CN101346324A - 低密度支撑剂颗粒及其使用 - Google Patents

低密度支撑剂颗粒及其使用 Download PDF

Info

Publication number
CN101346324A
CN101346324A CNA2006800493036A CN200680049303A CN101346324A CN 101346324 A CN101346324 A CN 101346324A CN A2006800493036 A CNA2006800493036 A CN A2006800493036A CN 200680049303 A CN200680049303 A CN 200680049303A CN 101346324 A CN101346324 A CN 101346324A
Authority
CN
China
Prior art keywords
resin
composite proppant
microvesicle
multipolymer
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800493036A
Other languages
English (en)
Other versions
CN101346324B (zh
Inventor
马德琳·P·振八
斯科特·R·库勒
欧内斯特·L·瑟伯
约翰·T·沃勒茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN101346324A publication Critical patent/CN101346324A/zh
Application granted granted Critical
Publication of CN101346324B publication Critical patent/CN101346324B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

公开了一种复合支撑剂颗粒,其各包含多个微泡和一种树脂粘结剂。另外公开的是一种使用这种复合支撑剂颗粒来支撑在地下地层中形成的井中裂缝的方法。

Description

低密度支撑剂颗粒及其使用
技术领域
本发明涉及新型的低密度支撑剂颗粒及其使用方法。
背景技术
压裂是一种设计用于通过在井周围的开采地质层中产生高导裂缝或通道来增加井(如油井)生产力的井增产技术。一种方法是水力压裂,为这样一种工艺:涉及以高速和高压注入流体以使地层破裂并且在岩石中产生裂缝,然后将包含颗粒物质(支撑试剂或支撑剂)的流体泵入这些裂缝中,通过抵抗趋于使裂缝闭合的力来保持裂缝或裂缝敞开。因此,支撑剂的功能是在支撑裂缝中提供高渗透性。已越来越频繁地使用水力压裂来提高低渗透性贮层中气井和油井的生产力。用于形成并支撑高导裂缝的另一种方法利用了蚀刻溶液,如美国专利No.4,245,702和4,249,609(均为Haafkens等人)中所公开的酸蚀刻工艺。压裂和支撑的其它示例性实例公开于美国专利No.3,642,068(Fitch等人)、No.3,709,300(Pye)和No.4,029,148(Emery)中。
已作为支撑剂公开的颗粒物质的列表包括:砂子、坚果外壳、铝和铝合金、木片、碎焦炭、粒化矿渣、粉煤、碎石、金属(如钢)颗粒、烧结矾土、烧结氧化铝、耐火材料如莫来石和玻璃珠。尽管砂子仍是一种普遍的支撑剂,但在深地层中遇到的封闭应力下,它趋于破裂,产生可降低受支撑裂缝的渗透性的碎屑或碎片。这种趋势在大于约5,000psi(34.5MPa)的封闭应力下开始。
为了经受深井中增加的超重压力而开发的支撑剂是烧结矾土,如美国专利No.4,068,718,和氧化锆,如美国专利No.4,072,193。也提出了带涂层的支撑剂,如美国专利No.3,376,930中的金属涂覆的支撑剂和美国专利No.3,026,938中的塑料涂敷的支撑剂。美国专利No.3,976,138(Colploys,Jr.等人)公开了氧化铝支撑剂的使用。
烧结矾土具有高球形度并且在井地层中具有良好的化学稳定性。然而,它的成本比更普遍的砂子支撑剂要高得多。由于矾土的比重比砂子大得多,因此单位体积矾土的成本比砂子更加昂贵。
矾土较高的比重影响支撑剂输送进裂缝中。一般而言,低比重的支撑剂能比高比重的支撑剂更深地送入裂缝中。低比重的支撑剂使得能够在支撑剂放置过程中降低泵入速度,这继而降低了底部洞压。据认为底部洞压的降低限制了裂缝的竖直蔓延(水平蔓延是所期望的)。此外,较低的支撑剂密度使得能够使用较廉价的压裂流体。
根据美国能源部所进行的一项研究,公布于1982年4月(Cutler,R.A.和Jones,A.H.,“用于深气井增产的轻重量支撑剂”(Lightweight Proppants for Deep Gas Well Stimulation)DOE/BC/10038-22),用于水力压裂的理想支撑剂应具有下列条件:小于2的比重,能够经受138MPa的闭合应力;在小于200℃的温度下在盐水中是化学惰性的,具有完美的球形度(Krumbein圆度为1),按照体积基准与砂子花费相同,并且具有较窄的支撑剂尺寸分布。同一报告承认这种支撑剂在可预见的将来还不可能出现;然而,它指出能够经受85MPa闭合应力,具有2.6至3的比重,并且花费矾土价格的1/3至1/2的支撑剂将解决当前水力压裂问题的约90%。
美国专利No.4,680,230和No.4,944,905(均为Gibb等人)公开了颗粒状陶瓷粉及其在水力压裂作为支撑剂的用途。
发明内容
本发明提供了一类新型的用作地下井中的支撑剂的复合颗粒,以及一种用于使用这种复合支撑剂颗粒来改善主流体经过支撑通道的流动的方法。
简而言之,本发明的支撑剂是复合颗粒,其每个包含多个高强度微泡和树脂粘结剂。
简而言之,本发明的方法包括:(a)将载流体和多个复合支撑剂颗粒的流体混合物引入到地下地层中的井内,其中所述复合支撑剂包含多个高强度微泡和树脂粘结剂的复合物,并且所述井在其侧壁上具有裂缝,和(b)将多个所述复合支撑剂颗粒沉积在裂缝中以产生一个或多个支撑通道。在一些实施例中,除了支撑钻井侧壁中的敞开裂缝之外,本发明的方法还可包括在井的侧壁中形成裂缝和/或通过支撑通道输送主流体,如石油或天然气。
本发明的复合支撑剂颗粒具有低的密度,因此如果需要,可使用低密度载流体将其沉淀在裂缝中。本发明的方法可用于改善井的性能,如,从地下地层中提取主流体或将主流体注入地下储层中例如用于储存。本发明可用于多种主流体,如原油或精炼油、天然气和水。
示例性实施例的具体实施方式
复合支撑剂颗粒
本发明的复合支撑剂颗粒各包含多个微泡和与聚合物树脂的复合物。
所述复合支撑剂颗粒可制成任何期望的尺寸和形状。所述尺寸和形状将部分取决于诸如使用的组分材料、要支撑的井裂缝、将支撑剂颗粒注入井中所使用的设备,以及使用的载流体等因素。
在一些实施例中,本发明的复合支撑剂颗粒将制成相对非球形的形状。例如,在本发明的一些实施例中,复合支撑剂颗粒具有小于约0.9,在某些情况下小于约0.7的球形度,球形度按照美国石油学会方法RP56,第5部分测量。
复合支撑剂颗粒可能涵盖了从具有其中分散有多个微泡的基本上连续的聚合物树脂相的颗粒到包含通过基本上不连续的聚合物树脂相结合在一起的微泡团聚物的复合支撑剂颗粒。还可以想到具有中等比例的微泡和树脂粘结剂的复合支撑剂颗粒。通常,本发明的复合支撑剂颗粒将包含按约0.1重量%至约75重量%的微泡。
本发明的复合支撑剂颗粒通常具有约5至约1000微米,优选约10至约800微米的平均尺寸。在一些实施例中,颗粒将具有超过约200微米的平均尺寸。
本发明的复合支撑剂颗粒通常具有约0.5至约1.8g/cm3的密度。优选的是密度为约0.8至约1.2g/cm3
本发明的复合支撑剂颗粒通常具有500psi(3.45MPa)或更大,在一些实施例中约2000psi(13.8MPa)或更大,在其它实施例中约10,000psi(69.0MPa)或更大的全同破裂强度。具体应用所需要的压缩破裂强度大部分取决于将使用支撑剂颗粒的深度。处于较浅的深度,微泡组分的压缩强度不必很高,但处于非常大的深度,在深的海底应用中,施加在微泡组分上的静水压力变得巨大,微泡组分应当具有非常高的抗压缩力(高压缩强度)。中空微泡由于其球形的形状,提供所有方向相等的抗压缩力(各向同性的压缩强度),并且很理想地适于该应用。
微泡
用于本发明的复合支撑剂中的微泡可为许多类型的中空泡,例如所熟知的那些。微泡优选由玻璃制成,但也可由陶瓷、树脂或其它材料制成,前提条件是微泡具有足以经受使用中所遇到的恶劣条件的物理特性,包括破裂强度、水解稳定性、尺寸、密度和与选作粘结剂材料的聚合物树脂的相容性。
可用于本发明的复合支撑剂颗粒中的微泡是中空的。它们通常为椭圆体形状,并且在某些情况下可为基本上球形形状。在某些情况下,它们形状可为坑状的。所有这些颗粒在本文以及所附的权利要求书中均称为“微泡”。
用于本发明的复合支撑剂中的微泡通常具有约5至约1000微米,优选约10至约800微米的平均尺寸。可使用包括不同尺寸或一定尺寸范围的微泡。
因为微泡在井中要经受高压,所以微泡应当具有超过预期压力的破裂强度。一般来讲,微泡组分应当具有超过4000psi(27.6MPa),优选超过5000psi(34.5MPa),更优选超过10,000psi(69.0MPa),并且甚至更优选超过15,000psi(103MPa)的破裂强度,使用ASTM D3102-78测量,用10%破裂和总体积的百分比而不是该测试方法中所述的空隙率。优选微泡的一个示例性实例为3MTM S60HS玻璃泡,其具有超过18,000psi(124MPa)的破裂强度。
合适的玻璃微泡早在许多年前就已为人们所知,如欧洲专利0091,555和美国专利No.2,978,340、No.3,030,215、No.3,129,086、No.3,230,064所示,所有这些专利提出了一种制造工艺,其涉及同时的玻璃形成组分熔融和熔融物膨胀。U.S.3,365315(Beck)、4,279,632(Howell)、4,391,646(Howell)和U.S.4,767,726(Marshall)提出了一种可供选择的工艺,其涉及加热包含无机气体形成剂的玻璃组合物,并且将所述玻璃加热至足以释放所述气体的温度,并且在此温度下,玻璃具有小于约104泊的粘度。
通常,本文使用的微泡具有至少0.1g/cm3,通常介于约0.1和约0.9g/cm3之间,并且优选介于约0.2和约0.9g/cm3之间的密度。本文所述密度的测量(按照ASTM D-2840-69)是通过称量微泡样品的重量,然后用空气比较比重瓶(如AccuPycTM 1330比重瓶或BeckmanTMModel 930)确定样品的体积。通常,较高密度的微泡将呈现较高的强度。微泡通常具有约5至约1000微米,并且优选约10至约800微米的平均直径。
合适尺寸、形状和密度的微泡可利用许多方法来制备。用于形成可用于本文的微球的示例性方法和装置在美国专利3,129,086或3,230,064中有所描述。
一种制备适用于本文的玻璃微球的方法在美国专利3,030,215中提出,其描述了在玻璃形成氧化物的未熔融原料中包含发泡剂。混合物的后续加热同时使所述氧化物熔融以形成玻璃并触发发泡剂引起膨胀。美国专利3,365,315描述了一种形成玻璃微球的改进方法,其中预成形的非晶态玻璃颗粒随后被重新加热并转化成玻璃微球。美国专利4,391,646公开了将约1至约30重量%的B2O3或三氧化硼掺入用于形成微球的玻璃中,如美国专利3,365,315一样,改善了强度、流体特性以及潮湿稳定性。少量的硼酸钠残留在这些微球的表面上,在大多数应用中不会造成问题。通过洗涤除去硼酸钠是可以的,但显著增加费用;然而即使在进行洗涤的情况下,一段时间后另外的硼酸钠将浸出。
美国专利4,767,726(Marshall)公开了一种用于生产中空玻璃微球的方法,所述微球可用于本文并且表现出良好的水解稳定性。这些微球由硼硅酸盐玻璃制成,并且具有基本上由SiO2、CaO、Na2O、B2O3和SO3发泡剂组成的化学组成。所述微球的一个特征在于碱土金属氧化物:碱金属氧化物(RO∶R2O)比率,所述比率基本上超过1∶1,并且大于任何原先使用的简单硼硅酸盐玻璃组合物中存在的比率。随着RO∶R2O比率增加超过1∶1,简单硼硅酸盐组合物逐渐变得不稳定,在传统工作和冷却循环过程中变得不透明,以使得“玻璃”组合物是不可能的,除非组合物中包含诸如Al2O3这样的稳定剂。已发现这种不稳定的组合物对于制备玻璃微球,通过水骤冷使熔化气体迅速冷却以形成玻璃料,防止反玻璃化是高度期望的。在后续的气泡形成过程中,如上述美国专利3,365,315和4,391,646中所提出,微球冷却如此之迅速以致于防止了反玻璃化,尽管事实上在成形过程中由于相对较易挥发性碱金属氧化物的损失而使RO∶R2O比率甚至进一步增加。这些微球具有0.08或更小至约0.8g/cm3的密度,较低密度的产品每单位体积更经济。然而,具有较高密度的玻璃微球尤其可用于本发明需要相对轻重量的微球具有高抗破裂力的情况。这些其中化学组成以重量%表示的微球基本上由至少70%SiO2,8%至15%RO,3%至8%R2O,2%至6%B2O3和0.125%至1.50%SO3组成,上述组分组成了玻璃的至少约90%(优选94%,还更优选97%),RO∶R2O重量比率在1.2至3.5范围内。
通过喷雾干燥制备中空陶瓷微球在美国专利4,421,562中提出。美国专利4,637,990描述了通过吹制方法制备的中空陶瓷多孔微球。美国专利4,279,632公开了一种用于生产同心中空球体的方法和装置,使用振动方法在挤出的材料上将材料破碎成单独的球形体。此方法可用于低熔点材料,如在高操作温度下为流体的玻璃或金属。通过涂层、烧结和还原组合制得的中空陶瓷球公开于美国专利4,039,480中。然而,该工艺复杂,并且如此所得到的球通常较大。通过将中空的有机树脂微球用金属化合物浸渍,然后焙烧除去辅助剂所制得的陶瓷金属氧化物微球公开于美国专利3,792,136中。美国专利2,978,340描述了由熔合(熔融或玻璃质)工艺使用放气剂所制得的无机微球。该产品尺寸不均匀,并且微球不全是中空的。
低密度的中空陶瓷球可利用美国专利4,111,713和4,744,831中提出的工艺来制备,所述工艺包括:
(1)将以下两部分一起翻转并充分混合:(a)包含热易变有机粘结剂材料的可凝固液体小珠,和适于以气体放出并将液体小珠转换成中空状况的空隙形成剂源;和(b)大量微小的离散自由流动的无机可热烧结脱模剂颗粒,选自金属、准金属、金属氟化物和金属盐,其在翻转过程中被液体小珠润湿并至少部分吸收于液体小珠内;存在足够的脱模剂颗粒,以使得任何未为脱模剂所覆盖的液体小珠部分与离散的未吸收脱模剂颗粒一起翻转;
(2)在翻转过程中提供条件,并且翻转足够的时间,以使空隙形成剂以气体放出并在液体小珠内形成中心内部空间,并且使由此中空的液体小珠凝固;
(3)当其凝固至形状保持状态后,收集转化后的小珠;以及
(4)焙烧所述中空球以便首先烧完有机粘结剂,然后烧结脱模剂颗粒形成中空的形状保持球体。
另一个可用的陶瓷微球在美国专利5,077,241(Moh等人)中提出,其包括基本上由至少一种非氧化物组分(或相)和一种氧化物组分(或相)组成的微球,每个微球具有陶瓷壁和一个中心空腔,所述微球具有在约1至约300微米范围内的直径,和至少约微球直径的10%的壁厚。这种陶瓷微球可由以下方法制备:
(1)提供包含陶瓷溶胶前体和挥发性液体的混合物,所述挥发性液体在本文被称为膨胀剂,
(2)将上述混合物,优选以小滴的形式,以合适的速度和方式加入保持在合适温度下的预备好的气泡促进介质中,以便能够形成未加工的中空微球体;优选的是所述气泡促进介质是一种液体,例如脂肪醇如油醇,或长链羧酸酯诸如花生油,或它们的混合物,或油醇与其它植物油或植物油衍生物的混合物,
(3)分离所述未加工的微球,优选通过过滤,以及
(4)对于含氧化物陶瓷微泡在空气中或者对于含非氧化物微球在惰性或还原气氛中,在足以将未加工微球转换成含氧化物或非氧化物陶瓷的温度下焙烧所述未加工的微球,任选与预防凝聚剂混合以提供碳源。
本发明的优点是本发明复合颗粒中所用的微泡以及复合支撑剂颗粒自身可制成具有相对均匀的尺寸和形状,或者制备或选择使得它们尺寸、形状或两者显著不同。尺寸、形状或两者的变化可基本上是无规的,或可根据所需的分布。
粘结剂树脂以及复合支撑剂颗粒的制造
聚合物粘合剂树脂可为热塑性或热固性树脂。
热塑性聚合物可用作复合支撑剂颗粒中的粘结剂。可用于本发明的热塑性聚合物包括,但不限于可熔融加工的聚烯烃和共聚物及其共混物,苯乙烯二元共聚物和三元共聚物(例如KRATONTM),离聚物(例如沙林TM),乙烯醋酸乙烯酯(例如ELVAXTM),聚丁酸乙烯酯,聚氯乙烯,茂金属聚烯烃(例如AFFINITYTM和ENGAGETM),聚(α石蜡)(例如VESTOPLASTTM和REXFLEXTM),乙烯-丙烯-二烯三元共聚物,碳氟化合物弹性体(例如3M Dyneon的THVTM),其它含氟聚合物,聚酯聚合物和共聚物(例如HYTRELTM),聚酰胺聚合物和共聚物,聚氨酯(例如ESTANETM和MORTHANETM),聚碳酸酯,聚酮,聚脲,丙烯酸盐,以及甲基丙烯酸酯。热塑性聚合物包括均聚物和共聚物的共混物,以及两种或更多种均聚物或共聚物的共混物。在此所用的“可熔融加工的”是指具有3至30g/10分钟的熔融指数的热塑性聚合物。
可用的聚酰胺聚合物包括,但不限于合成的直链聚酰胺,例如尼龙-6和尼龙-66、尼龙-11或尼龙-12。应该指出的是,可基于所得增强型复合制品的具体应用物理的需求来选择具体的聚酰胺材料。例如,尼龙-6和尼龙-66可提供比尼龙-11或尼龙-12更高的耐热特性,而尼龙-11和尼龙-12可提供更好的化学稳定特性。除了那些聚酰胺材料以外,还可使用其它尼龙材料,诸如尼龙-612、尼龙-69、尼龙-4、尼龙-42、尼龙-46、尼龙-7、和尼龙-8。也可使用包含环的聚酰胺,如尼龙-6T和尼龙-61。也可使用包含聚醚的聚酰胺,例如PEBAXTM聚酰胺(宾夕法尼亚州费城的Atochem North America公司)。
可使用的聚氨酯聚合物包括脂族、脂环族、芳族和多环聚氨酯。通常根据熟知的反应机理,通过多官能异氰酸酯与多元醇的反应来制备这些聚氨酯。可用于本发明中的市售的聚氨酯聚合物包括:购自新罕布什尔州锡布鲁克的Morton International公司的PN-04或3429,以及购自俄亥俄州克利夫兰的B.F.Goodrich公司的X4107。
还可用的是聚丙烯酸酯和聚甲基丙烯酸酯,其包括例如,举例来说,丙烯酸、丙烯酸甲酯、丙烯酸乙酯、丙烯酰胺、甲基丙烯酸、甲基丙烯酸甲酯、丙烯酸正丁酯和丙烯酸乙酯的聚合物。
其它可用的可挤出烃聚合物包括聚酯、聚碳酸酯、聚酮和聚脲。这些材料通常是市售的,例如:聚酯(杜邦,特拉华州威尔明顿);
Figure A20068004930300152
聚碳酸酯(通用电气,马萨诸塞州匹兹菲尔德);
Figure A20068004930300153
聚酮(阿莫科(Amoco),伊利诺斯州芝加哥);以及
Figure A20068004930300154
聚脲(陶氏化学,密歇根州米德兰)。
可用的含氟聚合物包括晶体或部分晶体的聚合物例如四氟乙烯与一种或多种其它单体例如全氟代(甲基乙烯基)醚、六氟丙烯、全氟代(丙基乙烯基)醚的共聚物;四氟乙烯与烯键式不饱和烃单体例如乙烯或丙烯的共聚物。
可用于本发明的其它含氟聚合物包括基于偏二氟乙烯的那些例如聚偏氟乙烯(PVDF);偏二氟乙烯与一种或多种其它单体例如六氟丙烯、四氟乙烯、乙烯、丙烯的共聚物,等等。因为本公开,其它可用的含氟可挤出聚合物对于本领域内的技术人员是已知的。
可用于本发明的聚烯烃的代表性实例为聚乙烯、聚丙烯、聚丁烯、聚(1-丁烯)、聚(3-甲基丁烯)、聚(4-甲基戊烯)以及乙烯与丙烯、1-丁烯、1-己烯、1-辛烯、1-癸烯、4-甲基-1-戊烯和1-十八烯的共聚物、以及它们的共混物。可用的市售聚烯烃包括可得自特拉华州布卢明顿的巴塞尔(Basell)的MOPLENTM和ADFLEXTM KS359聚丙烯,可得自新泽西州埃迪逊的埃克森美孚的SRC 7644聚丙烯。
可用于本发明的聚烯烃的代表性共混物是包含以下部分的共混物:聚乙烯和聚丙烯,低密度聚乙烯和高密度聚乙烯,以及聚乙烯和包含共聚单体的烯烃共聚物,其中一些上面有所描述,如乙烯和丙烯酸共聚物;丙烯酸乙酯和丙烯酸甲酯的共聚物;乙烯和丙烯酸乙酯共聚物;乙烯和乙酸乙烯酯共聚物,乙烯、丙烯酸和丙烯酸乙酯共聚物,以及乙烯、丙烯酸和乙酸乙烯酯共聚物。
可用的热塑性聚烯烃还可包括官能化的聚烯烃,即,具有通过烯烃单体与官能团单体共聚或烯烃聚合后接枝共聚所获得的附加化学官能团的聚烯烃。通常,此类官能化基团包含O、N、S、P或卤素杂原子。此类活性官能化基团包括羧酸、羟基、酰胺、腈、羧酸酐或卤素基团。许多官能化聚烯烃可商购获得。例如,共聚材料包括乙烯-醋酸乙烯共聚物,诸如可从杜邦化学(特拉华州威尔明顿)商购获得的ELVAXTM系列、也得自杜邦的ELVAMIDTM系列乙烯-聚酰胺共聚物以及可从联合碳化物公司(康涅狄格州丹伯里)商购获得的包含大约10重量%的羧酸官能团的基于聚乙烯的共聚物ABCITETM1060WH。接枝共聚的官能化聚烯烃的实例包括马来酸酐接枝的聚丙烯,诸如可从田纳西州金斯波特的伊士曼(Eastman)化学品公司商购获得的EPOLENETM系列,以及可从特拉华州威尔明顿的Himont U.S.A.公司商购获得的QUESTRONTM
在一个制备复合支撑剂颗粒的优选方法中,所述微泡,优选玻璃微球在低剪切条件下定量供给到热塑性聚合物的熔融流中形成混合物,然后将该混合物成形为期望的尺寸和形状。该工艺可包括一个两阶挤出工艺,其中热塑性聚合物在挤出机的一阶内熔融,然后传输至二阶,在此将微泡加入熔融流中。微泡与热塑性树脂在二阶内混合,然后将混合物除气并以期望的形式挤出。
热固性聚合物可用作本发明复合支撑剂颗粒的粘结剂。如本文所用,热固性是指当固化时不可逆地凝固或凝结的聚合物。可固化粘结剂前体可通过辐射能或热能来固化。可热凝固的组合物可包含具有辐射或热可交联官能团的组分,使得当暴露于辐射固化能时所述组合物可固化以使所述组合物固化或凝固,即,聚合和/或交联。辐射固化能的代表性实例包括电磁能(如,红外能、微波能、可见光、紫外光等等)、加速粒子(如电子束能量),和/或来自电子放电的能量(如,电晕放电、等离子、辉光放电或无声放电)。
辐射可交联官能团是指直接或间接附属于当暴露于合适的辐射固化能量源时参与交联和/或聚合反应的单体、低聚物或聚合物主链的官能团。这种官能团通常不仅包括辐射暴露时通过阳离子机理交联的基团,还包括通过自由基机理交联的基团。适于本发明实际中的辐射可交联基团的代表性实例包括环氧基团、(甲基)丙烯酸酯基团、烯属的碳-碳双键、烯丙基醚基团、苯乙烯基团、(甲基)丙烯酰胺基团、这些的组合等等。
通常,辐射可固化粘结剂前体材料包含至少一种环氧树脂、丙烯酸酯化的氨基甲酸酯树脂、丙烯酸酯化的环氧树脂、烯键式不饱和树脂、具有至少一个侧不饱和羰基的氨基塑料树脂、具有至少一个侧丙烯酸酯基团的异氰脲酸酯衍生物、具有至少一个侧丙烯酸酯基团的异氰酸酯衍生物,或它们的组合。其它合适的热固性聚合物包括衍生自酚醛树脂、乙烯基酯树脂、乙烯基醚树脂、氨基甲酸酯树脂、坚果壳树脂、萘酐型酚醛树脂、环氧改性的酚醛树脂、有机硅(水硅烷和可水解硅烷)树脂、聚酰亚胺树脂、脲醛树脂、亚甲基二苯胺树脂、甲基吡咯烷酮树脂、丙烯酸酸与甲基丙烯酸酯树脂、异氰酸酯树脂、不饱和聚酯树脂,以及它们的混合物的那些。
可提供一种聚合物前体或多种聚合物前体来形成所期望的热固性聚合物。如果需要,所述聚合物前体或热固性树脂可包括单体,或可包括部分聚合的低分子量的聚合物,例如低聚物。如果需要,还可提供溶剂或硬化剂,例如催化剂。在一种方法中,微泡组合物可通过将微泡与聚合物前体或树脂混合,随后使该聚合物前体或树脂固化来制备。可通过蒸发将溶剂(如果有的话)除去。蒸发和聚合可发生在聚合基本上完成后。
环氧树脂(环氧化物)单体和预聚物通常用于制备热固性环氧树脂材料,并且是本领域熟知的。可热凝固的环氧树脂化合物可通过阳离子聚合反应来固化或聚合。含环氧树脂的单体也可包含其它环氧化合物或包含环氧树脂的单体与热塑性材料的共混物。包含环氧树脂的单体可与具体材料共混以增强固化或部分固化组合物的最终用途或应用。
可用的含环氧树脂材料包括具有至少一个可通过开环反应聚合的环氧乙烷环的环氧树脂。这种广义上称为环氧化物的物质包括单体的和聚合的环氧化物两者,并且可为脂族、脂环族或芳族。这些物质通常平均每个分子具有至少两个环氧基团,并优选每个分子具有超过两个的环氧基团。每个分子的平均环氧基团数在本文中定义为含环氧树脂的物质中的环氧基团数除以存在的环氧分子总数。聚合物的环氧化物包括具有末端环氧基团的线型聚合物(如,聚亚氧烷基乙二醇的二缩水甘油醚),具有骨架环氧乙烷单元的聚合物(如,聚丁二烯聚环氧化合物),以及具有侧环氧基团的聚合物(如,甲基丙烯酸缩水甘油酯聚合物或共聚物)。包含环氧树脂的物质的分子量可从58至约100,000变化或更高。也可使用各种含环氧树脂物质的混合物。
可用于本发明的一些环氧树脂的实例包括2,2-双[4-(2,3-环氧丙基氧代)苯基]丙烷(双酚A的二缩水甘油醚)和商品名称为“EPONTM828”、“EPONTM 1004”和“EPONTM 1001F”,可从俄亥俄州哥伦布的瀚森特种化学品公司商购获得的物质,可从德克萨斯州自由港的陶氏化学公司商购获得的“DER-331”、“DER-332”和“DER-334”。其它合适的环氧树脂包括苯酚甲醛酚醛型的缩水甘油基醚(如,可从陶氏化学公司商购获得的“DEN-431”和“DEN-428”)以及可从密歇根州米德兰的陶氏商购获得的BLOXTM220热塑性环氧树脂。用于本发明中的环氧树脂可通过阳离子机理利用加入适当的光引发剂来聚合。这些树脂进一步描述于美国专利4,318,766和4,751,138中,其以引用方式并入。此外,它们可通过催化剂和/或固化助剂固化,其中催化剂和/或固化助剂,有时称为交联剂,可用于开环并使两个或多个链联在一起形成交联聚合物。例如,多元羧酸酐和其它多官能的化合物例如聚胺、多元羧酸、聚硫醇、多元酸卤化物等能够联接两个或更多个环氧位点。优选的聚胺为双氰双胺(可得自宾夕法尼亚州阿伦敦的空气化工产品公司,商品名称为AMICURETMCG-1400)。结果是交联或硬化聚合物中三维结构的量增加,从而聚合物结构的硬度量增加。
在某些情况下,在根据本发明所述的组合物中包含环氧固化催化剂可能是有用的。环氧固化催化剂是熟知的,并且包括咪唑例如2-乙基咪唑,以及2-乙基-4-甲基咪唑(如,以商品名称“IMICURETMEMI-2,4”由宾夕法尼亚州阿伦敦的空气化工产品公司(Air Products andChemicals)出售),以及2-丙基咪唑(如,商品名称“ACTIRONTMNXJ-60”由北卡罗来纳州摩根顿的先创(Synthron)出售);以及路易斯酸复合物例如三氟化硼和三氯化硼复合物,包括例如以商品名称“OMICURETMBC-120”由新泽西州梅普尔谢德的“CVC特种化学品公司”(CVCSpecialty Chemicals)出售的BF3·二乙胺和BCl3·胺复合物。
其它已知的环氧固化催化剂包括脂族和芳族叔胺,包括例如二甲基丙胺、吡啶、二甲基氨基吡啶和二甲基苄胺。
示例的丙烯酸酯化氨基甲酸酯树脂包括羟基封端的异氰酸酯扩展的聚酯或聚醚的二丙烯酸酯.市售的丙烯酸酯化氨基甲酸酯树脂实例包括“UVITHANETM782”和“UVITHANETM783”,两者均可得自密西西比州莫斯波因特的莫顿希欧寇化学(Morton Thiokol Chemical),以及“CMD 6600”、“CMD 8400”和“CMD 8805”,所有可得自得克萨斯州潘帕的Radcure Specialties。
示例的丙烯酸酯化环氧树脂包括环氧树脂的二丙烯酸酯,例如环氧树脂如双酚的二丙烯酸酯。市售的丙烯酸酯化环氧树脂实例包括“CMD 3500”、“CMD 3600”和“CMD 3700”,可得自RadcureSpecialties。
示例的烯键式不饱和树脂包括包含碳、氢和氧原子,以及任选氮或卤素原子的单体和聚合化合物。氧原子、氮原子或两者通常存在于醚、酯、氨基甲酸酯、酰胺和尿素基团中。烯键式不饱和树脂通常具有小于约4,000的分子量,并且在一个实施例中为由包含脂肪族一羟基基团或脂肪族多羟基基团的化合物与不饱和羧酸,例如丙烯酸、甲基丙烯酸、衣康酸、巴豆酸、异巴豆酸、马来酸等反应所得的酯。
其它可用丙烯酸酯的代表性实例包括甲基丙烯酸甲酯、甲基丙烯酸乙酯、二丙烯酸乙烯乙二醇酯、甲基丙烯酸乙烯乙二醇酯、己二醇二丙烯酸酯、三乙二醇二丙烯酸酯、三羟甲基丙烷三丙烯酸酯、甘油三丙烯酸酯、季戊四醇三丙烯酸酯、季戊四醇甲基丙烯酸酯和季戊四醇四丙烯酸酯。其它可用的烯键式不饱和树脂包括羧酸的单烯丙基、聚烯丙基和聚甲基烯丙基酯和酰胺,例如二烯丙基邻苯二甲酸酯、二烯丙基己二酸酯和N,N-二烯丙基己二酰胺。其它可用的烯键式不饱和树脂包括苯乙烯、二乙烯基苯和乙烯基甲苯。其它可用的含氮烯键式不饱和树脂包括三(2-丙烯酰-乙氧(2-丙烯酰-乙氧基)异氰脲酸酯、1,3,5-三(2-甲基丙烯酰乙氧基)-s-三嗪、丙烯酸丙烯酰胺、甲基丙烯酰胺、N-甲基丙烯酰胺、N,N-二甲基丙烯酰胺、N-乙烯基吡咯烷酮和N-乙烯基哌啶酮。
一些可用的氨基塑料树脂可通常,氨基塑料树脂每个分子具有至少一个侧α,β-不饱和羰基。这些α,β-不饱和羰基可为丙烯酸酯、甲基丙烯酸酯或丙烯酸丙烯酰胺基团。这种树脂的实例包括N-羟甲基-丙烯酸丙烯酰胺、N,N′-氧代二亚甲基双丙烯酰胺、邻和对丙烯醛基氨基甲基化的酚、丙烯醛基氨基甲基化的酚的酚醛树脂,以及它们的组合。这些物质进一步描述于美国专利4,903,440和5,236,472中,其以引用方式并入。
可用的具有至少一个侧丙烯酸酯基团的异氰脲酸酯衍生物和具有至少一个侧丙烯酸酯基团的异氰酸酯衍生物进一步描述于美国专利4,652,274中,其以引用方式并入。一种这类异氰脲酸酯物质是三(2-羟基乙基)异氰脲酸酯。
适用于本发明的乙烯基醚的实例包括乙烯基醚官能化的氨基甲酸酯低聚物,可从新泽西州莫里斯镇的联合信号公司(Allied-Signal)以商品名称“VE 4010”、“VE 4015”、“VE 2010”、“VE 2020”和“VE4020”商购获得。
酚醛树脂成本低,耐热,并且具有极好的物理特性。酸固化甲阶酚醛树脂树脂公开于美国专利4,587,291中。用于本发明的一些实施例中的酚树脂可具有小于5%的单体酚含量。所述树脂也可按照已知方法另外用最多30%的脲、三聚氰胺或糠醇进行改性。
酚甲阶酚醛树脂是酚与醛的碱性缩合反应产物,其中可使用单核或多核的酚。更详细地,单核酚以及单官能和多官能的酚,如苯酚本身,以及烷基取代的同系物,如邻、间、对-甲酚或二甲苯酚是适用的。另外适用的是卤素取代的酚,如氯代或溴代酚,以及多官能的酚,如间苯二酚或邻苯二酚。术语“多核酚”是指具有稠合环的化合物,例如萘酚。多核酚也可通过脂族键或通过杂原子(例如氧)相连。多官能的多核酚也可以会形成合适的热固性苯基甲阶酚醛树脂。
用于形成酚甲阶酚醛树脂的醛组分可为甲醛、乙醛、丙醛或丁醛,或者在缩合条件下释放醛的产品,例如,甲醛亚硫酸氢盐、六甲撑四胺、三羟基亚甲基、多聚甲醛或三聚乙醛。酚和醛组分的化学计量量可为1∶1.1至1∶3.0的比率。树脂可以具有约60%至约85%非挥发性物质含量的水溶液形式使用。
也可使用环氧丙烷环状单体来形成基质相热固性聚合物。环氧丙烷(氧杂环丁烷)环的行为有点类似环氧(环氧乙烷)环,其中催化剂和/或固化助剂,有时称为交联剂,可用于开环并使两个或多个链联在一起形成交联聚合物。例如,多元羧酸酐和其它多官能的化合物例如聚胺、多元羧酸、聚硫醇、多元酸卤化物等能够联接两个或更多个环氧丙烷位点,正如环氧位点通过环氧化物固化助剂联接一样。结果是交联或硬化聚合物中三维结构的量增加,从而聚合物结构的硬度量增加。
微泡与可固化粘结剂前体材料的混合物可通过引发剂来固化,所述引发剂选自由下列组成的组:光引发剂、热引发剂,以及它们的组合。如本文所用,当在至少部分固化步骤中使用热能时可使用热引发剂,而当在至少固化步骤中使用紫外光和/或可见光时可使用光引发剂。引发剂的要求可取决于所用的可固化粘结剂前体的类型和/或在至少部分固化步骤中所用的能量类型(如,电子束或紫外光)。例如,当至少热固化时,酚基可固化粘结剂前体通常不需要加入引发剂。然而,在至少热固化时,丙烯酸酯基可固化粘结剂前体通常需要加入引发剂。又如,当在至少部分固化步骤中使用电子束能量时,通常不需要引发剂。然而,如果使用紫外光或可见光,组合物中通常包含光引发剂。
当暴露于热能时,热引发剂产生自由基源。然后自由基源引发可固化粘结剂前体的聚合。示例的热引发剂包括有机过氧化物(例如,过氧化苯甲酰)、偶氮化合物、苯醌、亚硝基化合物、酰基卤、腙、巯基化合物、吡喃鎓化合物、咪唑、氯三嗪、安息香、安息香烷基醚、二酮、苯酮,以及它们的混合物。适用作本发明中热引发剂的偶氮化合物可以商品名称“VAZOTM52”、“VAZOTM64”和“VAZOTM67”获得自特拉华州威尔明顿的杜邦公司(E.I.duPont deNemours andCo.)。
当暴露于紫外光或可见光时,光引发剂产生自由基源或阳离子源。然后此自由基或阳离子源引发可固化粘结剂前体的聚合。
当暴露于紫外光时产生自由基源的示例光引发剂包括,但不限于选自由下列组成的组的那些:有机过氧化物(如,过氧化苯甲酰)、偶氮化合物、苯醌、二苯甲酮、亚硝基化合物、酰基卤、腙、巯基化合物、吡喃鎓化合物、三丙烯醛基咪唑、双咪唑、氯烷基三嗪、安息香醚、联苯酰缩酮、噻吨酮和苯乙酮衍生物、以及它们的混合物。当暴露于可见光时产生自由基源的光引发剂的实例进一步描述于美国专利4,735,632(Oxman等人)中,该专利的公开内容以引用的方式并入本文。
阳离子光引发剂产生酸源来引发环氧树脂或氨基甲酸酯的聚合。示例的阳离子光引发剂包括具有鎓阳离子以及金属或准金属的含卤素复合物阴离子的盐。其它可用的阳离子光引发剂包括具有有机金属复合物阳离子和金属或准金属的含卤素复合物阴离子的盐。这些光引发剂进一步描述于美国专利4,751,138(Tumey等人)中,该专利的公开内容以引用的方式并入本文。另一个实例为有机金属盐和鎓盐,其描述于美国专利4,985,340(Palazotto等人)中;该专利的公开内容以引用的方式并入本文。其它阳离子光引发剂包括有机金属复合物的离子盐,其中所述金属选自IVB、VB、VIB、VIIB和VIIIB周期族的元素。这些光引发剂进一步描述于美国专利5,089,536(Palazotto)中,该专利的公开内容以引用的方式并入本文。
适用于本发明的紫外光活化的光引发剂可以商品名称“IRGACURETM651”、“IRGACURETM184”、“IRGACURETM369”和“IRGACURETM819”获得自密西西比州Winterville的汽巴公司,以“Lucirin TPO-L”获得自新泽西州利文斯通的BASF公司,以及以“DAROCURTM1173”获得自新泽西州罗韦的默克公司(Merck & Co.)。在一个实施例中,引发剂(光引发剂、热引发剂,或它们的组合)的总量可为所述可固化粘结剂前体的约0.1重量%至约10重量%;在另一个实施例中,为所述可固化粘结剂前体的约1重量%至约5重量%。如果同时使用光引发剂和热引发剂,光引发剂与热引发剂的比率介于约3.5∶1至约1∶1之间。
当使用热固性树脂时,微泡复合物的制备可通过形成包含所述热固性树脂粘结剂和微泡的前体颗粒,然后使该颗粒固化。在一个优选的实施例中,第一步涉及迫使粘结剂和微泡通过打孔基板以形成团聚前体颗粒。接着,将团聚前体颗粒从打孔基板上分离,并用辐射能量照射以形成团聚颗粒。在一个优选的实施例中,加力、分离和照射步骤以竖直和连续的方式在空间取向,并且以顺序和连续方式进行。优选的是,在照射步骤之后和收集之前,团聚颗粒凝固并可处理。可参考美国专利6,913,824(Culler等人),其全文以引用的方式并入本文。
迫使粘结剂前体和固体颗粒通过打孔基板的方法包括挤出、研磨、压延或它们的组合。在一个优选的实施例中,加力的方法由QuadroEngineering Incorporated制造的破碎机提供。
在一个实施例中,通过将团聚前体颗粒通过包括辐射源的第一固化区使其被照射。优选的辐射源包括电子束、紫外光、可见光、激光或它们的组合。在另一个实施例中,将团聚颗粒通过进一步固化的第二固化区。第二固化区中的优选能量源包括热、电子束、紫外光、可见光、激光、微波或它们的组合。
在一个示例性实施例中,复合颗粒是细丝形的,并且具有从约100至约5000微米范围的长度(筛分之前)。最优选地,细丝形复合颗粒的长度在约200至约1000微米范围内。在一个实施例中,团聚颗粒然后可在第一个照射步骤之后或通过第二固化区之后减小尺寸。尺寸减小的优选方法是使用由Quadro Engineering Incorporated生产的破碎机。在一个实施例中,团聚颗粒的横截面形状包括圆形、多边形或它们的组合。优选的是,横截面形状不变。有关该工艺的更多细节可存在于上述美国专利6,913,824和(Culler等人)中。
包含较少量树脂的,如包含多个微泡和基本上不连续的树脂粘结剂相的复合支撑剂颗粒可按照以下工序制备。将微泡和粘结剂树脂进料到混合容器中,然后搅拌所得的混合物,在某些情况下直到均匀,即,微泡和树脂基本上均匀的分布。优选的是在混合物中有足够的液体使得所得混合物既不过硬也不过软。大多数树脂包含足够的液体以使得能够充分混合。在混合步骤完成后,使混合物凝固,优选利用热或辐射能。凝固是由于液体从混合物中除去或树脂粘合剂的聚合。当混合物凝固后,将它破碎形成团聚物,然后将其分级成期望的尺寸。适于此步骤的装置包括传统的颚式破碎机和辊式破碎机。
如果这种复合物的树脂粘结剂是热塑性的,优选的是支撑剂颗粒按照以下工序制备。将热塑性树脂加热至刚好超过其熔融温度,然后在加热的螺旋式挤出机中掺混加热的热塑性微泡,混合直至得到基本上均匀的复合混合物。接着,将混合物挤压通过挤出机的模具。冷却后,将挤出物减小至需要的尺寸,如通过破碎和分级得到期望尺寸的复合物。破碎和分级工序常常会形成不期望尺寸的团聚物。在某些情况下,不期望尺寸的复合物可再循环,如通过加入到新的分散体中,或者当然,可被丢弃。
压裂
本发明可用于其中通过任何在地下地层中产生裂缝的手段产生裂缝的井中,如水力压裂(有时称为“hydrofraccing”)和蚀刻(例如酸性蚀刻)。
压裂流体的主要功能是引发裂缝并使之蔓延,并且传送支撑剂以使裂缝的壁在泵入停止并且压裂流体泄漏或回流之后保持是分开的。许多已知的压裂流体包含水基载流体、增粘剂和支撑剂。增粘剂通常是交联的水溶性聚合物。当所述聚合物经历水合和交联时,流体的粘度增加,并且使流体能够引发裂缝以及运载支撑剂。另一类增粘剂为粘弹性表面活性剂(“VES′s”)。这两类压裂流体(含聚合物的水,和含VES的水)可以以泡沫的形式或以纯流体(无气体分散于液相中的流体)形式泵入。起泡的压裂流体通常包含氮、二氧化碳或它们的混合物,其体积分数为从总压裂流体体积的10%至90%。如本文所用,术语“压裂流体”指起泡的流体和纯流体两者。同样也可使用非水的压裂流体。
载流体和引入
用于将复合支撑剂颗粒沉积在裂缝中的载流体可以是与压裂操作中所用相同的流体,或者可以是在压裂流体引入之后引入井中的第二流体。如本文所用,术语“引入”(以及其变体“引入的”等)包括使用任何本领域已知的合适方式将流体或物质(如,支撑剂颗粒)泵入、注入、浇入、释放、置换、点样、循环或换句话讲放置在井、井筒、裂缝或地下地层中。
多种水性和非水载流体可用于本发明。适用于本发明的水基流体和盐水的示例性实例包括淡水、海水、氯化钠盐水、氯化钙盐水、氯化钾盐水、溴化钠盐水、溴化钙盐水、溴化钾盐水、溴化锌盐水、氯化铵盐水、四甲基氯化铵盐水、甲酸钠盐水、甲酸钾盐水、甲酸铯盐水、以及它们的任何组合。
适用于本发明的聚合物和含聚合物处理流体的示例性实例包括可与前述水基流体混合的任何流体。用于本发明的具体水基聚合物和含聚合物处理流体包括瓜耳和瓜耳衍生物例如羟丙基瓜耳(HPG)、羧甲基羟丙基瓜耳(CMHPG)、羧甲基瓜耳(CMG),羟乙基纤维素(HEC),羧甲基羟乙基纤维素(CMHEC),羟甲基纤维素(CMC),淀粉基聚合物,黄原胶基聚合物,以及生物聚合物例如阿拉伯树胶、角叉菜胶等等,以及上述流体的任何组合。
可用于本发明公开中的非水处理流体的示例性实例。这种合适的非水流体包括醇例如甲醇、乙醇、异丙醇,和其它支链和直链烷基醇;柴油;粗原油;粗原油的冷凝物;精炼烃例如汽油、萘、二甲苯、甲苯和甲苯衍生物、己烷、戊烷和轻石油;天然气液体、诸如二氧化碳和氮气的气体,以及上述非水处理流体的组合。作为另外一种选择,也可预想上述非水流体与水的混合物是适用于本发明的,如水与醇或几种醇的混合物。混合物可由可混溶的或不可混溶的流体制成。
除了至少一种聚合材料和可选的交联剂之外,处理流体还可包含至少一种破胶剂物质。就这一点而言,在井处理领域已知的任何合适破胶剂都可用于聚合物处理流体中。合适的破胶剂物质的实例包括本文所公开的或以引用方式并入本文的专利中所公开的任何一种酶,和/或井处理行业已知的一种或多种氧化破胶剂。合适的氧化破胶剂的具体实例包括胶囊包封破胶剂,例如胶囊包封过硫酸钾(例如ULTRAPERMTM CRB或SUPERULTRAPERMTM CRB,可得自德克萨斯州休斯顿的BJ Services Company)。可用于聚合物处理流体中的其它合适破胶剂包括传统的氧化破胶剂,如过氧二硫酸铵。通常,这些破胶剂包含在聚合物处理流体中的浓度介于约0.1磅/1000加仑(10.3g/m3)和约10磅/100加仑(1031.8g/m3)之间。最典型的是传统的氧化破胶剂与包含聚合物特效酶的酶预处理流体一起使用。所述第二流体也可载有大量破胶剂、水和/或水垢控制添加剂、石蜡控制添加剂或其它化学组分。
本发明的复合支撑剂颗粒的优点是它们具有较低密度,但仍提供较高的破裂强度。因此,它们可与较低粘度、较廉价的载流体一起使用。
本发明的复合支撑剂颗粒与载流体混合,然后导入具有侧壁裂缝的井中,所述裂缝需要支撑保持敞开以增强主流体通过其的输送。
载流体将复合支撑剂颗粒带到裂缝中,在那里颗粒沉淀下来。如果需要,复合支撑剂颗粒可进行颜色编码然后按期望的次序注入,使得在主流体通过其输送中的过程中,可监测提取的流体是否存在复合支撑剂颗粒。不同颜色的支撑剂颗粒的存在和量可用作涉及哪部分裂缝的指示剂以及表明或预示输送性质的可能变化。
主流体的输送
本发明的复合支撑剂颗粒可用于井中以增强所需流体例如主流体,如石油、天然气或水从天然存在的或人造贮层中的提取。本发明的支撑剂颗粒也可用于井中以增强将期望的流体注入天然存在的或人造的贮层中。
实例
提供以下实例以示出本发明的一些实施例,并不旨在限制权利要求书的范围。除非另外指出,所有百分比均按重量计。
测试方法
平均粒子密度测定
使用完全自动化的气体置换比重瓶,即乔治亚州诺克罗斯的麦克(Micromeritics)公司的ACCUPYCTM 1330比重瓶,按照ASTMD-2840-69,“中空微球的平均真颗粒密度”(Average True ParticleDensity of Hollow Microspheres),测定复合材料和玻璃残留的密度。
粒度测定
粒度分布使用粒度分析仪(RETSCH TECHNOLOGYTM Camsizer)测定,所述分析仪可得自德国哈恩的莱驰科技公司(RetschTechnology)。
强度测试
玻璃微泡的强度使用ASTM D3102-72,“中空玻璃微球的流体静力学破裂强度”(Hydrostatic Collapse Strength of Hollow GlassMicrospheres)进行测定,除了玻璃微泡的样本尺寸是10mL,玻璃微球分散于甘油(20.6g)中,并且使用计算机软件自动进行数据整理以外。记录的数值是按原始产品体积计10%破裂时的静水压力。
实例1
Hobart T120混合机(可得自俄亥俄州特罗伊的霍巴特(Hobart)公司)中装入酚醛树脂(1500g;这里称为PF树脂1,75%水中的固体苯酚甲醛树脂,具有1.5至2.1/1的酚与甲醛比率,用2.5重量%的氢氧化钾催化。)和1600g S60HS玻璃微球(可得自明尼苏达州圣保罗的3M公司)。所述混合物共混20分钟,将所得的物质装入QUADROTMCOMILTM194成形装置(可得自新泽西州Milborne的Quadro公司)。取决于期望的复合微泡前体颗粒的横截面形状,使用不同形状的孔。使用具有圆形洞孔的锥形10筛网来产生具有圆形横截面的复合微泡前体颗粒。
将所述浆液加入QUADROTM COMILTM装置的料斗中,同时搅拌叶轮以350的预设速度(转/分钟)旋转。旋转的叶轮推动浆液通过锥形筛网的孔,当达到临界长度(通常,当粒子的重量大于成形组合物和打孔基板之间的任何粘合力时,达到临界长度)时,细丝形复合微泡凝胶体颗粒从筛网外侧分离,并利用重力落入紫外固化室(得自于马里兰州盖瑟斯堡的辐深(Fusion)紫外线系统;型号为#DRE 410Q),装配有两个600瓦特“d”辐深灯,设置在“高”功率。通过暴露于紫外线辐射,复合微泡前体颗粒至少部分固化,并且从而转换成可处理和可收集的颗粒。
在下面的一些实例中,复合微泡前体颗粒还通过将粒子置于铝盘而进一步至少部分硬化,并且在-鼓风烘箱(获得自威斯康星州沃特敦的Lindberg/Blue M公司;型号POM-246F)中于340°F(171℃)至约360°F(182℃)使其至少部分热固化约5小时至约8小时。可选地,至少部分固化的复合微泡前体颗粒通过将其通过QUADROTMCOMILTM装置使尺寸减小。通常,颗粒通过将其通过QUADROTMCOMILTM装置来减小尺寸,QUADROTM COMILTM装置装配有锥形筛网,其具有比用于形成复合微泡前体颗粒的那些更大的孔(更具体的细节参见实例)。为了粒度减小,QUADROTM COMILTM装置的叶轮旋转速度设为252转/分钟。
挤出的股线保持在90℃90分钟,然后于105℃下过夜。然后使用QUADROTM COMILTM 197将固化的股线减小至所需尺寸。表1列出了所得的密度、破裂强度和粒度
实例2
按照实例1中所描述的工序来制备实例2,除了Hobart混合机装入PF树脂1(300g)、分散环氧树脂(53g;可以商品名称EPIKOTEEPI-REZTM得自于俄亥俄州哥伦布的瀚森特种化学品公司和S60HS玻璃微球(425g)之外。表1列出了所得的密度、破裂强度和粒度。
实例3
按照实例1中所描述的工序来制备实例2,除了Hobart混合机装入环氧树脂(300g;可以商品名称“EPONTM 828”得自于俄亥俄州哥伦布的Hexion Specialty Chemicals公司)、双氰双胺(34.0g;可以商品名称AMICURETM CG-1400得自于宾夕法尼亚州阿伦敦的空气化工产品公司)、EPIKOTE EPI-REZTM(53g)、2-乙基-4-甲基咪唑(3.5g;可以商品名称“IMICURE 2,4EMI”得自于宾夕法尼亚州阿伦敦的空气化工产品公司)和S60HS玻璃微球(375g)之外。表1列出了所得的密度、破裂强度和粒度。
实例4
按照实例1中所描述的工序制备实例4,除了Hobart混合机中装入PF树脂1(850g)、EPIKOTE EPI-REZTM(150g)和S60HS玻璃微球(630g)之外。表1列出了所得的密度、破裂强度和粒度。
表1.实例1至4的密度(g/cm 3 )、强度(psi)和粒度(微米)
  实例   密度(g/cm3)  强度(psi;10%)   粒度(微米)
  1   0.8342  14,626   919
  2   0.8120  14,711   936
  3   0.8648  18,572   949
  4   0.8178  24,693   1302
在不偏离本发明的范围和精神的前提下,对本发明的多种修改和更改对于本领域的技术人员将是显而易见的。应该理解,本发明并非意图受本文所述的示例性实施例和实例的不当限制,并且这些实例和实施例仅以举例的方式提出,本发明的范围仅受以下本文提出的权利要求书的限制。

Claims (33)

1.一种支撑钻井壁中敞开裂缝的方法,包括:(a)将载流体和多个复合支撑剂颗粒的流体混合物引入所述井中,所述复合支撑剂包含多个微泡与树脂粘结剂的复合物,和(b)将多个所述复合支撑剂颗粒沉积在所述裂缝中以产生一个或多个支撑通道。
2.根据权利要求1所述的方法,其中所述微泡是中空的。
3.根据权利要求1所述的方法,其中所述微泡包括玻璃或陶瓷。
4.根据权利要求2所述的方法,其中所述微泡的密度为约0.1至约0.9g/cm3
5.根据权利要求4所述的方法,其中所述密度为约0.2至约0.7g/cm3
6.根据权利要求1所述的方法,其中所述复合支撑剂颗粒的密度为约0.5至约1.8g/cm3
7.根据权利要求6所述的方法,其中所述密度为约0.8至约1.2g/cm3
8.根据权利要求1所述的方法,其中所述微泡的平均尺寸为约5至约1000微米。
9.根据权利要求8所述的方法,其中所述微泡的平均尺寸为约10至约800微米。
10.根据权利要求1所述的方法,其中所述复合支撑剂颗粒的平均尺寸为至少200微米。
11.根据权利要求1所述的方法,其中所述复合支撑剂颗粒的平均尺寸为约100至约5000微米。
12.根据权利要求11所述的方法,其中所述复合支撑剂颗粒的平均尺寸为约200至约1000微米。
13.根据权利要求1所述的方法,其中所述树脂粘结剂选自由热固性树脂和热塑性树脂组成的组。
14.根据权利要求13所述的方法,其中所述树脂粘结剂选自由下列物质组成的组:聚烯烃均聚物和共聚物;苯乙烯二元共聚物和三元共聚物;离聚物;乙烯醋酸乙烯酯均聚物和共聚物;聚丁酸乙烯酯均聚物和共聚物;聚氯乙烯均聚物和共聚物;茂金属聚烯烃;聚(α-烯烃)均聚物和共聚物;乙烯-丙烯-二烯三元共聚物;碳氟化合物弹性体;聚酯聚合物和共聚物;聚酰胺聚合物和共聚物,聚氨酯聚合物和共聚物;聚碳酸酯聚合物和共聚物;聚酮;和聚脲;以及它们的共混物。
15.根据权利要求14所述的方法,其中所述树脂粘结剂选自由下列物质组成的组:环氧树脂、丙烯酸酯化的氨基甲酸酯树脂、丙烯酸酯化的环氧树脂、烯键式不饱和树脂、氨基塑料树脂、异氰脲酸酯树脂、酚醛树脂、乙烯基酯树脂、乙烯基醚树脂、氨基甲酸酯树脂、坚果壳树脂、萘酐型酚醛树脂、环氧改性的酚醛树脂、硅氧烷树脂、聚酰亚胺树脂、脲醛树脂、亚甲基双苯胺树脂、甲基吡咯烷酮树脂、丙烯酸酯和甲基丙烯酸酯树脂、异氰酸酯树脂、不饱和聚酯树脂,以及它们的共混物。
16.根据权利要求1所述的方法,其中所述复合支撑剂颗粒包含基本上连续的树脂粘结剂相。
17.根据权利要求1所述的方法,其中所述复合颗粒包含基本上不连续的树脂粘结剂相。
18.根据权利要求1所述的方法,其中所述复合支撑剂颗粒包含约0.1重量%至约75重量%的微泡。
19.根据权利要求1所述的方法,其中所述复合支撑剂颗粒的全同破裂强度为约500psi(3.45MPa)或更高。
20.根据权利要求19所述的方法,其中所述复合支撑剂颗粒的全同破裂强度为约2000psi(13.8MPa)或更高。
21.根据权利要求19所述的方法,其中所述复合支撑剂颗粒的全同破裂强度为约10,000psi(69.0MPa)或更高。
22.根据权利要求1所述的方法,其中所述复合支撑剂颗粒具有小于约0.9的球形度。
23.根据权利要求1所述的方法,其中所述复合支撑剂颗粒具有小于约0.7的球形度。
24.根据权利要求1所述的方法,其中所述流体混合物包含约25体积%至约50体积%的所述复合支撑剂颗粒。
25.根据权利要求1所述的方法,其中所述载流体具有约0.8至约1.5g/cm3的密度。
26.根据权利要求1所述的方法,还包括在所述引入所述流体混合物之前在所述钻井壁中形成裂缝。
27.根据权利要求1所述的方法,还包括在所述复合支撑剂颗粒沉积后,通过所述一个或多个支撑通道输送主流体。
28.根据权利要求27所述的方法,其中所述主流体为石油或煤气。
29.根据权利要求27所述的方法,其中所述主流体提取自地下地层。
30.根据权利要求29所述的方法,其中所述复合支撑剂颗粒进行颜色编码,并且还包括监测所述提取的主流体是否除去了所述复合支撑剂颗粒。
31.根据权利要求27所述的方法,其中所述主流体被注入地下地层。
32.根据权利要求1所述的方法,其中所述复合支撑剂颗粒的尺寸和形状相对均匀。
33.根据权利要求1所述的方法,其中所述复合支撑剂颗粒至少在尺寸或形状中的一个方面根据期望的分布而不同。
CN2006800493036A 2005-12-28 2006-12-21 低密度支撑剂颗粒及其使用 Expired - Fee Related CN101346324B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/319,830 2005-12-28
US11/319,830 US7845409B2 (en) 2005-12-28 2005-12-28 Low density proppant particles and use thereof
PCT/US2006/048813 WO2007078995A1 (en) 2005-12-28 2006-12-21 Low density proppant particles and use thereof

Publications (2)

Publication Number Publication Date
CN101346324A true CN101346324A (zh) 2009-01-14
CN101346324B CN101346324B (zh) 2013-01-02

Family

ID=38192270

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800493036A Expired - Fee Related CN101346324B (zh) 2005-12-28 2006-12-21 低密度支撑剂颗粒及其使用

Country Status (7)

Country Link
US (1) US7845409B2 (zh)
EP (1) EP1976808B1 (zh)
CN (1) CN101346324B (zh)
BR (1) BRPI0620793A2 (zh)
CA (1) CA2635761C (zh)
RU (1) RU2008126151A (zh)
WO (1) WO2007078995A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102575515A (zh) * 2009-07-25 2012-07-11 美国瑞博公司 一种超轻密度陶粒支撑剂及其制造方法
CN103194204A (zh) * 2013-04-10 2013-07-10 北京奥陶科技有限公司 一种用于煤层气与页岩气水力压裂的支撑剂及其制备方法
CN103288425A (zh) * 2013-05-16 2013-09-11 陕西科技大学 一种利用废矿渣制备页岩气专用压裂支撑剂的方法
CN104357042A (zh) * 2014-10-23 2015-02-18 亿利资源集团有限公司 一种覆膜支撑剂及其制备方法
CN105062461A (zh) * 2015-08-14 2015-11-18 中国地质大学(武汉) 一种超低密度支撑剂及其制备方法
CN105229115A (zh) * 2013-03-15 2016-01-06 巴斯夫欧洲公司 支撑剂
US9410077B2 (en) 2014-08-13 2016-08-09 China University Of Geosiences (Wuhan) Method for preparing ultra-light-weight (ULW) proppant applied on oil and gas wells
CN106397650A (zh) * 2015-07-29 2017-02-15 中国石油化工股份有限公司 一种低密度复合支撑剂及其制备方法和应用
WO2018006498A1 (zh) * 2016-07-07 2018-01-11 西南石油大学 一种用于相变压裂的相变压裂液体系
US9944845B2 (en) 2013-03-15 2018-04-17 Basf Se Proppant
CN108976366A (zh) * 2018-08-13 2018-12-11 张建华 一种疏水性覆膜支撑剂及其制备方法和应用
CN109312223A (zh) * 2016-06-06 2019-02-05 通用电气(Ge)贝克休斯有限责任公司 水力压裂和防砂操作中的腰果壳液
CN109321226A (zh) * 2017-07-31 2019-02-12 中蓝晨光化工研究设计院有限公司 一种压裂支撑剂的制备方法
CN109321227A (zh) * 2017-07-31 2019-02-12 中蓝晨光化工研究设计院有限公司 一种热固性环氧树脂压裂支撑剂
CN109339758A (zh) * 2011-06-23 2019-02-15 普拉德研究及开发股份有限公司 处理由井筒穿透的地下地层的方法及组合物
CN109705836A (zh) * 2019-01-24 2019-05-03 陕西科技大学 一种双壳层覆膜砂支撑剂的制备方法

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9714371B2 (en) 2005-05-02 2017-07-25 Trican Well Service Ltd. Method for making particulate slurries and particulate slurry compositions
US20070204992A1 (en) * 2006-01-13 2007-09-06 Diversified Industries Ltd. Polyurethane proppant particle and use thereof
WO2008118827A1 (en) 2007-03-23 2008-10-02 World Minerals, Inc. Metal compound coated particulate mineral materials, methods of making them, and uses thereof
WO2008131540A1 (en) 2007-04-26 2008-11-06 Trican Well Service Ltd Control of particulate entrainment by fluids
MX2010000682A (es) * 2007-07-18 2010-03-30 Trican Well Service Ltd Metodos para elaborar una composicion de la suspension espesa de agente sustentante, y composicion obtenida.
CN101861361B (zh) * 2007-10-04 2012-07-18 中村宪司 含玻璃成型用组合物及其制造方法
EP2110508A1 (en) * 2008-04-16 2009-10-21 Schlumberger Holdings Limited microwave-based downhole activation method for wellbore consolidation applications
EP2271726A1 (en) * 2008-04-17 2011-01-12 Dow Global Technologies Inc. Powder coated proppant and method of making the same
US7879925B2 (en) * 2008-05-27 2011-02-01 Zephyros, Inc. Composite with natural fibers
CN102124073B (zh) * 2008-06-24 2013-09-04 M-I有限公司 使湿敏型可固化弹性体的固化延迟的方法
WO2010051253A1 (en) * 2008-10-30 2010-05-06 3M Innovative Properties Company Crystalline ceramic particles
WO2012078917A2 (en) * 2010-12-08 2012-06-14 Joseph Buford Parse Multiple component neutrally buoyant proppant
US8372789B2 (en) 2009-01-16 2013-02-12 Halliburton Energy Services, Inc. Methods of designing treatment fluids based on solid-fluid interactions
US8240383B2 (en) * 2009-05-08 2012-08-14 Momentive Specialty Chemicals Inc. Methods for making and using UV/EB cured precured particles for use as proppants
CN101701517B (zh) * 2009-12-11 2012-09-05 安东石油技术(集团)有限公司 一种从便于将井下过滤器管柱拔出的油气井中提出井下过滤器管柱的方法
CN101705802B (zh) * 2009-12-11 2013-05-15 安东石油技术(集团)有限公司 一种油气井生产段防窜流封隔颗粒
CN103003386B (zh) 2010-07-21 2015-08-19 巴斯夫欧洲公司 支撑剂
CN103025846B (zh) 2010-07-29 2016-07-06 3M创新有限公司 弹性体改性的交联环氧乙烯基酯颗粒以及它们的制备和使用方法
CN102011574B (zh) * 2010-11-16 2013-10-30 郑州大学 一种振动增产煤层气方法
CN102022134B (zh) * 2010-11-16 2012-11-07 郑州大学 钻、压、振三位一体卸压开采煤层气方法
US9102867B2 (en) 2010-12-08 2015-08-11 Joseph Buford PARSE Single component neutrally buoyant proppant
CN102094668B (zh) * 2010-12-20 2013-02-20 郑州大学 上抽巷高压水力掏穴卸压消突方法
CN102086760B (zh) * 2010-12-20 2013-02-20 郑州大学 区域井下高压水力掏穴卸压开采煤层气方法
CN102080525B (zh) * 2010-12-20 2013-02-20 郑州大学 一种高压气体喷射掏穴卸压防突方法
US9670400B2 (en) 2011-03-11 2017-06-06 Carbo Ceramics Inc. Proppant particles formed from slurry droplets and methods of use
US8883693B2 (en) 2011-03-11 2014-11-11 Carbo Ceramics, Inc. Proppant particles formed from slurry droplets and method of use
US8865631B2 (en) 2011-03-11 2014-10-21 Carbo Ceramics, Inc. Proppant particles formed from slurry droplets and method of use
US9175210B2 (en) 2011-03-11 2015-11-03 Carbo Ceramics Inc. Proppant particles formed from slurry droplets and method of use
US8342246B2 (en) 2012-01-26 2013-01-01 Expansion Energy, Llc Fracturing systems and methods utilyzing metacritical phase natural gas
US9316098B2 (en) 2012-01-26 2016-04-19 Expansion Energy Llc Non-hydraulic fracturing and cold foam proppant delivery systems, methods, and processes
US9896918B2 (en) 2012-07-27 2018-02-20 Mbl Water Partners, Llc Use of ionized water in hydraulic fracturing
US8424784B1 (en) 2012-07-27 2013-04-23 MBJ Water Partners Fracture water treatment method and system
BR112015002164A2 (pt) 2012-08-01 2017-07-04 Oxane Mat Inc pluralidade de propantes cerâmicos sinterizados, método para fabricar um propante cerâmico sinterizado, propante, propante cerâmico, propante cerâmico sinterizado e método para fabricar um propante cerâmico
CA3117180C (en) * 2012-09-10 2023-08-01 Carbo Ceramics, Inc. Proppant particles formed from slurry droplets and method of use
JPWO2014045815A1 (ja) * 2012-09-20 2016-08-18 旭硝子株式会社 坑井用プロパント及び炭化水素含有地層からの炭化水素の回収方法
US9803131B2 (en) 2012-11-02 2017-10-31 Wacker Chemical Corporation Oil and gas well proppants of silicone-resin-modified phenolic resins
US9321956B2 (en) 2012-11-28 2016-04-26 Halliburton Energy Services, Inc. Methods for hindering the settling of particulates in a subterranean formation
CN103849374B (zh) * 2012-11-30 2017-01-25 亿利资源集团有限公司 一种压裂支撑剂及其制备方法
EP2746358A1 (en) * 2012-12-21 2014-06-25 Basf Se Polyurea silicate resin for wellbore application
EP2951269A1 (en) * 2013-02-01 2015-12-09 Basf Se A proppant
BR112015025644A2 (pt) * 2013-04-08 2017-07-18 Expansion Energy Llc sistemas, métodos e processos de fraturamento não hidráulico e de distribuição de propante de espuma fria
US10161236B2 (en) 2013-04-24 2018-12-25 Halliburton Energy Services, Inc. Methods for fracturing subterranean formations
PL3046989T3 (pl) 2013-09-20 2020-03-31 Baker Hughes, A Ge Company, Llc Sposób wykorzystania metalicznych środków do obróbki modyfikującej powierzchnię do obróbki formacji podziemnych
AU2014321293B2 (en) 2013-09-20 2017-10-19 Baker Hughes, A Ge Company, Llc Method of using surface modifying treatment agents to treat subterranean formations
EP3046991B1 (en) 2013-09-20 2019-10-30 Baker Hughes, a GE company, LLC Composites for use in stimulation and sand control operations
US10227846B2 (en) 2013-09-20 2019-03-12 Baker Hughes, A Ge Company, Llc Method of inhibiting fouling on a metallic surface using a surface modifying treatment agent
US9701892B2 (en) 2014-04-17 2017-07-11 Baker Hughes Incorporated Method of pumping aqueous fluid containing surface modifying treatment agent into a well
WO2015042490A1 (en) 2013-09-20 2015-03-26 Baker Hughes Incorporated Organophosphorus containing composites for use in well treatment operations
AU2013404976B2 (en) 2013-11-11 2017-06-01 Halliburton Energy Services, Inc. Methods for enhancing propped fracture conductivity
CN105745182A (zh) * 2013-11-19 2016-07-06 普拉德研究及开发股份有限公司 由穿孔膜形成的陶瓷颗粒
WO2015100175A1 (en) 2013-12-27 2015-07-02 3M Innovative Properties Company Crosslinked epoxy particles and methods for making and using the same
CN103725275A (zh) * 2013-12-27 2014-04-16 中国石油集团渤海钻探工程有限公司 带压作业管柱内的化学封堵胶塞及其制备方法和用途
GB2537271B (en) 2014-01-02 2021-07-07 Halliburton Energy Services Inc Generating and enhancing microfracture conductivity
US11352553B2 (en) * 2014-11-18 2022-06-07 Powdermet, Inc. Polymer coated proppant
CA2889374A1 (en) 2014-04-25 2015-10-25 Trican Well Service Ltd. Compositions and methods for making aqueous slurry
CA2856942A1 (en) 2014-07-16 2016-01-16 Trican Well Service Ltd. Aqueous slurry for particulates transportation
CN104152135B (zh) * 2014-07-23 2016-08-24 大连天元精细化工有限公司 一种油田用低密度高强度清水压裂支撑剂及制备方法
AU2014405605B2 (en) 2014-09-02 2017-10-05 Halliburton Energy Services, Inc. Enhancing complex fracture networks in subterranean formations
US11053431B2 (en) 2014-10-03 2021-07-06 Halliburton Energy Services, Inc. Fly ash microspheres for use in subterranean formation operations
CA2880646A1 (en) 2015-01-30 2016-07-30 Trican Well Service Ltd. Composition and method of using polymerizable natural oils to treat proppants
EP3061800A1 (en) 2015-02-26 2016-08-31 Repsol, S.A. Ultra-high-molecular-weight polyolefin proppants
US9809493B2 (en) * 2015-04-27 2017-11-07 Ford Global Technologies, Llc Surface treatment of glass bubbles
CN104962276B (zh) * 2015-06-26 2019-03-08 扬州市政兴树脂有限公司 改性碳纳米管增韧树脂覆膜砂支撑剂及其制备方法
CN105038759B (zh) * 2015-08-06 2017-12-01 太原理工大学 一种用于低渗透石油、煤层气和页岩气水力压裂的超低密度支撑剂及其制备方法
WO2017065781A1 (en) 2015-10-15 2017-04-20 Halliburton Energy Services, Inc. Rheology modifier
US10655444B2 (en) 2015-10-22 2020-05-19 Halliburton Energy Services, Inc. Enhancing propped complex fracture networks in subterranean formations
US10450503B2 (en) 2016-06-06 2019-10-22 Baker Hughes, LLC Methods of using lightweight polymers derived from cashew nut shell liquid in hydraulic fracturing and sand control operations
CA3024784C (en) * 2016-06-23 2021-06-08 Halliburton Energy Services, Inc. Proppant-free channels in a propped fracture using ultra-low density, degradable particulates
WO2018009214A1 (en) 2016-07-08 2018-01-11 Halliburton Energy Services, Inc. Lightweight micro-proppant
US10385261B2 (en) 2017-08-22 2019-08-20 Covestro Llc Coated particles, methods for their manufacture and for their use as proppants
CA3153304A1 (en) 2019-09-05 2021-03-11 Saudi Arabian Oil Company Propping open hydraulic fractures
US11326092B2 (en) 2020-08-24 2022-05-10 Saudi Arabian Oil Company High temperature cross-linked fracturing fluids with reduced friction
US12071589B2 (en) 2021-10-07 2024-08-27 Saudi Arabian Oil Company Water-soluble graphene oxide nanosheet assisted high temperature fracturing fluid
US12025589B2 (en) 2021-12-06 2024-07-02 Saudi Arabian Oil Company Indentation method to measure multiple rock properties
US12012550B2 (en) 2021-12-13 2024-06-18 Saudi Arabian Oil Company Attenuated acid formulations for acid stimulation
US12037869B1 (en) 2023-01-20 2024-07-16 Saudi Arabian Oil Company Process of water shut off in vertical wells completed with electrical submersible pumps
US11969708B1 (en) 2023-06-20 2024-04-30 King Saud University Imidazolium ionic liquids made using cardanol extracted from cashew nutshell oil to enhance crude oil recovery in oilfields

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL232500A (zh) * 1957-10-22
US3026938A (en) * 1958-09-02 1962-03-27 Gulf Research Development Co Propping agent for a fracturing process
US3230064A (en) * 1960-10-21 1966-01-18 Standard Oil Co Apparatus for spherulization of fusible particles
US3365315A (en) * 1963-08-23 1968-01-23 Minnesota Mining & Mfg Glass bubbles prepared by reheating solid glass partiles
US3376930A (en) * 1966-05-20 1968-04-09 Exxon Production Research Co Method for fracturing subterranean formations
US3642068A (en) * 1968-03-21 1972-02-15 Mobil Oil Corp Formation fracturing
US3592266A (en) * 1969-03-25 1971-07-13 Halliburton Co Method of fracturing formations in wells
US3709300A (en) * 1971-08-27 1973-01-09 Union Oil Co Hydraulic fracturing process
US3792136A (en) * 1971-11-02 1974-02-12 Atomic Energy Commission Method for preparing hollow metal oxide microsphere
US3834760A (en) * 1973-07-18 1974-09-10 Kennecott Copper Corp In-situ generation of acid for in-situ leaching of copper
US3976138A (en) * 1974-08-01 1976-08-24 Union Carbide Corporation Method of increasing permeability in subsurface earth formation
US4111713A (en) * 1975-01-29 1978-09-05 Minnesota Mining And Manufacturing Company Hollow spheres
FR2306327A1 (fr) * 1975-03-19 1976-10-29 Inst Francais Du Petrole Procede de soutenement de fractures dans les parois d'un puits traversant des formations geologiques
US4039480A (en) * 1975-03-21 1977-08-02 Reynolds Metals Company Hollow ceramic balls as automotive catalysts supports
US4003432A (en) * 1975-05-16 1977-01-18 Texaco Development Corporation Method of recovery of bitumen from tar sand formations
US4318766A (en) * 1975-09-02 1982-03-09 Minnesota Mining And Manufacturing Company Process of using photocopolymerizable compositions based on epoxy and hydroxyl-containing organic materials
CA1045027A (en) * 1975-09-26 1978-12-26 Walter A. Hedden Hydraulic fracturing method using sintered bauxite propping agent
US4010802A (en) * 1975-10-28 1977-03-08 Atlantic Richfield Company Well stimulation
US4029148A (en) * 1976-09-13 1977-06-14 Atlantic Richfield Company Well fracturing method
GB1565637A (en) * 1978-04-10 1980-04-23 Shell Int Research Method for froming channels of high fluid conductivity in formation parts around a bore hole
GB1569063A (en) * 1978-05-22 1980-06-11 Shell Int Research Formation parts around a borehole method for forming channels of high fluid conductivity in
US4637990A (en) * 1978-08-28 1987-01-20 Torobin Leonard B Hollow porous microspheres as substrates and containers for catalysts and method of making same
US4279632A (en) * 1979-05-08 1981-07-21 Nasa Method and apparatus for producing concentric hollow spheres
US4421562A (en) * 1980-04-13 1983-12-20 Pq Corporation Manufacturing process for hollow microspheres
US4440866A (en) * 1980-07-07 1984-04-03 A/S Niro Atomizer Process for the production of sintered bauxite spheres
US4421167A (en) * 1980-11-05 1983-12-20 Exxon Production Research Co. Method of controlling displacement of propping agent in fracturing treatments
US4427068A (en) * 1982-02-09 1984-01-24 Kennecott Corporation Sintered spherical pellets containing clay as a major component useful for gas and oil well proppants
US4391646A (en) * 1982-02-25 1983-07-05 Minnesota Mining And Manufacturing Company Glass bubbles of increased collapse strength
ZA831343B (en) 1982-04-08 1983-11-30 Pq Corp Hollow microspheres with organosilicon-silicate surfaces
AU547407B2 (en) 1982-07-23 1985-10-17 Norton Co. Low density proppant for oil and gas wells
US5089536A (en) * 1982-11-22 1992-02-18 Minnesota Mining And Manufacturing Company Energy polmerizable compositions containing organometallic initiators
DE3335933A1 (de) * 1983-10-04 1985-04-18 Rütgerswerke AG, 6000 Frankfurt Mehrkomponenten-bindemittel mit verlaengerter verarbeitbarkeitszeit
US4625274A (en) * 1983-12-05 1986-11-25 Motorola, Inc. Microprocessor reset system
US4493875A (en) * 1983-12-09 1985-01-15 Minnesota Mining And Manufacturing Company Proppant for well fractures and method of making same
US4680230A (en) * 1984-01-18 1987-07-14 Minnesota Mining And Manufacturing Company Particulate ceramic useful as a proppant
US4944905A (en) * 1984-01-18 1990-07-31 Minnesota Mining And Manufacturing Company Particulate ceramic useful as a proppant
US4568603A (en) * 1984-05-11 1986-02-04 Oldham Susan L Fiber-reinforced syntactic foam composites prepared from polyglycidyl aromatic amine and polycarboxylic acid anhydride
US4744831A (en) * 1984-07-30 1988-05-17 Minnesota Mining And Manufacturing Company Hollow inorganic spheres and methods for making such spheres
GB2175579B (en) 1985-05-23 1989-06-28 Comalco Alu Process for the manufacture of proppant material and material made by the process
US4652274A (en) * 1985-08-07 1987-03-24 Minnesota Mining And Manufacturing Company Coated abrasive product having radiation curable binder
DE3529909A1 (de) * 1985-08-21 1987-03-05 Wagner Finish Tech Center Gmbh Vorrichtung zum abgeben eines fluessigen oder pastoesen mediums
US4660642A (en) * 1985-10-28 1987-04-28 Halliburton Company High strength, chemical resistant particulate solids and methods of forming and using the same
US4785884A (en) * 1986-05-23 1988-11-22 Acme Resin Corporation Consolidation of partially cured resin coated particulate material
US4694905A (en) * 1986-05-23 1987-09-22 Acme Resin Corporation Precured coated particulate material
US4751138A (en) * 1986-08-11 1988-06-14 Minnesota Mining And Manufacturing Company Coated abrasive having radiation curable binder
US4733729A (en) * 1986-09-08 1988-03-29 Dowell Schlumberger Incorporated Matched particle/liquid density well packing technique
US4767726A (en) * 1987-01-12 1988-08-30 Minnesota Mining And Manufacturing Company Glass microbubbles
US4985340A (en) * 1988-06-01 1991-01-15 Minnesota Mining And Manufacturing Company Energy curable compositions: two component curing agents
EP0353740A1 (en) 1988-08-02 1990-02-07 Norton-Alcoa Proppants Low density proppant and methods for making and using same
US5077241A (en) * 1988-11-17 1991-12-31 Minnesota Mining And Manufacturing Company Sol gel-derived ceramic bubbles
US4903440A (en) * 1988-11-23 1990-02-27 Minnesota Mining And Manufacturing Company Abrasive product having binder comprising an aminoplast resin
US5236472A (en) * 1991-02-22 1993-08-17 Minnesota Mining And Manufacturing Company Abrasive product having a binder comprising an aminoplast binder
US5420174A (en) * 1992-11-02 1995-05-30 Halliburton Company Method of producing coated proppants compatible with oxidizing gel breakers
US5624613A (en) * 1993-04-01 1997-04-29 The Boeing Company Rigidized refractory fibrous ceramic insulation
US5549962A (en) * 1993-06-30 1996-08-27 Minnesota Mining And Manufacturing Company Precisely shaped particles and method of making the same
US5531274A (en) 1994-07-29 1996-07-02 Bienvenu, Jr.; Raymond L. Lightweight proppants and their use in hydraulic fracturing
US5582250A (en) 1995-11-09 1996-12-10 Dowell, A Division Of Schlumberger Technology Corporation Overbalanced perforating and fracturing process using low-density, neutrally buoyant proppant
JPH10130356A (ja) * 1996-10-24 1998-05-19 Sanyo Chem Ind Ltd 模型素材用組成物、成形品、模型の製法
US6582819B2 (en) * 1998-07-22 2003-06-24 Borden Chemical, Inc. Low density composite proppant, filtration media, gravel packing media, and sports field media, and methods for making and using same
EP1023382B1 (en) 1998-07-22 2006-03-08 Hexion Specialty Chemicals, Inc. Composite proppant, composite filtration media and methods for making and using same
US6192985B1 (en) * 1998-12-19 2001-02-27 Schlumberger Technology Corporation Fluids and techniques for maximizing fracture fluid clean-up
US6372678B1 (en) * 2000-09-28 2002-04-16 Fairmount Minerals, Ltd Proppant composition for gas and oil well fracturing
US6620214B2 (en) * 2000-10-16 2003-09-16 3M Innovative Properties Company Method of making ceramic aggregate particles
US6521004B1 (en) * 2000-10-16 2003-02-18 3M Innovative Properties Company Method of making an abrasive agglomerate particle
WO2002033020A1 (en) * 2000-10-16 2002-04-25 3M Innovative Properties Company Method of making an agglomerate particles
CA2329834A1 (en) 2000-12-28 2002-06-28 David Droppert High strength, heat- and corrosion-resistant ceramic granules for proppants
US6753299B2 (en) * 2001-11-09 2004-06-22 Badger Mining Corporation Composite silica proppant material
US7267171B2 (en) * 2002-01-08 2007-09-11 Halliburton Energy Services, Inc. Methods and compositions for stabilizing the surface of a subterranean formation
US6719055B2 (en) * 2002-01-23 2004-04-13 Halliburton Energy Services, Inc. Method for drilling and completing boreholes with electro-rheological fluids
US6725930B2 (en) * 2002-04-19 2004-04-27 Schlumberger Technology Corporation Conductive proppant and method of hydraulic fracturing using the same
US6864297B2 (en) * 2002-07-22 2005-03-08 University Of Southern California Composite foam made from polymer microspheres reinforced with long fibers
US6906009B2 (en) * 2002-08-14 2005-06-14 3M Innovative Properties Company Drilling fluid containing microspheres and use thereof
US20040069409A1 (en) * 2002-10-11 2004-04-15 Hippo Wu Front opening unified pod door opener with dust-proof device
US6752208B1 (en) * 2003-01-08 2004-06-22 Halliburton Energy Services, Inc. Methods of reducing proppant flowback
US6780804B2 (en) * 2003-01-24 2004-08-24 Saint-Gobain Ceramics & Plastics, Inc. Extended particle size distribution ceramic fracturing proppant
BR0301036B1 (pt) 2003-04-29 2013-09-10 propante para fraturamento hidráulico de poços de petróleo ou de gás, bem como método para reduzir ou eliminar o fenômeno de reversão de fluxo em poços de petróleo ou de gás
US6983797B2 (en) * 2003-05-22 2006-01-10 Halliburton Energy Services, Inc. Lightweight high strength particles and methods of their use in wells
US7044220B2 (en) * 2003-06-27 2006-05-16 Halliburton Energy Services, Inc. Compositions and methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US7178596B2 (en) * 2003-06-27 2007-02-20 Halliburton Energy Services, Inc. Methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US7021379B2 (en) * 2003-07-07 2006-04-04 Halliburton Energy Services, Inc. Methods and compositions for enhancing consolidation strength of proppant in subterranean fractures
US6966379B2 (en) * 2003-10-10 2005-11-22 Halliburton Energy Services, Inc. Methods of fracturing a subterranean formation using a pH dependent foamed fracturing fluid
CA2447928C (en) * 2003-11-04 2007-09-04 Global Synfrac Inc. Proppants and their manufacture
US7213651B2 (en) * 2004-06-10 2007-05-08 Bj Services Company Methods and compositions for introducing conductive channels into a hydraulic fracturing treatment
WO2006004464A1 (en) 2004-07-02 2006-01-12 Sca Hygiene Products Ab Absorbent layer structure
BRPI0606548A2 (pt) 2005-02-04 2009-06-30 Oxane Materials Inc propante, método para produzir um propante, formulação de propante, método para preencher e suportar frações abertas de formações subterráneas e método para tratar uma zona subterránea produtora
US7528096B2 (en) 2005-05-12 2009-05-05 Bj Services Company Structured composite compositions for treatment of subterranean wells

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102575515B (zh) * 2009-07-25 2015-06-24 美国瑞博公司 一种超轻密度陶粒支撑剂及其制造方法
CN102575515A (zh) * 2009-07-25 2012-07-11 美国瑞博公司 一种超轻密度陶粒支撑剂及其制造方法
CN109339758A (zh) * 2011-06-23 2019-02-15 普拉德研究及开发股份有限公司 处理由井筒穿透的地下地层的方法及组合物
CN105229115B (zh) * 2013-03-15 2018-04-06 巴斯夫欧洲公司 支撑剂
US10370586B2 (en) 2013-03-15 2019-08-06 Basf Se Proppant
CN105229115A (zh) * 2013-03-15 2016-01-06 巴斯夫欧洲公司 支撑剂
US9944845B2 (en) 2013-03-15 2018-04-17 Basf Se Proppant
CN103194204A (zh) * 2013-04-10 2013-07-10 北京奥陶科技有限公司 一种用于煤层气与页岩气水力压裂的支撑剂及其制备方法
CN103194204B (zh) * 2013-04-10 2016-03-23 北京奥陶科技有限公司 一种用于煤层气与页岩气水力压裂的支撑剂及其制备方法
CN103288425A (zh) * 2013-05-16 2013-09-11 陕西科技大学 一种利用废矿渣制备页岩气专用压裂支撑剂的方法
CN103288425B (zh) * 2013-05-16 2015-06-03 陕西科技大学 一种利用废矿渣制备页岩气专用压裂支撑剂的方法
US9410077B2 (en) 2014-08-13 2016-08-09 China University Of Geosiences (Wuhan) Method for preparing ultra-light-weight (ULW) proppant applied on oil and gas wells
CN104357042B (zh) * 2014-10-23 2017-06-09 亿利资源集团有限公司 一种覆膜支撑剂及其制备方法
CN104357042A (zh) * 2014-10-23 2015-02-18 亿利资源集团有限公司 一种覆膜支撑剂及其制备方法
CN106397650A (zh) * 2015-07-29 2017-02-15 中国石油化工股份有限公司 一种低密度复合支撑剂及其制备方法和应用
CN105062461A (zh) * 2015-08-14 2015-11-18 中国地质大学(武汉) 一种超低密度支撑剂及其制备方法
CN109312223A (zh) * 2016-06-06 2019-02-05 通用电气(Ge)贝克休斯有限责任公司 水力压裂和防砂操作中的腰果壳液
WO2018006498A1 (zh) * 2016-07-07 2018-01-11 西南石油大学 一种用于相变压裂的相变压裂液体系
US10364388B2 (en) 2016-07-07 2019-07-30 Southwest Petroleum University Phase change fracturing fluid system for phase change fracturing
CN109321226A (zh) * 2017-07-31 2019-02-12 中蓝晨光化工研究设计院有限公司 一种压裂支撑剂的制备方法
CN109321227A (zh) * 2017-07-31 2019-02-12 中蓝晨光化工研究设计院有限公司 一种热固性环氧树脂压裂支撑剂
CN108976366A (zh) * 2018-08-13 2018-12-11 张建华 一种疏水性覆膜支撑剂及其制备方法和应用
CN109705836A (zh) * 2019-01-24 2019-05-03 陕西科技大学 一种双壳层覆膜砂支撑剂的制备方法

Also Published As

Publication number Publication date
EP1976808B1 (en) 2012-06-13
US7845409B2 (en) 2010-12-07
WO2007078995A1 (en) 2007-07-12
EP1976808A1 (en) 2008-10-08
CA2635761C (en) 2013-05-14
US20070144736A1 (en) 2007-06-28
BRPI0620793A2 (pt) 2011-11-22
CA2635761A1 (en) 2007-07-12
RU2008126151A (ru) 2010-02-10
CN101346324B (zh) 2013-01-02
EP1976808A4 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
CN101346324B (zh) 低密度支撑剂颗粒及其使用
CN1329472C (zh) 含有微球的钻井流体及其用途
US7767629B2 (en) Drilling fluid containing microspheres and use thereof
CN101432132B (zh) 用作支撑剂或用于砾石充填的颗粒,及其制造和使用方法
US7244492B2 (en) Soluble fibers for use in resin coated proppant
AU756771B2 (en) Composite proppant, composite filtration media and methods for making and using same
US8058213B2 (en) Increasing buoyancy of well treating materials
US7541318B2 (en) On-the-fly preparation of proppant and its use in subterranean operations
RU2703077C2 (ru) Отверждаемый при низкой температуре расклинивающий наполнитель
US20140076558A1 (en) Methods and Compositions for Treating Proppant to Prevent Flow-Back
EP1615763A2 (en) Particulate material containing thermoplastic elastomer and methods for making and using same
EP1909999A2 (en) Sintered spherical pellets useful for gas and oil well proppants
RU2716076C2 (ru) Полиолефиновые пропанты со сверхвысокой молекулярной массой
CN109575907B (zh) 一种支撑剂及其制备方法
MXPA00002532A (en) Composite proppant, composite filtration media and methods for making and using same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130102

Termination date: 20151221

EXPY Termination of patent right or utility model