CN101337955A - 一种制备高光学纯度3-取代手性苯酞类化合物的方法 - Google Patents

一种制备高光学纯度3-取代手性苯酞类化合物的方法 Download PDF

Info

Publication number
CN101337955A
CN101337955A CNA2008100416384A CN200810041638A CN101337955A CN 101337955 A CN101337955 A CN 101337955A CN A2008100416384 A CNA2008100416384 A CN A2008100416384A CN 200810041638 A CN200810041638 A CN 200810041638A CN 101337955 A CN101337955 A CN 101337955A
Authority
CN
China
Prior art keywords
preparing
purity
alkyl
cdcl
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100416384A
Other languages
English (en)
Other versions
CN101337955B (zh
Inventor
林国强
徐明华
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shijiazhuang Pharma Group Zhongqi Pharmaceutical Technology Co Ltd
CSPC NBP Pharmaceutical Co Ltd
Original Assignee
Shanghai Institute of Organic Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Organic Chemistry of CAS filed Critical Shanghai Institute of Organic Chemistry of CAS
Priority to CN2008100416384A priority Critical patent/CN101337955B/zh
Publication of CN101337955A publication Critical patent/CN101337955A/zh
Application granted granted Critical
Publication of CN101337955B publication Critical patent/CN101337955B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种制备高光学纯度的3-取代手性苯酞类化合物的方法。系利用手性二胺配体与(对甲基异丙基)苯基二氯化钌二聚体的配合物催化的水相中的不对称氢转移反应实现。反应条件温和,操作简便,底物适用性好,几乎没有副反应发生,能够高立体选择性高产率地制备得到高光学纯度的3-取代手性苯酞类化合物,具有一定的工业应用前景。

Description

一种制备高光学纯度3-取代手性苯酞类化合物的方法
技术领域
本发明涉及一种制备高光学纯度的3-取代手性苯酞类化合物的方法。
背景技术
苯酞类化合物是一类非常重要的天然产物以及有机合成中间体((a)Games,D.E.Aromat.Heteroaromat.Chem.1974,2,447.(b)Murray,R.D.H.Aromat.Heteroaromat.Chem.1976,4,414.(c)Gilchrist,T.L.J.Chem.Soc.,Perkin Trans.11999,2849.(d)Ghosh,S.;Banerjee,I.;Baul,S.Tetrahedron 1999,55,11537.)。特别是3位取代的手性苯酞化合物,它们中的许多都有很好的生物活性(Kerstin,K.;Robert,E.Z.;Stefan,B.Tetrahedron 2004,60,8591.)。
Figure A20081004163800041
其中,(-)-Hydrastine可以作用在阿片受体,也就是人CCR5受体,这个受体是重要的抗HIV靶点,干扰HIV进入细胞(Yoganathan,K.;Rossant,C.;Ng,S.;Huang,Y.;Butler,M.S.;Buss,A.D.J.Nat.Prod.2003,66,1116.)。(-)-Alcyopterosin E则表现出比较好的细胞毒性(Palermo,J.A.;Rodriguez,B.;Maria,F.;Spagnuolo,C.;Seldes,A.M.J.Org.Chem.2000,65,4482.)。Cytosporone E具有良好的抗菌作用(Brady,S.F.;Wagenaar,M.M.;Singh,M.P.;Janso,J.E.;Clardy,J.Org.Lett.2000,2,4043.)。(S)-3-正丁基苯酞((S)-3-Butylphthalide),又称芹菜甲素,是从中草药芹菜籽油当中提取的主要有效成分之一(Barton,D.H.R.;de Vries,J.X.J.Chem.Soc.1963,1916.)。研究发现,它能够有效的预防和治疗脑缺血所引起的疾病,特别是对缺血性脑神经元损伤和坏死能起到明显的保护作用((a)冯亦璞;杨峻山;张均田;杨靖华;胡盾CN93117148.2(b)冯亦璞;杨靖华;张迎新CN98125618.X)。目前其消旋体已经作为治疗脑卒中的特效药上市销售。进一步的研究显示,R异构体的存在会拮抗(S)-3-正丁基苯酞的作用发挥,以致其抗脑缺血的作用下降((a)Chong,Z.;Feng,Y.Chin.Med.J.2000,113,613.(b)冯亦璞;王晓良;彭英;杨靖华CN200310100222.2)。
天然的苯酞化合物多以单一的对映体存在,在一些生物活性化合物中,手性异构体的存在往往会影响其活性甚至产生相反的作用。鉴于此,开发不对称制备手性苯酞化合物特别是丁苯酞的方法是十分有意义的工作。目前主要的方法有进行HPLC拆分(杨靖华;张迎新;冯亦璞.CN99109673.8),利用微生物进行不对称反应(Kitayama,T.Tetrahedron Lett.1997,38,3765.),利用手性辅基进行不对称诱导((a)Matsui,S.;Uejima,A.;Suzuki,Y.;Tanaka,K.J.Chem.Soc,Perkin Trans.11993,701.(b)Asami,M.Mukaiyama,T.Chem.Lett.1980,17.(c)Takahashi,H.;Tsubuki,T.;Higashiyama,K.Chem.Pharm.Bull.1991,39,3136.),利用手性硼试剂进行不对称还原(Ramachandran,P.V.;Chen,G.M.;Brown,H.C.TetrahedronLett.1996,37,2205.),以及利用不对称催化反应((a)Soal,K.;Hori,H;Kawahara,M.Tetrahedron Asymmetry 1991,2,253.(b)Watanabe,M.;Hashimoto,N.;Araki,S.;Butsugan Y.J.Org.Chem.1992,57,742.(c)Everaere,K.;Scheffler,J-L.;Mortreux,A.;Carpentier J-F.Tetrahedron Lett.2001,42,1899.)等等。利用不对称催化反应是效率最高,最经济实用的方法,然而,目前发展的方法相对还不是很成熟,存在选择性不高,有副反应发生,反应体系不够简单实用,对于环境不够友好等问题。因此开发更加高效,简单,实用和绿色的方法将是比较有意义的工作。
发明内容
本发明的目的是提供一种制备高光学纯度的3-取代手性苯酞类化合物的方法。该方法是利用手性二胺配体与钌(Ru)配合物催化的水相中的不对称氢转移反应实现(利用不同构型的手性配体,可以得到不同构型的3-取代手性苯酞类化合物)。
本发明的合成方法可以由下述典型反应式表示:
其中,R1为氢、C1~8的烷基、C1~8的卤代烷基、苯基、萘基、噻吩基、喹啉基、苯氧基、卤代苯氧基、苯硫基、卤代苯硫基或者R5或/和R6取代的苯基;R5为H或R6;R6为卤素、C1~4的烷基、C1~4的烷氧基、C1~4的烷硫基或C1~4的卤代烷基;
R2或/和R3为氢、卤素或C1~4的烷基、或者R2和R3为-CH=CH-CH=CH-;
R4为C1~3的烷基;
[RuCl2(p-cymene)]2为(对甲基异丙基)苯基二氯化钌二聚体;
甲酸盐为甲酸铵、甲酸锂、甲酸钠或甲酸钾。
本发明的方法中利用的手性二胺配体具有如下结构式:
Figure A20081004163800062
或者
Figure A20081004163800063
其中,R7和/或R8为氢、卤素、C1~8烷基、C1~5烷氧基或苄氧基;
R9为苯磺酰基、C1~4的烷基取代的苯磺酰基。
该方法中的手性二胺配体的典型化合物的结构式如下:式中Ts为对甲基苯磺酰基。
Figure A20081004163800064
Figure A20081004163800071
本发明的方法中,反应可以在室温至80℃(推荐40℃),反应浓度为0.5~1.25mol/L,S/C值(底物摩尔数/催化剂摩尔数)为100~500∶1,采用2~5当量的甲酸盐(以甲酸钠为例)作为还原剂,4~24小时条件下,以大于80%的收率,87%~99%的ee值得到手性苯酞类化合物。
表面活性剂的添加能够比较有效地促进反应的进行,添加0~50当量的表面活性剂,能比较明显地加快反应。所述的表面活性剂可以是非离子表面活性剂吐温20(Tween 20)、聚氧乙烯辛烷基苯酚醚X100(Triton X100)、阴离子表面活性剂十二烷基磺酸钠(SDS)、阳离子表面活性剂四丁基溴化铵(TBAB)或十六烷基三甲基溴化铵(CTAB)等。
此外对于一些粘稠或者为固体的底物,需要添加0~50当量的常规有机溶剂进行助溶。所述的常规有机溶剂可以是乙酸乙酯、甲苯、丙酮或C1~4的卤代烷烃如二氯甲烷、氯仿等。
本发明的具体的实验结果列表如下:
Figure A20081004163800072
Figure A20081004163800081
本发明的方法通过一步非常高效的水相氢转移反应,能够高选择性高产率地制备得到高光学纯度的3-取代手性苯酞类化合物,底物适用性比较好,几乎没有副反应发生。这样洁净,高效,高选择性的反应过程,具有一定的工业前景。
具体实施方法
通过下述实施例将有助于理解本发明,但并不限制本发明的内容。
实施例1
2a的合成
在5mL Schlenk瓶中,加入0.0025mmol[RuCl2(p-cymene)]2,0.006mmol手性二胺配体,换氩气保护,加入1.0mL蒸馏水,在一定的温度下,搅拌反应0.5~1小时。在加大氩气气流条件下,开盖加入2.5mmol甲酸盐,0.5mmol底物,在氩气保护,一定温度下搅拌反应,20小时处理。加入5ml蒸馏水,乙酸乙酯萃取,无水硫酸钠干燥,浓缩,快速硅胶柱层析纯化,得到相应的苯酞化合物,产率和ee值参见表1(负值表示产物构型相反)。
Figure A20081004163800101
表1
实施例2
2a的合成
在5mL Schlenk瓶中,加入0.0025mmol[RuCl2(p-cymene)]2,0.006mmol配体(S,S)-11,换氩气保护,加入1.0mL蒸馏水,在40℃下搅拌反应0.5~1小时。在加大氩气气流条件下,开盖加入5mmol甲酸钠,0.04mmol表面活性剂,0.5mmol底物,在氩气保护,40℃下搅拌反应,反应20小时处理。加入5ml蒸馏水,乙酸乙酯萃取,无水硫酸钠干燥,浓缩,快速硅胶柱层析纯化,得到相应的苯酞化合物2a,反应的转化率参见表2。
Figure A20081004163800111
表2
Figure A20081004163800112
实施例3
2a的合成
在5mL Schlenk瓶中,加入0.0025mmol[RuCl2(p-cymene)]2,0.006mmol配体(S,S)-11,换氩气保护,加入1.0mL蒸馏水,在40℃下搅拌反应0.5~1小时。在加大氩气气流条件下,开盖加入5mmol甲酸钠,0.04mmol CTAB,1mmol底物,在氩气保护,40℃下搅拌反应,直至核磁显示转化完全。加入5ml蒸馏水,乙酸乙酯萃取,无水硫酸钠干燥,浓缩,快速硅胶柱层析纯化,得到相应的苯酞化合物2a,产率92%,ee 98.3%。
Figure A20081004163800113
2a:1H NMR(300MHz,CDCl3):δ0.91(t,J=7.2Hz,3H),1.33-1.51(m,4H),1.71-1.81(m,1H),2.00-2.09(m,1H),5.49(dd,J=4.2,7.8Hz,1H),7.45(dd,0.75,7.7Hz,1H),7.53(t,J=7.5Hz,1H),7.68(dt,J=0.9,7.5Hz,1H),7.90(d,J=7.8Hz,1H).13C NMR(75MHz,CDCl3):δ13.60,22.16,26.62,34.16,81.22,121.60,125.27,125.82,128.76,133.77,149.89,170.43.EI-MS(m/z,%):191(M++H,2.96),190(M+,2.51),163(4.45),133(100.00),105(30.51),77(13.13).
实施例4
2b的合成
操作同实施例3,产率97%,ee 97.9%。
Figure A20081004163800121
2b:1H NMR(300MHz,CDCl3):δ1.65(d,J=6.3Hz,3H),5.59(q,J=6.6Hz,1H),7.47(d,J=7.8Hz,1H),7.54(t,J=7.5Hz,1H),7.70(t,J=7.5Hz,1H),7.90(d,J=7.5Hz,1H).13C NMR(75MHz,CDCl3):δ20.18,77.64,121.48,125.37,125.46,128.88,133.96,151.01,170.39.EI-MS(m/z,%):149(M++H,100.00),133(50.58),105(81.54),77(27.27),50(17.93).
实施例5
2c的合成
操作同实施例3,产率95%,ee 97.7%。
Figure A20081004163800122
2c:1H NMR(300MHz,CDCl3):δ1.01(t,J=7.6Hz,1H),1.78-1.88(m,1H),2.09-2.18(m,1H),5.47(dd,J=5.1,6.6Hz,1H),7.45(d,J=8.4Hz,1H),7.54(t,J=7.4Hz,1H),7.69(t,J=7.8Hz,1H),7.90(d,J=7.2Hz,1H).13C NMR(75MHz,CDCl3):δ8.65,27.46,82.20,121.66,125.41,126.06,128.91,133.87,149.58,170.61.EI-MS(m/z,%):162(M+,14.59),161(100.00),149(72.15),133(99.02),105(52.18),76(45.02),50(31.79).
实施例6
2d的合成
操作同实施例3,产率85%,ee 97.1%。
2d:1H NMR(300MHz,CDCl3):δ0.99(t,J=7.5Hz,3H),1.48-1.58(m,2H),1.72-1.79(m,1H),1.98-2.05(m,1H),5.49(dd,J=4.2,8.1Hz,1H),7.45(d,J=7.5Hz,1H),7.53(t,J=7.5Hz,1H),7.68(t,J=7.5Hz,1H),7.90(d,J=7.5Hz,1H).13C NMR(75MHz,CDCl3):δ13.81,18.24,36.79,81.28,121.78,125.62,126.09,129.03,133.97,150.15,170.70.EI-MS(m/z,%):176(M+,3.94),175(10.46),149(43.81),133(100.00),105(50.98),77(23.17).
实施例7
2e的合成
投入底物0.5mmol,其余操作同实施例3,产率82%,ee 87%。
Figure A20081004163800131
2e:1H NMR(300MHz,CDCl3):δ1.01(d,J=6.3Hz,3H),1.08(d,J=6.9Hz,3H),1.59-1.69(m,1H),1.74-1.83(m,1H),1.99-2.13(m,1H),5.52(dd,J=3.3,9.6Hz,1H),7.44(d,J=7.8Hz,1H),7.52(t,J=7.5Hz,1H),7.68(t,J=7.4Hz,1H),7.89(d,J=8.1Hz,1H).
实施例8
2f的合成
操作同实施例3,产率92%,ee 98.5%。
Figure A20081004163800132
2f:1H NMR(300MHz,CDCl3):δ1.61-1.76(m,2H),1.78-1.90(m,3H),2.07-2.13(m,1H),3.54(t,J=6.5Hz,2H),5.50(dd,J=3.9,7.5Hz,1H),7.45(d,J=7.5Hz,1H),7.54(t,J=7.4Hz,1H),7.69(t,J=7.2Hz,1H),7.94(d,J=7.5Hz,1H).13C NMR(75MHz,CDCl3):δ22.24,32.03,33.87,44.48,80.96,121.64,125.64,125.92,129.12,134.03,149.60,170.44.EI-MS(m/z,%):224(M+,2.77),133(100.00),105(61.36),77(40.43),51(27.16).
实施例9
2g的合成
在5mL Schlenk瓶中,加入0.0025mmol[RuCl2(p-cymene)]2,0.006mmol配体(S,S)-11,换氩气保护,加入1.0mL蒸馏水,在40℃下搅拌反应0.5~1小时。在加大氩气气流条件下,开盖加入5mmol甲酸钠,0.04mmol CTAB,1mmol底物,另外添加一定量的常规有机溶剂,在氩气保护,40℃下搅拌反应,直至核磁显示转化完全。加入5ml蒸馏水,乙酸乙酯萃取,无水硫酸钠干燥,浓缩,快速硅胶柱层析纯化,得到相应的苯酞化合物2g,反应的转化率参见表3。
Figure A20081004163800141
表3
Figure A20081004163800142
实施例10
2g的合成
在5mL Schlenk瓶中,加入0.0025mmol[RuCl2(p-cymene)]2,0.006mmol配体(S,S)-11,换氩气保护,加入1.0mL蒸馏水,在40℃下搅拌反应0.5~1小时。在加大氩气气流条件下,开盖加入2.5mmol甲酸钠,0.04mmol CTAB,0.5mmol底物,另外0.5mL二氯甲烷,在氩气保护,40℃下搅拌反应,直至核磁显示转化完全。加入5ml蒸馏水,乙酸乙酯萃取,无水硫酸钠干燥,浓缩,快速硅胶柱层析纯化,得到相应的苯酞化合物2g,产率98%,ee 99.3%。
Figure A20081004163800143
2g:1H NMR(300MHz,CDCl3):δ3.21(d,J=6.0Hz,2H),5.67(t,J=6.0Hz,1H),7.13(d,J=7.2Hz,2H),7.23-7.28(m,3H),7.51(t,J=7.5Hz,1H),7.64(t,J=7.5Hz,1H),7.84(d,J=7.5Hz,1H).13C NMR(100MHz,CDCl3):δ40.02,80.73,122.08,125.74,126.22,128.59,129.29,131.01,133.03,133.38,133.82,148.72,169.97.EI-MS(m/z,%):258(M+,8.94),133(100.00),125(12.16),105(14.53),77(14.50).
实施例11
2h的合成
操作同实施例10,产率96%,ee 99.1%;如果投入1.0mmol底物(S/C=200/1),5mmol甲酸钠,0.04mmol CTAB,另外0.5mL二氯甲烷,其余操作同上,产率91%,ee 99.2%;如果投入2.5mmol底物(S/C=500/1),2mL水,10mmol甲酸钠,0.08mmol CTAB,1mL二氯甲烷,其余操作同上,产率92%,ee 99.1%。
Figure A20081004163800151
2h:1H NMR(300MHz,CDCl3):δ3.16(dd,J=6.3,14.1Hz,1H),3.29(dd,J=6.6,14.1Hz,1H),5.70(t,J=6.6Hz,1H),7.15-7.32(m,6H),7.49(t,J=7.5Hz,1H),7.60(dt,J=0.9,7.5Hz,1H),7.85(d,J=7.8Hz,1H).13C NMR(75MHz,CDCl3):δ40.85,81.27,122.38,125.65,126.24,127.17,128.57,129.24,129.73,133.80,135.08,149.15,170.33.FT-IR(film,cm-1):ν3032,2916,1753,1455,1269,1072,983,759,695,542.EI-MS(m/z,%):224(M+,16.45),133(100.00),105(14.95),91(19.59).
实施例12
2i的合成
操作同实施例10,产率92%,ee 98.7%。
2i:1H NMR(300MHz,CDCl3):δ2.44(s,3H),3.13-3.26(m,2H),5.63(t,J=6.6Hz,1H),6.99(s,1H),7.20-7.31(m,6H),7.73(d,J=7.8Hz,1H).
实施例13
2j的合成
操作同实施例10,产率93%,ee 99.0%。
Figure A20081004163800153
2j:1H NMR(300MHz,CDCl3):δ2.32(s,3H),3.10(dd,J=6.4,14.3Hz,1H),3.25(dd,J=6.6,14.1Hz,1H),5.66(t,J=6.5Hz,1H),7.09(s,4H),7.16(d,J=8.4Hz,1H),7.48(t,J=7.5Hz,1H),7.59(t,J=7.6Hz,1H),7.84(d,J=7.8Hz,1H).13C NMR(75MHz,CDCl3):δ20.92,40.19,81.21,122.22,125.39,126.02,128.96,129.03,129.39,131.69,133.55,136.51,149.03,170.17.EI-MS(m/z,%):238(M+,9.09),133(36.56),105(100.00),77(21.10),51(8.51).
实施例14
2k的合成
操作同实施例10,产率92%,ee 97.3%。
Figure A20081004163800161
2k:1H NMR(300MHz,CDCl3):δ2.44(s,3H),3.13-3.26(m,2H),5.63(t,J=6.6Hz,1H),6.99(s,1H),7.20-7.31(m,6H),7.73(d,J=7.8Hz,1H).
实施例15
2l的合成
操作同实施例10,产率96%,ee 99.3%。
Figure A20081004163800162
2l:1H NMR(300MHz,CDCl3):δ3.10(dd,J=6.3,14.1Hz,1H),3.24(dd,J=6.3,14.4Hz,1H),3.79(s,3H),5.65(t,J=6.6Hz,1H),6.80-6.83(m,2H),7.10-7.13(m,2H),7.18(d,J=8.1Hz,1H),7.49(t,J=7.5Hz,1H),7.60(dt,J=0.8,7.5Hz,1H),7.84(d,J=7.5Hz,1H).13C NMR(75MHz,CDCl3):δ39.80,55.13,81.33,113.80,122.26,125.57,126.19,126.77,129.06,130.68,133.63,149.08,158.58,170.27.EI-MS(m/z,%):254(M+,2.79),133(4.05),121(100.00),77(10.15),51(4.18).
实施例16
2m的合成
操作同实施例10,产率96%,ee 98.5%。
Figure A20081004163800163
2m:1H NMR(300MHz,CDCl3):δ3.24(dd,J=6.9,13.8Hz,1H),3.35(dd,J=5.4,14.1Hz,1H),5.72(t,J=6.2Hz,1H),7.30-7.36(m,3H),7.50-7.55(m,3H),7.64-7.69(m,1H),7.85(d,J=7.8Hz,1H).13C NMR(100MHz,CDCl3):δ40.58,80.53,122.00,122.73,125.36,125.39,125.43,125.46,125.88,126.22,129.34,129.45,129.67,130.04,133.97,139.17,148.62,169.89.EI-MS(m/z,%):292(M+,0.76),273(1.13),133(100.00),105(13.61),77(16.01),51(8.34).
实施例17
2n的合成
操作同实施例10,产率98%,ee 99.1%。
Figure A20081004163800171
2n:1H NMR(300MHz,CDCl3):δ3.15(dd,J=6.6,14.1Hz,1H),3.26(dd,J=5.1,14.4Hz,1H),5.68(t,J=6.2Hz,1H),6.67-6.78(m,3H),7.33(d,J=7.8Hz,1H),7.54(t,J=7.5Hz,1H),7.68(t,J=7.5Hz,1H),7.88(d,J=7.5Hz,1H).13C NMR(100MHz,CDCl3):δ40.53,80.31,102.53,102.78,103.03,112.44,112.50,112.62,112.69,121.97,125.94,126.20,129.55,134.06,138.83,138.92,139.02,148.47,161.63,161.76,164.10,164.23,169.81.EI-MS(m/z,%):260(M+,1.74),133(100.00),105(14.38),77(14.52),51(6.53).
实施例18
2o的合成
操作同实施例10,产率93%,ee 99.2%。
Figure A20081004163800172
2o:1H NMR(300MHz,CDCl3):δ3.12(dd,J=6.0,14.1Hz,1H),3.25(dd,J=6.3,14.1Hz,1H),3.81(s,3H),3.85(s,3H),5.69(t,J=6.0Hz,1H),6.68-6.79(m,3H),7.20(d,J=7.5Hz,1H),7.49(t,J=7.5Hz,1H),7.60(t,J=7.5Hz,1H),7.83(d,J=7.2Hz,1H).13C NMR(100MHz,CDCl3):δ40.23,55.80,55.84,81.18,111.16,112.86,121.92,122.30,125.62,126.31,127.24,129.08,133.54,148.11,148.76,149.06,170.16.EI-MS(m/z,%):284(M+,6.57),151(100.00),133(5.73),107(6.91),77(7.59),51(4.33).
实施例19
2p的合成
操作同实施例10,产率99%,ee 99.2%。
Figure A20081004163800173
2p:1H NMR(300MHz,CDCl3):δ2.46(s,3H),3.14(dd,J=6.5,14.0Hz,1H),3.23(dd,J=6.5,14.0Hz,1H),5.66(t,J=6.3Hz,1H),7.11-7.23(m,5H),7.49(t,J=7.7Hz,1H),7.61(t,J=7.4Hz,1H),7.84(d,J=7.5Hz,1H).13C NMR(75MHz,CDCl3):δ15.71,40.13,81.07,122.23,125.63,126.14,126.49,129.19,130.14,131.61,133.76,137.16,148.93,170.21.EI-MS(m/z,%):270(M+,7.44),137(100.00),122(10.81),105(5.27),91(6.06),77(10.75).
实施例20
2q的合成
操作同实施例10,产率97%,ee 98.5%。
Figure A20081004163800181
2q:1H NMR(300MHz,CDCl3):δ3.47(d,J=6.0Hz,2H),5.70(t,J=5.9Hz,1H),6.86(d,J=3.3Hz,1H),6.90-6.93(m,1H),7.15-7.17(m,1H),7.23-7.26(m,1H),7.51(t,J=7.4Hz,1H),7.63(dt,J=1.1,7.5Hz,1H),7.86(d,J=7.8Hz,1H).13C NMR(75MHz,CDCl3):δ34.62,80.39,122.15,124.79,125.54,126.17,126.85,127.14,129.25,133.81,136.09,148.40,170.04.EI-MS(m/z,%):230(M+,2.13),229(M+-1,12.63),175(7.84),131(100.00),103(30.56),91(57.86),57(36.36),41(24.31).
实施例21
2r的合成
操作同实施例10,产率80%,ee 98.3%。
Figure A20081004163800182
2r:1H NMR(400MHz,CDCl3):δ3.46(dd,J=8.0,14.4Hz,1H),3.53(dd,J=5.6,14.4Hz,1H),6.16(t,J=6.6Hz,1H),7.35(d,J=8.0Hz,2H),7.46-7.53(m,2H),7.58(t,J=7.4Hz,1H),7.67-7.71(m,1H),7.79(d,J=8.0Hz,1H),7.87(d,J=7.6Hz,1H),8.03(d,J=8.4Hz,1H),8.10(d,J=8.4Hz,1H).13C NMR(100MHz,CDCl3):43.96,80.56,122.31,122.45,125.64,125.98,126.36,127.10,127.67,128.83,129.25,129.73,133.99,136.69,147.82,149.66,156.70,170.33.ESI-MS(M++Na):298.0,(M++H):276.0.
实施例22
2s的合成
操作同实施例10,产率98%,ee 98.3%。
Figure A20081004163800191
2s:1H NMR(300MHz,CDCl3):δ3.12(dd,J=6.6,14.1Hz,1H),3.31(dd,J=6.3,14.1Hz,1H),5.65(t,J=6.3Hz,1H),7.18-7.21(m,3H),7.29-7.36(m,3H),7.91(s,1H).13C NMR(100MHz,CDCl3):δ40.59,80.45,124.55,126.18,127.27,127.53,128.75,129.64,134.16,134.30,138.72,148.00,167.79.EI-MS(m/z,%):292(M+,8.38),201(47.11),145(8.92),109(9.44),91(100.00),65(15.14).
实施例23
2t的合成
操作同实施例10,产率94%,ee 98.0%。
Figure A20081004163800192
2t:1H NMR(300MHz,CDCl3):δ4.26(dd,J=5.1,9.9Hz,1H),4.34(dd,J=5.6,10.1Hz,1H),5.78(t,J=5.3Hz,1H),6.81-6.84(m,2H),7.22-7.25(m,2H),7.60-7.63(m,2H),7.69-7.75(m,1H),7.96(d,J=7.2Hz,1H).13C NMR(100MHz,CDCl3):δ68.94,78.43,115.88,122.47,125.86,126.16,126.49,129.39,129.75,134.21,146.63,156.57,169.90.EI-MS(m/z,%):274(M+,39.68),147(30.46),133(100.00),119(26.22),91(25.01),77(18.08).
实施例24
2u的合成
操作同实施例10,产率94%,ee 98.0%。
Figure A20081004163800193
2u:1H NMR(300MHz,CDCl3):δ3.37(dd,J=6.0,14.1Hz,1H),3.50(dd,J=5.0,14.0Hz,1H),5.60(t,J=5.4Hz,1H),7.21-7.30(m,4H),7.52-7.65(m,3H),7.90(d,J=7.2Hz,1H).13C NMR(100MHz,CDCl3):δ39.10,78.53,122.42,125.66,126.37,129.22,129.59,132.14,133.27,133.34,133.94,147.92,169.71.EI-MS(m/z,%):290(M+,35.86),157(100.00),133(75.89),105(15.56),77(21.64),51(9.59).
实施例25
2v的合成
操作同实施例10,产率97%,ee 97.7%。
Figure A20081004163800201
2v:1H NMR(300MHz,CDCl3):δ3.24(dd,J=6.0,14.1Hz,1H),3.37(dd,J=6.5,14.0Hz,1H),5.86(t,J=6.6Hz,1H),7.26-7.33(m,5H),7.57-7.67(m,3H),7.87(d,J=8.1Hz,1H),8.01(d,J=7.8Hz,1H),8.43(s,1H).13C NMR(100MHz,CDCl3):δ41.52,81.26,121.24,124.00,126.93,126.96,127.15,128.27,128.55,128.88,129.80,129.85,133.18,135.19,135.98,142.79,170.10.EI-MS(m/z,%):274(M+,8.66),183(100.00),155(11.97),127(22.32).
实施例26
2w的合成
操作同实施例10,产率98%,ee 99.2%。
Figure A20081004163800202
2w:1H NMR(300MHz,CDCl3):δ3.46(dd,J=7.2,14.4Hz,1H),3.75(dd,J=7.2,14.4Hz,1H),5.82(t,J=6.8Hz,1H),6.96(d,J=7.2Hz,1H),7.34(d,J=6.6Hz,1H),7.43(t,J=7.7Hz,1H),7.48-7.62(m,4H),7.81(d,J=8.4Hz,1H),7.88(d,J=6.9Hz,2H),8.07(d,J=8.4Hz,1H).13C NMR(100MHz,CDCl3):δ38.29,80.38,122.64,123.19,125.33,125.65,125.81,126.00,126.39,128.14,128.31,129.00,129.17,131.29,131.84,133.57,133.89,149.32,170.11.EI-MS(m/z,%):274(M+,13.80),141(100.00),133(20.29),115(12..22),105(5.33),77(6.38)。

Claims (6)

1.一种制备高光学纯度的3-取代手性苯酞类化合物的方法,其特征是在室温至80℃,在还原剂、表面活性剂和助溶剂存在下,手性二胺配体与(对甲基异丙基)苯基二氯化钌二聚体的配合物催化剂催化底物反应4~24小时;
其中,底物浓度为0.5~1.25mol/L,底物摩尔数和催化剂摩尔数为100~500∶1,与底物相比,采用2~5当量还原剂,0~50当量的表面活性剂,当底物为固体或粘稠液体时添加0~50当量的助溶剂;所述的表面活性剂是非离子表面活性剂、阴离子表面活性剂或阳离子表面活性剂;所述的助溶剂是常规有机溶剂;所述的还原剂是甲酸盐;所述的反应具有如下的结构式:
Figure A2008100416380002C2
其中,R1为氢、C1~8的烷基、C1~8的卤代烷基、苯基、萘基、噻吩基、喹啉基、苯氧基、卤代苯氧基、苯硫基、卤代苯硫基或者R5或/和R6取代的苯基;R5为H或R6;R6为卤素、C1~4的烷基、C1~4的烷氧基、C1~4的烷硫基或C1~4的卤代烷基;
R2或/和R3为氢、卤素或C1~4的烷基、或者R2和R3为-CH=CH-CH=CH-;
R4为C1~3的烷基;
[RuCl2(p-cymene)]2为(对甲基异丙基)苯基二氯化钌二聚体;
所述的手性二胺配体具有如下的结构式:
Figure A2008100416380002C3
或者
Figure A2008100416380002C4
其中,R7和/或R8为氢、卤素、C1~8烷基、C1~5烷氧基或苄氧基;
R9为苯磺酰基或C1~4的烷基取代的苯磺酰基。
2.如权利要求1所述的一种制备高光学纯度的3-取代手性苯酞类化合物的方法,其特征是的手性二胺配体具有如下的结构式:
Figure A2008100416380003C1
3.如权利要求1所述的一种制备高光学纯度的3-取代手性苯酞类化合物的方法,其特征是所述的表面活性剂是吐温20、聚氧乙烯辛烷基苯酚醚X100、十二烷基磺酸钠、四丁基溴化铵或十六烷基三甲基溴化铵(CTAB)。
4.如权利要求1所述的一种制备高光学纯度的3-取代手性苯酞类化合物的方法,其特征是所述的常规有机溶剂是乙酸乙酯、丙酮、甲苯或C1~4的卤代烷烃。
5.如权利要求1所述的一种制备高光学纯度的3-取代手性苯酞类化合物的方法,其特征是反应温度为40℃。
6.所述的要求1所述的一种制备高光学纯度的3-取代手性苯酞类化合物的方法,其特征是甲酸盐为甲酸铵、甲酸锂、甲酸钠或甲酸钾。
CN2008100416384A 2008-08-13 2008-08-13 一种制备高光学纯度3-取代手性苯酞类化合物的方法 Active CN101337955B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100416384A CN101337955B (zh) 2008-08-13 2008-08-13 一种制备高光学纯度3-取代手性苯酞类化合物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100416384A CN101337955B (zh) 2008-08-13 2008-08-13 一种制备高光学纯度3-取代手性苯酞类化合物的方法

Publications (2)

Publication Number Publication Date
CN101337955A true CN101337955A (zh) 2009-01-07
CN101337955B CN101337955B (zh) 2012-05-09

Family

ID=40212136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100416384A Active CN101337955B (zh) 2008-08-13 2008-08-13 一种制备高光学纯度3-取代手性苯酞类化合物的方法

Country Status (1)

Country Link
CN (1) CN101337955B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105859670A (zh) * 2016-04-19 2016-08-17 丽珠医药集团股份有限公司 一种高纯度丁苯酞的制备方法
CN109776466A (zh) * 2018-03-19 2019-05-21 河南真实生物科技有限公司 苯甲酸类化合物及其制备方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105859670A (zh) * 2016-04-19 2016-08-17 丽珠医药集团股份有限公司 一种高纯度丁苯酞的制备方法
CN105859670B (zh) * 2016-04-19 2019-04-05 丽珠医药集团股份有限公司 一种高纯度丁苯酞的制备方法
CN109776466A (zh) * 2018-03-19 2019-05-21 河南真实生物科技有限公司 苯甲酸类化合物及其制备方法和应用
CN109776466B (zh) * 2018-03-19 2023-01-31 河南真实生物科技有限公司 苯甲酸类化合物及其制备方法和应用

Also Published As

Publication number Publication date
CN101337955B (zh) 2012-05-09

Similar Documents

Publication Publication Date Title
Murray et al. Enantio‐and Diastereoselective 1, 2‐Additions to α‐Ketoesters with Diborylmethane and Substituted 1, 1‐Diborylalkanes
Harmata et al. Congeners of Troeger's base as chiral ligands
Li et al. Spiro-2, 2′-bichroman-based bisoxazoline (SPANbox) ligands for Zn II-catalyzed enantioselective hydroxylation of β-keto esters and 1, 3-diester
Ohmiya et al. Cobalt-catalyzed cross-coupling reactions of alkyl halides with aryl Grignard reagents and their application to sequential radical cyclization/cross-coupling reactions
Vorogushin et al. Stereoselectivity of the benzannulation reaction: efficient central-to-axial chirality transfer
Tsubogo et al. Synthesis of optically active, unnatural α-substituted glutamic acid derivatives by a chiral calcium-catalyzed 1, 4-addition reaction
Moon et al. Synthesis of Benzo [b] thiophenes through Rhodium‐Catalyzed Three‐Component Reaction using Elemental Sulfur
Zou et al. Enantioselective Cu-catalyzed decarboxylative propargylic amination of propargyl carbamates
Periasamy et al. Diastereoselective synthesis of tetrasubstituted propargylamines via hydroamination and metalation of 1-alkynes and their enantioselective conversion to trisubstituted chiral allenes
Faigl et al. A new pyrrolidine-derived atropisomeric amino alcohol as a highly efficient chiral ligand for the asymmetric addition of diethylzinc to aldehydes
Kumar et al. Enantioselective cross dehydrogenative coupling reaction catalyzed by Rose Bengal incorporated-Cu (I)-dimeric chiral complexes
WO2012102247A1 (ja) ルテニウム錯体を含む水素移動反応用触媒及び水素移動反応物の製造方法
Yang et al. Asymmetric Michael addition reactions catalyzed by a novel upper-rim functionalized calix [4] squaramide organocatalyst
Peng et al. Asymmetric Cyclizative Dimerization of (ortho‐Alkynyl Phenyl)(Methoxymethyl) Sulfides with Palladium (II) Bisoxazoline Catalyst
Zheng et al. Highly enantioselective Michael addition of malononitrile to α, β-unsaturated pyrazolamides catalyzed by a bifunctional thiourea
Umekubo et al. Asymmetric synthesis of Corey lactone and latanoprost
CN106986800B (zh) 一种β-羰基硫醚的制备方法
Shi et al. Copper (II)‐Catalyzed Aerobic Oxidative Desulfitative 6π Electrocyclization: Efficient Synthesis of Diverse 4‐Aminoquinolines
CN104447604B (zh) 一种手性季碳恶唑啉酮化合物的合成方法
Banerjee et al. Alkali metal catalysed double hydrophosphorylation of nitriles and alkynes
CN101337955B (zh) 一种制备高光学纯度3-取代手性苯酞类化合物的方法
CN112961116B (zh) 一种2-芳基甲酰基苯并恶唑化合物的合成方法
Chai et al. Synthesis of modular thiophene-oxazoline ligands and their application in the asymmetric phenyl transfer reaction to aldehydes
CN106699632A (zh) 3-亚甲基异吲哚-1-酮衍生物的制备方法
Peng et al. Copper (I)-catalyzed enantioselective alkynylation of α-imino esters: ligand-to-metal ratio effects and mechanistic studies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SYSCAN MICRO PHOTOELECTRIC TECHNOLOGY (SHENZHEN) C

Free format text: FORMER OWNER: SHANGHAI ORGANIC CHEMISTRY INSTITUTE, CHINESE ACADEMY OF SCIENCES

Effective date: 20090424

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20090424

Address after: 276, West Zhongshan Road, Hebei, Shijiazhuang Province, China: 050051

Applicant after: Zhongqi Pharm Tech (Shijiazhuang) Co., Ltd., Shiyao Group

Address before: Shanghai City, Xuhui District Fenglin Road No. 354 post encoding: 200032

Applicant before: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences

C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200102

Address after: 050035 No. 226, the Yellow River Avenue, hi tech Industrial Development Zone, Hebei, Shijiazhuang

Co-patentee after: Enbipu Pharmacy Co., Ltd., Shiyao Group.

Patentee after: Stone Pharmaceutical Group Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd.

Address before: 050051 No. 276 West Zhongshan Road, Hebei, Shijiazhuang

Patentee before: Stone Pharmaceutical Group Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd.