CN101313214B - 用于复用计算机层析成像的方法和系统 - Google Patents

用于复用计算机层析成像的方法和系统 Download PDF

Info

Publication number
CN101313214B
CN101313214B CN200680043786.9A CN200680043786A CN101313214B CN 101313214 B CN101313214 B CN 101313214B CN 200680043786 A CN200680043786 A CN 200680043786A CN 101313214 B CN101313214 B CN 101313214B
Authority
CN
China
Prior art keywords
ray
image data
time domain
beams
multiplexing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200680043786.9A
Other languages
English (en)
Other versions
CN101313214A (zh
Inventor
周子刚
卢健平
章健
杨光
李岳
邱齐
程远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of North Carolina at Chapel Hill
University of North Carolina System
Original Assignee
University of North Carolina at Chapel Hill
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of North Carolina at Chapel Hill filed Critical University of North Carolina at Chapel Hill
Publication of CN101313214A publication Critical patent/CN101313214A/zh
Application granted granted Critical
Publication of CN101313214B publication Critical patent/CN101313214B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4021Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot
    • A61B6/4028Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot resulting in acquisition of views from substantially different positions, e.g. EBCT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/466Displaying means of special interest adapted to display 3D data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/025Tomosynthesis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/612Specific applications or type of materials biological material

Abstract

公开了用于复用计算机层析成像的方法、系统和计算机程序产品。根据一个方面,本文所述的主题可以包括:从多个视角用多个x射线束照明对象,其中每个x射线束具有区别的波形;探测所述多个脉冲x射线束的x射线强度作为时间的函数;以及基于所述x射线束的所述区别的波形从探测的x射线强度中提取个体的投影图像数据,用于组合所述投影图像数据,以生成所述对象的三维层析图像数据。

Description

用于复用计算机层析成像的方法和系统
资助声明 
本工作至少部分受到National Institute of Health and National Institute of Biomedical Imaging and Bioengineering(NIH-NIBIB)(资助号1-R21-EB004204-01)以及National Institute of Cancer(NCI)(资助号U54CA119343)资助的支持。美国政府可以享有本公开的一定权益。 
相关申请 
本申请要求享有2005年9月23日提交的美国临时专利申请No.60/720176的权益。本申请还是2006年4月25日提交的美国专利申请No.11/410997的部分延续,后者要求享有2005年4月25日提交的美国临时专利申请No.60/674537的优先权。在此通过引用将以上每个申请的公开全文并入本文。 
技术领域
本文所述的主题涉及x射线成像。更具体而言,该主题描述了用于复用计算机层析成像的方法、系统和计算机程序产品。 
背景技术
在诸如医疗诊断、安全甄别和工业检查的应用中广泛将x射线辐照用于探测材料的内部结构。在简单的成像方法中,通过对象传输x射线光子。用记录装置在一定时间内收集透射的x射线光子以形成具有重叠的结构特征的静态投影图像。更高级的成像方法,例如计算机层析成像(CT),使用来自不同视角的多个投影图像进行图像重构,或使用多帧图像实现对比度增强目的。 
典型的CT扫描仪通过绕对象高速旋转x射线管实现多个视角。这需要大而复杂的台架,将当前的医疗CT扫描仪限制在每次扫描大约一秒。在需 要同一对象的大量图像时,这样依次记录x射线图像效率不高。例如,对于具有单像素x射线管的CT扫描仪而言,x射线管旋转360度一圈需要耗时约0.5秒。在旋转这一圈的过程中,大约拍摄1000-2000幅投影图像。每次曝光大约为250-500μs。对于诸如医疗成像的应用来说,当前的CT系统曝光时间长使得它们不合乎需要或者效率低下。 
用于提高单像素x射线管系统数据收集速度的技术包括提高x射线管的转速或提高x射线通量。然而,这些技术受限于x射线管最大转速和阳极表面过热的物理限制。 
因此,考虑到与x射线成像相关的上述困难和需求,需要一种用于复用计算机层析成像的方法、系统和计算机程序产品。 
发明内容
本文所述的主题包括用于进行复用计算机层析成像的方法、系统和计算机程序产品。一个方面可以包括x射线生成装置,其被配置成同时生成多个具有区别的波形的x射线束,并被配置成从多个不同视角向对象发射所述x射线束。根据本文所述主题的一方面,可以提供x射线探测器和图像处理模块,x射线探测器可用于探测所述多个x射线束的x射线强度作为时间的函数,图像处理模块可用于基于x射线束的区别的波形从探测到的x射线强度中提取个体的(individual)投影图像数据,用于组合投影图像数据,以生成对象的三维层析图像数据。 
根据本发明的一方面,提供了一种复用计算机层析成像系统,其包括:(a)x射线生成装置,其被配置成同时生成多个具有区别的时域波形的x射线束,并被配置成从多个不同视角向对象发射所述x射线束,所述区别的时域波形包括具有独特频率的周期函数;(b)x射线探测器,配置为探测所述多个x射线束的x射线强度作为时间的函数;以及(c)图像处理模块,配置为基于所述x射线束的所述区别的波形从探测的x射线强度中提取个体的投影图像数据,用于组合所述投影图像数据,以生成所述对象的三维图像数据。 
根据本发明的一方面,提供了一种复用计算机层析成像的方法,用于同时记录对象的多个投影图像,所述方法包括:(a)从多个视角同时用多个x 射线束照明对象,其中每个x射线束具有区别的时域波形,所述区别的时域波形包括具有独特频率的周期函数;(b)探测所述脉冲x射线束的x射线强度作为时间的函数;以及(c)基于所述x射线束的所述区别的时域波形从探测的x射线强度中提取个体的投影图像数据,用于组合所述投影图像数据,以生成所述对象的三维图像数据。 
根据本发明的一方面,提供了一种用于操作复用计算机层析成像系统的方法,与单x射线束CT系统相比,该复用计算机层析成像系统中个体的束具有降低的x射线束通量和提高的采集速度,所述方法包括:(a)从多个视角同时用多个x射线束照明对象,其中每个x射线束具有区别的时域波形并且与单束CT系统相比工作在降低的x射线通量下,所述区别的时域波形包括具有独特频率的周期函数;(b)探测所述多个脉冲x射线束的x射线强度作为时间的函数;以及(c)基于所述x射线束的所述区别的时域波形从探测的x射线强度中提取个体的投影图像数据,用于组合所述投影图像数据,以生成所述对象的三维图像数据。 
根据本发明的一方面,提供了一种用于提高计算机层析成像系统的扫描速度的方法,所述方法包括:(a)利用x射线源从不同视角同时收集和复用对象的多个投影图像,所述x射线源被配置成生成多个逐个可编程的x射线束,其中每个束源自x射线阳极上的不同点并且具有区别的时域波形,所述时域波形包括具有独特频率的周期函数;(b)利用解复用算法从所述多个投影图像提取个体的图像;以及(c)从所提取的个体的图像重构单幅图像。 
根据本发明的一方面,提供了一种复用多能量层析成像系统,其包括:(a)x射线生成装置,其被配置成同时生成多个具有区别的时域波形和区别的x射线能量特征的x射线束,并被配置成向对象发射所述x射线束,所述区别的时域波形包括具有独特频率的周期函数;(b)x射线探测器,配置为探测所述多个x射线束的x射线强度作为时间的函数;以及(c)图像处理模块,配置为基于所述x射线束的所述区别的时域波形从探测的x射线强度中提取具有特定x射线能量特征的个体的投影图像数据,用于组合所述投影图像数据,以生成所述对象的层析x射线照相组合3D图像数据。 
可以利用一种计算机程序产品实现本文所述的主题,所述计算机程序产品包括体现在计算机可读介质中的计算机可执行指令。适于实现本文所 述主题的示例计算机可读介质可以包括芯片存储器件、磁盘存储器件、专用集成电路、可编程序逻辑器件和可下载电信号。此外,实现本文所述主题的计算机程序产品可以驻留在单个装置或计算平台上,或者可以跨过多个装置或计算平台分布。 
附图说明
现在将参考附图描述本文所述的主题,附图中: 
图1是根据本文所述主题的复用计算机层析成像系统的一个示例的方框图; 
图2示出了根据本文所述主题的复用CT系统的透视侧视图; 
图3示出了根据本文所述主题的静止平面复用CT系统的前视图; 
图4是用于执行根据本文所述主题的复用计算机层析成像的过程的流程图; 
图5A-5F是根据本文所述主题的二射束复用CT系统的模拟结果的曲线图; 
图6A-6F是根据本文所述主题的八射束复用CT系统的模拟结果的曲线图; 
图7是根据本文所述主题的多像素场致发射x射线源的示意截面侧视图; 
图8是图8所示x射线源的x射线单元的示意截面侧视图,该x射线单元用于生成根据本文所述主题的单个脉冲x射线束; 
图9A-9C是示出了由x射线强度探测器实验测量的两个x射线波形之和的曲线图; 
图10是对数据进行傅里叶变换之后两个具有方波形的x射线束的曲线图;以及 
图11示出了根据本文所述主题的具有旋转台架和可动载物台的复用CT系统的透视侧视图。 
具体实施方式
本文公开的主题描述了用于复用CT的系统、方法和计算机程序产品。 本文所述的主题可以在用于包括CT、层析X射线照相组合、荧光检查和血管造影术的射线照相成像中使用时具有特定的应用。根据本文所述主题的复用CT系统可以包括x射线生成装置,其被配置成同时生成多个具有区别的波形的x射线束,并被配置成从多个不同视角向对象发射x射线束。此外,根据本文所述主题的复用计算机层析成像系统可以包括x射线探测器,其探测多个x射线束的x射线强度作为时间的函数。此外,根据本文所述主题的复用CT系统可以包括图像处理模块,其基于x射线束的区别的波形从探测到的x射线强度中提取个体的投影图像数据,用于组合投影图像数据,以生成对象的三维层析图像数据。 
在一个方面,根据本文所述主题的复用计算机层析成像系统可以同时生成具有可编程波形的像素化x射线束并将x射线束引导到要成像的对象。可以由多束场致发射x射线(MBFEX)源生成x射线束。可以由数字x射线探测器探测x射线束。图像处理模块可用于基于x射线的波形从探测的x射线中提取个体的投影数据,用于组合投影图像数据,以生成对象的三维层析图像数据。平行成像过程可能是有利的,(例如)因为它可以减小CT成像所需的数据收集总时间和需要x射线源提供的x射线强度。在一个示例中,可以通过采用基于碳纳米管(CNT)的场致发射阴极的单像素x射线源生成每个x射线束,这种场致发射阴极具有生成有可编程波形的x射线的能力,其中能容易地改变强度、脉冲宽度和重复率。 
在美国专利No.6876724(名称为“Larg-Area Individually Addressable Multi-Beam X-Ray System and Method of Forming Same”)中描述了示例CNT基场致发射阴极x射线生成装置,在此通过引用将其公开全文并入。本专利公开了一种x射线生成结构,其具有多个静止且可单独电寻址的场致发射电子源,该电子源的衬底由诸如碳纳米管的场致发射材料构成。本专利中公开的x射线生成装置是可根据本文所述的主题使用的x射线生成装置的示例。 
图1是根据本文所述主题的一个方面的示例复用计算机层析成像系统(由100总体表示)的方框图。系统100可以收集对象O的三维层析图像数据ID。为了收集图像数据ID,复用功能元件(MPF)可以控制多束场致发射x射线(MBFEX)生成装置XGD以生成特定的复用x射线束XB1、 XB2和XBk,并从不同投射角度向对象O引导所生成的x射线束。在一个示例中,MPF控制XGD,以由x射线生成器XGD的像素(x,y)在区别的时间频率ωk处生成射束XB1、XB2和XBk。在通过对象O之后,可以由高帧频x射线探测器XD探测所有的x射线束XB1、XB2和XBk,x射线探测器XD输出针对每个像素的时域数据I(x,y,t)。X射线束XB1、XB2和XBk可以具有区别的波形。如下所述,区别的波形允许下游处理组件区分出从不同投射角度获得的数据。 
可以由解复用功能元件(DMPF)处理时域数据集以提取个体的投影图像PI1、PI2和PIk。可以组合这些投影图像以生成对象的3D层析图像数据ID。例如,DMPF可以包括时域傅里叶变换功能元件(TFT),用于基于时域数据获得频域谱I(x,y,ω)。可以由数值n波段滤波器滤除掉时域数据中的噪声,以获得n个区别的的组成分量d(x,y,ωk)。在Lu等人的名称为“X-Ray Imaging Systems and Methods Using Temporal Digital Signal Processing for Reducing Noise and for Enhancing Imaging Acquisition Speed by Obtaining Multiple Images Simultaneously”的美国专利申请No.11/410997中描述了一种示例噪声滤波器,在此通过引用将其公开全文并入。 
功能元件TFT生成的组成分量可以对应于由x射线生成器装置XGD生成的特定x射线束。具体而言,组成分量可以对应于x射线束XB1、XB2和XBk。功能元件TFT生成的第k个组成分量对应于工作在ωk频率处的x射线生成器装置XGD生成的x射线束XBk。此外,可以使用组成分量从x射线束XB1、XB2和XBk形成投影图像数据PI1、PI2和PIk。区别的波形频率允许功能元件TFT区分开从不同投射角度获得的数据。结果,仅使用一个探测器,在单个投影图像的曝光时间期间可以同时获得n个投影图像。于是,根据本文所述主题的系统与常规CT系统相比可以有利地将投影图像数据采集速度提高n倍。 
可以将投影图像数据PI1、PI2和PIk传输到图像处理模块IPM,IPM用于将投影图像数据组合成对象O的三维层析图像数据ID。可以将图像数据ID传输到显示器D,D可用于基于图像数据ID显示对象O的三维图像。 
图2示出了根据本文所述主题一方面的示例复用CT系统(由200总地表示)的透视图。参考图2,复用CT系统200可以包括x射线生成装置 XGD,其包括多束场致发射x射线源,其用于从x射线阳极表面上的多个焦斑生成多个x射线束XB1和XB2。 
X射线生成装置XGD可以具有形状为环形几何结构的阳极,其焦斑FS设置成用于形成360度的视角。具体而言,将所生成的x射线束向环形的中心引导,以瞄准位于载物台OS上的对象O。可以安置x射线探测器XD以接收通过或经过对象O的x射线束。每个焦斑FS与对象O之间可以具有相等的距离。 
在一个方面,为了为图像处理模块进行CT重构提供足够多投影图像,所需焦斑数量可以在大约100到大约3000个的范围内,并覆盖大约180度到大约360度的视角。 
在另一方面,对于角度受限的层析x射线成像设施(例如x射线分层摄影和层析X射线照相组合)的应用而言,投影图像的总数和视角范围可以更小。对于胸部层析X射线照相组合应用而言,预计x射线束覆盖大约30-50度的视角就足够了。 
图3示出了根据本文所述主题一方面的静止平面复用CT系统300的示意图。参考图3,X射线生成器装置XGD包括安置在阳极表面上的多个焦斑(1-N),例如焦斑FS。可以将焦斑FS配置成在受到来自x射线源的x射线轰击时发射x射线束,用XB总地表示x射线束。X射线束XB均可以具有区别的波形。可以从多个不同视角向对象O引导x射线束XB。可以将x射线探测器XD配置成探测经过或通过对象O的x射线束。具体而言,X射线探测器XD可以探测经过或通过对象O的x射线束的x射线强度作为时间的函数。图像处理模块可以基于x射线束的区别的波形从探测的x射线强度中提取个体的投影图像数据,用于组合投影图像数据,以生成对象的三维层析图像数据。可以存储三维层析图像数据和/或由适当显示器使用,以显示对象O的三维图像。 
图4是用于执行根据本文所述主题一方面的复用计算机层析成像的示例过程的流程图。参考图4,在方框400中,用来自多个视角的多个x射线束照明对象。每个x射线束可以具有区别的波形,该波形是由复用功能元件MFP控制的。例如,可以控制图1中所示的x射线生成器装置XGD以生成具有区别的时域波形的x射线束XB1、XB2和XBk并将x射线束向对 象O引导。在方框402中,可以作为时间的函数探测多个x射线束的x射线强度。例如,再次参考图1,可以由x射线探测器XD探测照明对象O的x射线束。在一个示例中,X射线探测器可以是阵列或区域数字x射线探测器,其中探测器的帧频快于x射线束的脉冲频率。 
在方框404中,可以由对应于具体MPF的解复用功能元件DMPF从所探测的x射线强度提取个体的投影图像数据。可以组合所提取的个体的图像数据以生成对象的三维层析图像数据。 
此外,在方框404中,可以显示基于所生成的对象的三维图像数据的对象的三维图像。例如,再次参考图1,显示器D可以显示基于所生成的对象O的三维图像数据ID的对象O的三维图像。 
利用根据本文所述主题的系统和方法,可以显著减少收集来自所有视角的投影图像所需的总时间。例如,假设重构需要1000幅投影图像,且每幅图像需要500μs。使用串行方法的常规CT扫描仪可以以500μs依次进行1000次曝光。该过程可以耗时0.5秒。然而,根据本文所述主题的示例(其可以同时生成区别的波形的x射线束)复用多个同时的x射线束将整个扫描的总曝光时间减小到1毫秒,这比常规串行方法(0.5s)快500倍而没有牺牲成像质量。 
此外,利用根据本文所述主题的系统和方法,可以显著降低对x射线强度的要求并可以减少图像数据收集时间,或者至少等于常规串行CT扫描仪所需的图像数据总收集时间。为了比较,使用与上述相同的示例。假设重构需要1000幅投影图像且每幅图像需要500μs×1安培的x射线剂量,利用串行方法的常规CT扫描仪可以以均为500μs×1安培的x射线剂量依次俘获1000次曝光。该过程将需要大约0.5秒。为了进行比较,使用包括1000个x射线发射像素、覆盖超过180度视角范围的根据本文所述主题的系统。在该示例中,同时打开x射线生成器装置的所有x射线束。以不同频率使每个x射线束脉冲化。在更具体的方面中,每个x射线束具有方波形和50%的占空比。1000个x射线束的频率范围在f和3f之间,其中f为该组的最低频率。不像常规系统中那样使用1安培(A)的管电流,该值被降低为每个像素0.1A的管电流。为了保持每次曝光相同的x射线剂量,以10的增加每束的总曝光时间。于是,对于复用CT过程而言,每个x射线束导通 10毫秒(500μs×10/50%)。每个脉冲的x射线管电流为0.1A。由于所有射束是同时导通的,因此整个扫描的总曝光时间为10毫秒,这比利用串行方法的常规系统(0.5秒)快50倍。此外,所需的x射线管电流仅是常规CT扫描仪所用值的10%,而且没有牺牲成像质量。本文所述主题可能实现的x射线管电流的减小可能是很重要的,例如,因为与常规系统相比,更低的管电流导致更低成本、更长系统寿命和更小尺寸。 
在一个方面,可以根据能量相减成像技术使用本文所述的主题。在能量相减技术中,可以利用具有不同能量水平的x射线束获得同一对象的两个或更多图像。在一个示例中,依次向对象施加具有不同能量水平的x射线束,其中利用具有能量水平E1的x射线束俘获对象的第一图像,随后利用具有能量水平E2的第二x射线束俘获对象的第二图像。在该示例中,可以控制x射线生成器装置,使得生成具有不同能量水平的x射线束,其中能量水平E1稍高于对象的吸收边缘,而能量水平E2稍低于对象的吸收边缘。假设对象不移动,可以从第二图像的x射线强度减去一幅图像的x射线强度以提高所关心要素的对比度。然而,运动中的对象可能会使对准(register)两幅图像变得困难。 
在利用能量相减成像技术的一方面中,可以使用两个单像素x射线源和数字x射线探测器。可以在阳极能量E1处操作源1,可以在阳极能量E2处操作源2。可以在频率f1和f2处使两个x射线束脉冲化。两个脉冲化x射线束的占空比高于50%。在该示例中,可以在比顺序俘获图像所需时间更短的时间内以同样的成像质量收集对象的两幅图像。结果,可以使运动引起的问题最小化。 
图5A-5F和6A-6F分别是根据本文所述主题的诸方面的两束和八束复用CT系统的模拟结果曲线图。图5A和5B的曲线图分别示出了由根据本文所述主题的系统生成的第一和第二x射线束的x射线强度与时间数据的关系曲线。以每秒接收到的光子来测度x射线强度,这也被称为每秒钟计数。图5C示出了第一和第二x射线束波形之和。图5D-5F分别示出了图5A-5C所示的每个波形的频域中的对应x射线数据。可以基于图5D-5F中它们的频率标识来自第一和第二x射线束的x射线束。图像处理模块可以利用该数据以基于x射线束的区别的波形从探测的x射线强度中提取个体 的投影图像数据,用于组合投影图像数据,以生成对象的三维层析图像数据。 
在图6中,曲线图6A-6C示出了根据本文所述主题的八束系统生成的时域中在x射线探测器的像素处记录的总的x射线强度与数据采集时间的关系曲线,x射线强度是按每秒光子数测量的,时间是以秒测量的。图6D-6F示出了频域中对应的x射线数据。然而,在图6D中不能清楚标识出x射线束波形,因为采集时间太短。如图6E-6F所示,对于大于20秒的采集时间,在频域中清楚分辨出x射线束。因此,可以使用采集时间充分长的投影图像数据来生成对象的三维层析图像数据。 
在一个方面,根据本文所述主题的x射线生成装置可以包括可用于同时生成具有区别的波形的x射线束的多像素场致发射x射线源。根据本文所述的主题,多像素场致发射x射线源能够向对象引导x射线束。图7是根据本文所述主题一方面的多像素场致发射x射线源(由700总地表示)的示意截面侧视图。参考图7,X射线源700可以包括多个用于发射电子的电子场致发射器FE。电子场致发射器FE可以包括一个或多个碳纳米管和/或其他适当的电子场致发射材料。此外,可以将电子场致发射器FE连接到相应的阴极C、导电或接触线或其他适当的导电材料的表面。电子场致发射器可以是碳纳米管。 
在另一方面,根据本文所述主题的x射线生成装置可以包括被配置成同时生成具有不同x射线能量特征的多个x射线束的多像素场致发射x射线源。可以针对医疗成像应用,利用除x射线衰减系数(或者称为CT数)之外的材料性质或属性,用多能量x射线束来获得3D层析x射线图像。这些属性例如可以包括化学成分、原子序数或对象密度。示例应用还可以包括探测对象化学成分,用于爆炸物探测和国家安全的目的。在备选示例中,可以通过其弹性将肿瘤组织与正常组织区分开,肿瘤组织或者可能含有诸如钙的某些元素,可以利用根据本文所述主题的多能量x射线成像系统判断以上情况,以用于医学应用中。 
可以通过诸如适当的通用计算机的适当控制器来控制电子场致发射器FE以发射电子,用于生成相应的电子束EB。在一个方面,控制器可以控制电压源VS1以在电子场致发射器FE和栅电极GE之间施加电压,以生成 相应的电场,用于从电子场致发射器FE中提取电子。所施加的电压可以是以不同频率脉冲化的,用于生成不同频率的脉冲电子束EB。具体而言,控制器可以逐个操作多个金属氧化物半导体场效应晶体管(MOSFET)T,用于逐个控制场致发射器FE,以发射电子。控制器能够逐个控制施加到场致发射器FE的电压,以逐个导通或关闭晶体管。可以将晶体管T的漏极连接到多个阴极C中的相应一个。可以通过逐个向晶体管T的栅极分别施加高信号(例如5V)和低信号(例如0V)来导通和切断晶体管T。当把高信号施加到晶体管的栅极时,导通晶体管漏极到源极的沟道,以在相应的阴极C和栅电极GE之间施加电压差。超过阈值的电压差可以在阴极C和栅电极GE之间生成电场,从而从相应的电子场致发射器FE提取电子。相反,当把低电压(例如0V)施加到晶体管栅极时,切断相应的漏极到源极沟道,使得电子场子发射器FE处的电压为电浮置,相应阴极C和栅电极GE之间的电压差不能生成强度足以从相应电子场致发射器提取电子的电场。控制器可用于逐个向晶体管T的栅极施加不同频率的电压脉冲。于是,控制器能够逐个控制来自场致发射器FE的电子束脉冲的频率。 
此外,x射线源700可以包括阳极A,阳极A具有多个被对应电子束轰击的焦斑。可以在阳极A和栅电极GE之间施加电压差,从而生成相应的场,以向着相应的目标结构TR加速由相应电子场致发射器FE发射的电子。例如,目标结构TR可以由钼制成。目标结构TR能够在受到电子束EB轰击时生成期望脉冲频率的x射线束。X射线源800可以包括聚焦电极FEL,用于将从电子场致发射器FE抽取的电子聚焦到目标结构T上,由此减小电子束EB的尺寸。可以由电压源VS2向聚焦电极FEL施加电压来控制聚焦电极FEL。可以根据所需的通量改变栅极电压。 
可以将电子场致发射器FE和栅电极GE包含在具有密闭内部的真空室内。真空室的内部可以被抽空以实现期望的内压力。电子束EB可以通过电子可穿透部分或窗口从真空室的内部迁移到其外部。在一个示例中,电子可穿透部分或窗口可以是4″直径的铍(Be)x射线窗口。可以由区别的波形的电子束对阳极A进行电子轰击,从而生成区别的波形的x射线束。此外,阳极A可以具有适当的形状和/或角度,从而使所生成的x射线束从多个不同视角向对象发射。 
图8是图7中所示的x射线源700的x射线单元(由800总地表示)的示意截面侧视图,该x射线单元用于生成根据本文所述主题的单个脉冲x射线束XB。X射线单元800表示x射线源700的单个像素。参考图8,X射线单元800可以包括淀积在阴极C上的电子场致发射器FE。在一个示例中,电子场致发射器FE可以是1.5mm直径的碳纳米管膜。碳纳米管膜可以淀积在金属衬底的表面上。此外,可以通过电泳工艺在表面上淀积碳纳米管膜。 
X射线单元800可以包括栅电极GE,用于在被电压源VS1施加电压时提取电子。在一个示例中,栅电极GE可以是钨栅格。栅电极GE可以由介电间隔体DS与阴极C隔开。 
在一个方面,可以通过向阳极A施加恒定DC电压,向栅电极GE施加可变DC电压来生成x射线束XB。N沟道MOSFET T可以适于打开和关闭来自电子场致发射器FE的电子发射。可以通过施加5V信号以打开MOSFET T的沟道来激活像素,使得电子场致发射器FE与栅电极GE一起形成完整的电路。电子场致发射器FE可以电耦合到MOSFET T的漏极。MOSFET T的源极可以接地。MOSFET T的栅极可以连接到适于提供5V DC电压信号的数字I/O板的输出。 
当电压源VS1施加的电压大于发射临界场时,可以从场致发射器FE发射电子。可以由电压源VS2跨阳极和栅电极GE施加电压来加速所发射的电子。电子形成电子束EB,电子束EB轰击阳极A的区域以生成x射线束XB。可以向聚焦电极FEL施加电压以将电子束EB聚焦到阳极A的目标焦点上。 
再次参考图7,通过扫过具有跨过x射线源700中的每个MOSFET的预定脉冲宽度的脉冲化控制信号,可以生成来自阳极目标上不同源的扫描x射线束。在扫过该信号的每个MOSFET处,可以打开MOSFET的沟道以从阳极靶上对应的焦点生成x射线束。 
可以激活像素的子集,使得像素子集发射具有相同脉冲频率的电子,其以相同频率从不同焦点生成x射线束。或者,可以激活像素的子集,使得像素子集发射具有不同脉冲频率的电子,其以不同频率从不同焦点生成x射线束。在一个方面,可以使用对像素子集来说独立的栅电极来激活该像 素子集。可以向对应像素施加预定脉冲频率的提取电压,以生成具有期望脉冲频率和幅度的场致发射电子。 
在另一方面,可以使用对所有电子发射像素来说公共的栅极来激活像素子集。通过使施加到MOSFET电路的激活电压脉冲化可以使电子束脉冲化。例如,为了生成具有预定频率的脉冲化x射线束,可以施加具有预定频率的脉冲电压以打开对应的MOSFET。 
图9A-9C是根据本文所述主题一方面的两束复用CT系统的试验结果之和的曲线图。图9A和9B示出了作为电压函数显示的示例波形与帧数的关系。图9C示出了实验测量的x射线强度,该强度是从这两个波形之和获得的按每秒光子数测量的。图像处理模块可以利用该数据基于x射线束的区别的波形从探测的x射线强度中提取个体的投影图像数据,用于组合投影图像数据,以生成对象的三维层析图像数据。 
图10示出了对数据进行时域傅里叶变换之后具有方波形的两个x射线束,该时域傅里叶变换可以是图像处理模块IPM的组件。 
图11示出了可以用台架使其绕要成像的对象旋转的x射线源和x射线探测器。此外,可以将载物台配置成旋转的,从而可以从多个角度获取图像。 
以下美国专利和申请与本文所述的主题相关,在此通过引用将其全文并入。美国专利No.6553096和6850595(两者名称均为“X-Ray Generating Mechanism Using Electron Field Emission Cathode”)中描述的x射线生成装置公开了包括至少部分由含纳米结构的材料形成的场致发射阴极的x射线生成装置,在此通过引用将其公开全文并入。这些专利中公开的x射线生成装置是根据本文所述的主题使用的x射线生成装置的示例。 
在美国专利7082182(名称为“Computed Tomography System for Imaging of Human and Small Animal”)中描述了另一个示例x射线生成装置,在此通过引用将其公开全文并入。该专利公开了一种包括x射线源和x射线探测单元的计算机层析成像装置。在该专利申请中公开的x射线源和x射线探测单元是根据本文所述的主题使用的x射线生成装置和x射线探测器的示例。 
在Zhou等人的未决美国专利申请No.11/051332(名称为“Computed  Tomography Scanning System and Method Using a Field Emission X-Ray Source”)中描述了用于对振动对象进行CT成像的示例方法和系统,通过引用将其公开全文并入于此。该申请公开了一种示例微计算机层析成像扫描仪,其包括微焦点场致发射x射线源、x射线探测器、放置于x射线源和探测器之间的载物台、电子控制系统和计算机,以及计算机软件,计算机控制x射线的辐射和探测器数据收集,计算机软件利用从不同投射角度收集的一系列投影图像重构对象的三维图像。与被成像对象的运动成一定关系使x射线束脉冲化。在该专利申请中公开的x射线源和x射线探测单元是根据本文所述的主题使用的x射线生成装置和x射线探测器的示例。 
应当理解,可以在不脱离本文所述主题的范围对本文所述主题的各种细节做出更改。此外,以上描述仅仅出于例示的目的,而不是为了限制的目的,因为本文所述的主题受到如下文所述的权利要求界定。 

Claims (25)

1.一种复用计算机层析成像系统,其包括:
(a)x射线生成装置,其被配置成同时生成多个具有区别的时域波形的x射线束,并被配置成从多个不同视角向对象发射所述x射线束,所述区别的时域波形包括具有独特频率的周期函数;
(b)x射线探测器,配置为探测所述多个x射线束的x射线强度作为时间的函数;以及
(c)图像处理模块,配置为基于所述x射线束的所述区别的波形从探测的x射线强度中提取个体的投影图像数据,用于组合所述投影图像数据,以生成所述对象的三维图像数据。
2.如权利要求1所述的系统,其中所述x射线生成装置包括多个可逐个寻址的x射线发射像素,其中可以控制所述x射线发射像素以同时和以任何时间次序从所述像素发射所述x射线束,且其中可以控制所述x射线发射像素来改变所述x射线束波形的频率、占空比和强度。
3.如权利要求1所述的系统,其中,所述x射线生成装置包括多个焦斑,所述多个焦斑布置为使得能够从360度视角形成所述对象的x射线图像。
4.如权利要求1所述的系统,其中,所述x射线生成装置包括电子源,所述电子源包括多个场致发射电子发射像素。
5.如权利要求1所述的系统,其中,所述x射线生成装置包括电子源,所述电子源包括多个场致发射电子发射像素,所述像素包括碳纳米管或纳米线。
6.如权利要求1所述的系统,其中所述x射线探测器包括多个配置成围绕所述对象的探测器元件。
7.如权利要求1所述的系统,其中所述图像处理模块包括专用集成电路(ASIC)和嵌入式图像重构算法。
8.如权利要求1所述的系统,包括显示器,配置为基于所生成的所述对象的三维图像数据显示所述对象的三维图像。
9.如权利要求1所述的系统,其中,所述x射线探测器包括数字探测器,所述数字探测器配置为使得所述探测器的帧频快于所述x射线束的脉冲频率。
10.如权利要求1所述的系统,还包括旋转台架,用于绕所述对象同时旋转所述x射线生成装置和所述x射线探测器以收集多幅图像用于重构。
11.如权利要求1所述的系统,还包括载物台,用于旋转所述对象以收集多幅图像用于重构。
12.一种复用计算机层析成像的方法,用于同时记录对象的多个投影图像,所述方法包括:
(a)从多个视角同时用多个x射线束照明对象,其中每个x射线束具有区别的时域波形,所述区别的时域波形包括具有独特频率的周期函数;
(b)探测所述多个x射线束的x射线强度作为时间的函数;以及
(c)基于所述x射线束的所述区别的时域波形从探测的x射线强度中提取个体的投影图像数据,用于组合所述投影图像数据,以生成所述对象的三维图像数据。
13.如权利要求12所述的方法,其中用多个x射线束照明所述对象包括用可逐个控制的多个x射线束照明所述对象以同时以及按任意时间次序发射x射线束,并可以控制所述多个x射线束以改变所述x射线束波形的频率、占空比和强度。
14.如权利要求12所述的方法,其中,用多个x射线束照明所述对象包括用从多个焦斑发射的多个x射线束照明所述对象,所述多个焦斑布置为使得能够从360度视角形成所述对象的x射线图像。
15.如权利要求12所述的方法,其中,利用多个x射线束照明所述对象包括利用x射线生成装置生成的多个x射线束照明所述对象,所述x射线生成装置包括多个电子发射像素,所述电子发射像素包括碳纳米管或纳米线。
16.如权利要求12所述的方法,其中由专用集成电路(ASIC)和图像重构算法执行如下操作:从所探测的x射线强度提取个体的投影图像数据,用于组合所述数据以生成所述对象的三维层析图像数据。
17.如权利要求12所述的方法,其中从所述探测的x射线强度中提取个体的投影图像数据用于组合所述数据以生成所述对象的三维层析图像数据包括基于所生成的所述对象的三维图像数据显示所述对象的三维图像。
18.如权利要求12所述的方法,其中从所探测的x射线强度提取个体的投影图像数据包括:
(a)对强度与时间的关系数据进行时域傅里叶变换;
(b)基于频率空间中的光谱确定来自每一所述x射线束的强度贡献;以及
(c)基于从所述频率空间提取的x射线强度从每一所述x射线束构建所述投影图像数据。
19.如权利要求12所述的方法,其中以至少等于具有最快脉冲频率的x射线束的频率两倍的帧频探测所述x射线强度。
20.一种用于操作复用计算机层析成像系统的方法,与单x射线束CT系统相比,该复用计算机层析成像系统中个体的束具有降低的x射线束通量和提高的采集速度,所述方法包括:
(a)从多个视角同时用多个x射线束照明对象,其中每个x射线束具有区别的时域波形并且与单束CT系统相比工作在降低的x射线通量下,所述区别的时域波形包括具有独特频率的周期函数;
(b)探测所述多个x射线束的x射线强度作为时间的函数;以及
(c)基于所述x射线束的所述区别的时域波形从探测的x射线强度中提取个体的投影图像数据,用于组合所述投影图像数据,以生成所述对象的三维图像数据。
21.一种用于提高计算机层析成像系统的扫描速度的方法,所述方法包括:
(a)利用x射线源从不同视角同时收集和复用对象的多个投影图像,所述x射线源被配置成生成多个逐个可编程的x射线束,其中每个束源自x射线阳极上的不同点并且具有区别的时域波形,所述时域波形包括具有独特频率的周期函数;
(b)利用解复用算法从所述多个投影图像提取个体的图像;以及
(c)从所提取的个体的图像重构单幅图像。
22.如权利要求21所述的方法,其中同时收集和复用多个投影图像包括频分复用。
23.一种复用多能量层析成像系统,其包括:
(a)x射线生成装置,其被配置成同时生成多个具有区别的时域波形和区别的x射线能量特征的x射线束,并被配置成向对象发射所述x射线束,所述区别的时域波形包括具有独特频率的周期函数;
(b)x射线探测器,配置为探测所述多个x射线束的x射线强度作为时间的函数;以及
(c)图像处理模块,配置为基于所述x射线束的所述区别的时域波形从探测的x射线强度中提取具有特定x射线能量特征的个体的投影图像数据,用于组合所述投影图像数据,以生成所述对象的层析x射线照相组合3D图像数据。
24.如权利要求23所述的系统,其中处理具有不同x射线能量特征的投影图像以获得能量相减层析图像数据。
25.如权利要求23所述的系统,其中处理具有不同x射线能量特征的投影图像以获得具有额外材料性质和/或属性的3D层析图像。
CN200680043786.9A 2005-09-23 2006-09-22 用于复用计算机层析成像的方法和系统 Active CN101313214B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US72017605P 2005-09-23 2005-09-23
US60/720,176 2005-09-23
PCT/US2006/037046 WO2007038306A2 (en) 2005-09-23 2006-09-22 Methods, systems, and computer program products for multiplexing computed tomography

Publications (2)

Publication Number Publication Date
CN101313214A CN101313214A (zh) 2008-11-26
CN101313214B true CN101313214B (zh) 2013-03-06

Family

ID=37900318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680043786.9A Active CN101313214B (zh) 2005-09-23 2006-09-22 用于复用计算机层析成像的方法和系统

Country Status (4)

Country Link
EP (1) EP1941264A4 (zh)
JP (1) JP2009509580A (zh)
CN (1) CN101313214B (zh)
WO (1) WO2007038306A2 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936858B2 (en) 2007-09-28 2011-05-03 Siemens Medical Solutions Usa, Inc. System and method for tomosynthesis
DE102008004473A1 (de) * 2008-01-15 2009-07-23 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung eines tomosynthetischen 3D-Röntgenbildes
US7724870B2 (en) 2008-05-30 2010-05-25 Siemens Medical Solutions Usa, Inc. Digital tomosynthesis in robotic stereotactic radiosurgery
CN102256548B (zh) * 2008-12-17 2014-03-05 皇家飞利浦电子股份有限公司 X射线检查装置及方法
US8254518B2 (en) 2009-10-05 2012-08-28 Siemens Medical Solutions Usa, Inc. Acquisition of projection images for tomosynthesis
DE102010006774A1 (de) * 2010-02-04 2011-08-04 Siemens Aktiengesellschaft, 80333 CT-Messung mit Mehrfachröntgenquellen
DE102010033511A1 (de) * 2010-08-05 2012-02-09 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Erzeugen einer Mehrzahl von projektiven Röntgenbildern von einem Untersuchungsobjekt aus unterschiedlichen Richtungen
CN101953694B (zh) * 2010-09-03 2012-07-25 北京睿思厚德辐射信息科技有限公司 医用和工业用x射线实时立体成像装置
CN103284734B (zh) * 2012-03-05 2015-07-22 上海联影医疗科技有限公司 一种校正辐射成像中散射影响的方法及装置
CN103472074B (zh) * 2013-06-19 2016-01-20 清华大学 Ct成像系统和方法
WO2015039603A1 (zh) * 2013-09-18 2015-03-26 清华大学 X射线装置以及具有该x射线装置的ct设备
CN104915156A (zh) * 2014-03-13 2015-09-16 北京固鸿科技有限公司 三维实体结构复制方法及其装置
DE102016013533A1 (de) 2016-11-12 2018-05-17 H&P Advanced Technology GmbH Computertomograph
DE102017000994B4 (de) * 2017-02-01 2019-11-21 Esspen Gmbh Computertomograph
CN111358478B (zh) * 2020-03-16 2023-08-18 上海联影医疗科技股份有限公司 一种x射线成像系统及成像方法
CN112075946B (zh) * 2020-08-20 2022-06-03 浙江大学 一种ct机转速检测结构和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB679617A (en) * 1947-09-27 1952-09-24 Westinghouse Electric Int Co Improvements in or relating to x-ray apparatus
EP0268488B1 (en) * 1986-11-19 1994-05-25 Exxon Research And Engineering Company Method and apparatus for utilizing an electro-optic detector in a microtomography system
US5745437A (en) * 1996-08-05 1998-04-28 Wachter; Eric A. Method and apparatus for coherent burst ranging
CN1488317A (zh) * 2002-09-05 2004-04-14 株式会社东芝 X射线ct装置以及测量ct值的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2646118A1 (de) * 1976-10-13 1978-04-20 Philips Patentverwaltung Anordnung zur erzeugung zwei- und/oder dreidimensionaler bilder dreidimensionaler gegenstaende
US5396418A (en) * 1988-10-20 1995-03-07 Picker International, Inc. Four dimensional spiral volume imaging using fast retrace
US6876724B2 (en) * 2000-10-06 2005-04-05 The University Of North Carolina - Chapel Hill Large-area individually addressable multi-beam x-ray system and method of forming same
US7227924B2 (en) * 2000-10-06 2007-06-05 The University Of North Carolina At Chapel Hill Computed tomography scanning system and method using a field emission x-ray source
US20040240616A1 (en) * 2003-05-30 2004-12-02 Applied Nanotechnologies, Inc. Devices and methods for producing multiple X-ray beams from multiple locations
US6914959B2 (en) * 2001-08-09 2005-07-05 Analogic Corporation Combined radiation therapy and imaging system and method
US7103137B2 (en) * 2002-07-24 2006-09-05 Varian Medical Systems Technology, Inc. Radiation scanning of objects for contraband
US6980301B2 (en) * 2002-07-25 2005-12-27 Cubic Co., Ltd Method and apparatus for three-dimensional surface morphometry
US6917664B2 (en) * 2002-10-03 2005-07-12 Koninklijke Philips Electronics N.V. Symmetrical multiple-slice computed tomography data management system
JP2006513410A (ja) * 2003-01-06 2006-04-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 一定半径でのシングルフォトン断層撮影法
GB0309383D0 (en) * 2003-04-25 2003-06-04 Cxr Ltd X-ray tube electron sources

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB679617A (en) * 1947-09-27 1952-09-24 Westinghouse Electric Int Co Improvements in or relating to x-ray apparatus
EP0268488B1 (en) * 1986-11-19 1994-05-25 Exxon Research And Engineering Company Method and apparatus for utilizing an electro-optic detector in a microtomography system
US5745437A (en) * 1996-08-05 1998-04-28 Wachter; Eric A. Method and apparatus for coherent burst ranging
CN1488317A (zh) * 2002-09-05 2004-04-14 株式会社东芝 X射线ct装置以及测量ct值的方法

Also Published As

Publication number Publication date
EP1941264A2 (en) 2008-07-09
EP1941264A4 (en) 2011-11-23
CN101313214A (zh) 2008-11-26
WO2007038306A2 (en) 2007-04-05
WO2007038306A3 (en) 2007-10-25
JP2009509580A (ja) 2009-03-12

Similar Documents

Publication Publication Date Title
CN101313214B (zh) 用于复用计算机层析成像的方法和系统
CN101296658B (zh) 使用时间数字信号处理的x射线成像
US7792241B2 (en) System and method of fast KVP switching for dual energy CT
US7852979B2 (en) Dual-focus X-ray tube for resolution enhancement and energy sensitive CT
US7751528B2 (en) Stationary x-ray digital breast tomosynthesis systems and related methods
US20150282774A1 (en) Stationary gantry computed tomography systems and methods with distributed x-ray source arrays
US20100239064A1 (en) Methods, systems, and computer program products for multiplexing computed tomography
US8189893B2 (en) Methods, systems, and computer program products for binary multiplexing x-ray radiography
US10405813B2 (en) Panoramic imaging using multi-spectral X-ray source
US8483353B2 (en) Integrated X-ray detector assembly and method of making same
US8488736B2 (en) Stacked flat panel x-ray detector assembly and method of making same
US8483352B2 (en) Stacked x-ray detector assembly and method of making same
US20130266115A1 (en) System and method for multi-energy computed tomography imaging
US8548118B2 (en) Apparatus and method for spectral projection imaging with fast KV switching
CN101466313A (zh) 扫描狭槽锥形束计算机断层摄影以及扫描聚焦光斑锥形束计算机断层摄影
KR101312436B1 (ko) 컴퓨터 단층 촬영 장치 및 그 제어방법
CN101379392A (zh) 使用分布式x射线源的成像装置及其方法
CN110430817A (zh) 计算机断层摄影设备
US5930330A (en) Method and apparatus for multitaxis scanning system
US20110150174A1 (en) Multiple x-ray tube system and method of making same
CN102119000B (zh) 电压调制的x射线管
KR20140084659A (ko) 에너지 차이를 증가시키는 다중에너지 엑스선 영상 획득 장치 및 방법
CN102370494B (zh) 一种ct系统
CN110047114B (zh) 用于改善计算机断层扫描中的空间分辨率的系统和方法
DE102010011661B4 (de) Multifokusröhre

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant