法
KR20040060779A (ko) 연료 전지 모듈, 조합된 순환식 전력 시스템, 및 발전 방법
CN101542077B (zh) 具有纯氧燃烧器的发电厂
JP2002056880A (ja) 水電解装置−固体高分子形燃料電池系発電システム
US20100285381A1 (en) Method and apparatus for operating a fuel cell in combination with an orc system
KR20070104697A (ko) 복합 에너지 발생시스템
JP7374152B2 (ja) 水素製造システムおよび水素製造方法
JP2002056879A (ja) 水電解装置−リン酸形燃料電池系発電システム
JPH0679711B2 (ja) 燃料電池−海水淡水化機複合装置
CN115807232A (zh) 一种固体氧化燃料电解池的氢热联产系统
CN115976539A (zh) 基于无氮燃烧和二氧化碳循环的可再生能源利用系统
CN113224363A (zh) 一种熔融碳酸盐燃料电池发电系统及其工作方法
JPS60208063A (ja) 燃料電池発電システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: ROLLS ROYCE FUEL CELL SYSTEMS INC.

Free format text: FORMER OWNER: ROLLS ROYCE PLC.

Effective date: 20121031

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20121031

Address after: British Chesire

Patentee after: Rolls Royce Fuel Cell Systems

Address before: England

Patentee before: Rolls-Royce Limited

ASS Succession or assignment of patent right

Owner name: LG FUEL CELL SYSTEMS INC.

Free format text: FORMER OWNER: ROLLS ROYCE FUEL CELL SYSTEMS

Effective date: 20140523

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20140523

Address after: ohio

Patentee after: ROLLS ROYCE FUEL CELL SYSTEMS US INC

Address before: British Chesire

Patentee before: Rolls Royce Fuel Cell Systems

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110413

Termination date: 20190929

CF01 Termination of patent right due to non-payment of annual fee