CN101264011A - 无箍带无侵入地测量腕部血压的方法和装置 - Google Patents

无箍带无侵入地测量腕部血压的方法和装置 Download PDF

Info

Publication number
CN101264011A
CN101264011A CNA2008100837769A CN200810083776A CN101264011A CN 101264011 A CN101264011 A CN 101264011A CN A2008100837769 A CNA2008100837769 A CN A2008100837769A CN 200810083776 A CN200810083776 A CN 200810083776A CN 101264011 A CN101264011 A CN 101264011A
Authority
CN
China
Prior art keywords
blood pressure
signal
pulse wave
ecg
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100837769A
Other languages
English (en)
Other versions
CN101264011B (zh
Inventor
赵在桀
郑善太
任在重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN101264011A publication Critical patent/CN101264011A/zh
Application granted granted Critical
Publication of CN101264011B publication Critical patent/CN101264011B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种依赖于正在测量的信息、与通信设备结合而无箍带无侵入地测量病人的腕部区域的血压的方法。该方法包括以下步骤:检测在从用户腕部检测的多个脉搏波信号之间的幅度差;根据从用户检测的心电图ECG和脉搏波信号检测特征点;使用所检测的特征点提取用于计算最高血压和最低血压必需的变量;以及通过使用所提取的变量导出散点图来计算用户的最高血压和最低血压。

Description

无箍带无侵入地测量腕部血压的方法和装置
技术领域
本发明涉及对人体动脉周围产生的脉搏波的利用。更具体地说,本发明涉及一种使用压力传感器、红外传感器和电极来获取脉搏波信号和心电图(ECG)信号、并将所分析的结果提供为手臂动脉的血压值的方法和装置。
背景技术
已有显示表明,随着体育活动的减少并由于某些饮食习惯,与高血压相关的诸如心脏病和中风的疾病的发生增加。另一方面,防止与高血压相关的疾病的重要性的原因之一是发生与高血压相关的疾病的群体随年龄增加而迅速增加。诊断和防止发生与高血压相关的疾病的方法之一是定期测量血压。通过血液流动、血管弹性、收缩阻力等来确定动脉血压,并且动脉血压是指示器官中与高血压相关的异常症状的重要标志。高血压可能会损害身体中所有主要的器官。
存在测量血压的两种基本方法,即侵入性(invasive)方法和无侵入性(non-invasive)方法。当在手术室(OR)或重症监护病房(ICU)中对高危病人进行治疗时,使用侵入性方法,该方法可以连续监视动脉血压并为分析动脉血液的气体的需要而提取动脉血液样本。然而,侵入性方法在准备和治疗中是非常麻烦的,可能由于感染或血管堵塞而导致诸如对组织造成损害的并发症。此外,由于侵入性方法大多应用于危重病人并且在这样情况中患者管理需要大量的护理消费,所以存在对与使用侵入性方法相关的并发症的担忧。因而,在通常情况下,主要采用使用箍带(cuff)来测量血压的无侵入性方法。然而,无侵入性方法具有以下缺点:不能连续地监视血压,并且由于进行测量的人的主观性而可能产生差别等。而且,在血压降低到小于预定值的情况下很难测量血压。例如,已报道说,很难对儿童和危重病人应用无侵入性方法,并且对于具有70mmHg舒张血压的病人来说,无侵入性方法的精确度显著降低。
此外,另一个缺点是:如果在使用箍带进行血压测量时不将箍带所缠绕的臂围计算在内,则不能获得正确的血压测量。然而,目前,不能利用箍带并将臂围计算在内来测量血压。此外,由于当使用箍带时必需有施加大约200mmHg的压力的过程,所以该压力可能损害血管或组织。为了补偿这些由于箍带而导致的缺点,已存在对通过不使用箍带的无侵入性方法来连续测量血压的失败尝试。然而,还未实现在这样情况下的可靠的血压监视。
在题目为“Cuffless Continuous Blood Pressure Monitor”的美国专利公开No.6,413,223和题目为“Continuous Non-invasive Sphygmomanometer”的美国专利公开No.6,669,648中公开了提供用于连续无侵入和无箍带式测量血压的装置的尝试。然而,这样的测量位置限于手指,或在腕部周围的位置测量血压,而腕部周围是难以固定的。此外,由于诸如上述专利中公开的装置需要用于驱动光源来连续测量血压的额外装置,所以这样的装置不能解决下面的问题:即为了进行精确测量而向人体应用这样的装置是不方便并且困难的。
由于血压的测量提供了重要的诊断信息,并且在对许多疾病的病人的治疗中是重要因素,所以开发一种无需箍带的在腕部简单并连续地测量血压的技术是本领域长期需要的。存在许多必须克服的障碍,诸如对固定到人体的传感器的部署、建立使用脉搏波的波形来计算血压值的正确算法、这样装置的容易固定和分离、以及便携性等。
发明内容
做出本发明来部分地解决至少某些上述问题和/或上述缺点,并提供至少下面所述的优点。因此,本发明的一方面是提供一种装置,用于提供并存储无侵入性的连续的血压值,以便通过建立用于获取在人体的特定动脉区域产生的脉搏波的波形的算法来提供连续的血压测量。在示范性实施例中的本发明可以包括来自红外传感器的输出、心电图信号以及对使用压力传感器、红外传感器和电极检测的脉搏波进行处理。
此外,本发明的上述示范性方面包括脉搏波传感系统的应用,用于显著改进与不使用箍带的传统血压测量装置相关的错误测量。此外,在本发明中,通过采用考虑了其使用环境的各种条件的精确波形检测方法,可以增加可靠性。具体地,本发明通过采用用于计算正确血压值的算法而可以提供增加的可靠性。此外,本发明通过将脉搏波传感系统方便地放在腕部上而允许在任何时间进行自我健康管理,并且可以在医院中无需打扰病人即可执行连续的血压监视。
根据本发明的示范性实施例,根据本发明的无箍带无侵入的连续血压测量装置(其改进了上述问题)包括信号检测器、脉搏波信号分析器、脉搏波信号显示单元、接口单元以及电源单元。所述信号检测器包括传感器单元,用于将从腕部动脉区域检测的红外传感器输出信号、脉搏波信号以及心电图(ECG)信号中的多于一个的信号转换成模拟信号,并输出该模拟信号。所述脉搏波信号分析器将脉搏波信号(该脉搏波信号是被信号检测器处理过的模拟信号)转换成数字信号,而所述脉搏波信号显示单元根据数字化的脉搏波信号来显示手臂动脉的连续血压值。所述接口单元负责与外部设备的数据通信,而电源单元向测量装置提供电力。
根据本发明的另一示范性方面,提供了一种与通信设备结合在人的腕部处无箍带无侵入地测量血压的方法,该方法包括:检测在从用户腕部检测到的多于一个的脉搏波之间的幅度差;检测从用户检测到的心电图(ECG)和脉搏波信号的特征点;使用所检测的特征点提取用于计算最高血压和最低血压所需的变量;以及通过使用所提取的变量导出散点图来计算最高血压和最低血压。
根据本发明的另一示范性方面,提供了一种用于与通信设备结合在人的腕部处无箍带无侵入地测量血压的装置,该装置包括:传感器单元,用于从用户测量必要的心电图(ECG)和脉搏波信号;控制器,用于控制所测量的信号;以及显示单元,用于向用户显示所控制的信号。
附图说明
通过下面结合附图进行的详细描述,本发明的上述和其它示范性目的、特征及优点将变得更加明显,其中:
图1是根据本发明的示范性实施例的用于在人的腕部处无箍带无侵入地测量血压的装置的透视图;
图2A和图2B分别是根据本发明的示范性实施例的在图1中所示的装置的传感器单元的前视图和侧视图;
图2C和图2D分别是根据本发明的另一示范性实施例的在图1中所示的装置的包括光学传感器的传感器单元的前视图和侧视图;
图2E是根据本发明的示范性实施例的在图1中所示的装置的带在用户腕部上的传感器单元的侧视图;
图3是根据本发明的示范性实施例的用于在人的腕部处无箍带无侵入地测量血压的装置的侧视图;
图4是根据本发明的示范性实施例的血压测量装置的概念图;
图5A、图5B和图5C分别是根据本发明的示范性实施例的、用于处理来自压力传感器、红外传感器和心电图(ECG)传感器的信号的模拟信号处理单元的电路图;
图6是根据本发明的示范性实施例的包括输入单元、状态显示单元和显示单元的控制器的电路图;
图7是根据本发明的示范性实施例的血压测量方法的流程图;
图8A是根据本发明的示范性实施例的血压测量方法的流程图;
图8B是根据本发明的示范性实施例的、使用检测径向动脉血压值的设备通过临床实例而获得的ECG信号和四个脉搏波形的图;以及
图9A、图9B和图9C是根据本发明的示范性实施例的、使用计算算法和从临床实例获得的实际值计算的最低血压值、最高血压值和脉搏压力值的散点图。
具体实施方式
下面将参考附图描述本发明的优选示范性实施例。本领域技术人员应当明白,提供下面所描述的诸如关于某些特定组件的细节的特定因素仅用于帮助本领域普通技术人员大致理解本发明,而本发明不限于这里所示出和描述的示例。在不背离本发明的精神和所附权利要求书的范围的情况下,可以对其做出各种形式和细节上的改变。下面,将参考附图详细描述根据本发明的示范性实施例的无侵入连续血压测量装置和由该装置执行的无侵入连续血压测量方法的配置和操作。
应当理解,术语“腕部血压”是指在腕部区域进行的测量。还应当理解,前臂也被认为是在这样的区域内。
图1是根据本发明的示范性实施例的用于无箍带无侵入地(cufflessly andnoninvasively)测量腕部血压的装置的透视图。参考图1,参考数字100表示根据本发明的示范性实施例的便携式连续血压测量装置300的全部配置。该无侵入连续血压测量装置300适于放置在用户的腕部区域,并且通常经由测量按钮101来驱动该装置300。由状态显示发光二极管(LED)107来显示正常或异常操作状态。通过装置300的显示单元109来显示使用装置300测量的连续血压。使用装置300测量的信号是脉搏波信号、通过其入射和反射来测量光强的红外信号以及ECG信号,并且为了测量ECG,ECG测量单元201经由放置在其上的手指来测量用户的ECG。
此外,为了检测脉搏波,使用装置300的腕套113来调整压力和位置。可以经由通信端150向蜂窝电话或其它通信设备发送使用该装置300测量的连续血压。
为了使用便携式连续血压测量装置300测量连续的血压,通过按下测量按钮101将装置300切换成测量模式,在该示例中,将所述测量按钮101布置在装置300的右上侧。通常将传感器单元(图2中所示的200)放置在腕部350w的径向动脉区域(图3中所示的350a)附近,并且适合于使用装置300的腕套113将装置300布置在用户的腕部350w的区域周围或该区域中。通过固定的装置300的状态显示LED 107来确定是否正在稳定地检测脉搏波信号,并且为了测量稳定的脉搏波信号,通过调整施加到传感器单元(图2中所示的200)的压力来测量稳定的脉搏波。通过将另一只手(无装置300的手)的手指与装置300的ECG传感器201接触来测量ECG信号。将所测量的脉搏波和ECG信号存储在包括在装置300的控制器(图4的450)中的随机存取存储器(RAM)(图4的455)中。在所存储的数据被随后要描述的图7中所示的处理进行了计算处理之后,在显示单元109上显示连续的血压值。
图2示出了根据本发明的示范性实施例的连续血压测量装置的传感器单元200的两种示范类型。图2A和图2B分别示出了根据本发明的示范性实施例的在图1中所示的装置300的传感器单元200的前视图和侧视图,其中该传感器单元包括压力传感器和ECG传感器,而图2C和图2D分别示出了根据本发明的另一示范性实施例的在图1中所示的装置的、包括光学传感器的传感器单元200的前视图和侧视图,其中所述传感器单元包括压力传感器、ECG传感器和光学传感器。
现在参考图2A和图2B,传感器单元200通常包括多于一个的压力传感器203、放置压力传感器203的印刷电路板(PCB)210、通常环绕在传感器203和PCB 210周围的凝胶型环氧树脂处理单元220以及用凝胶填充的部分230。本发明中所使用的每个压力传感器203将压力信号转换成电信号,并且通过将其放在径向动脉上而测量流过血管的血液的压力,该血压影响血管。将多于一个的压力传感器203布置在PCB 210上,并且为了防止被传感器单元200的管道中的压力传感器203施加压力的部分的凝胶漏出并改变传感器单元200的管道中的凝胶230的整体密度,通过环氧树脂处理单元220来处理传感器单元200与用户的腕部350w接触的部分的凝胶230。由于凝胶230被用作用于发送脉搏波信号的发送器,所以发送到每个压力传感器203的脉搏波信号根据凝胶230的密度和结构而变化。
发送到每个压力传感器203的脉搏波信号根据在用户的径向动脉区域(图3的350a)和传感器单元200之间获得的角度和压力而变化,并且从多于一个的压力传感器203中输出的每个脉搏波信号的幅度根据施加到腕部350w上的压力的量而变化。从该多于一个的压力传感器中输出的该变化用于将所检测的脉搏波的幅度校正为绝对压力,通过计算算法来处理该绝对压力,并且将所计算的信号用于连续血压分析。
这样,根据本发明的示范性方面,优选的是,用于选择动脉的正确位置及提取清晰的脉搏波信号的传感器单元200通常包括至少一个压力传感器203,并且这样的压力传感器203输出由安装在腕套中的电极检测到的ECG信号,并且可以将脉搏波信号用于准确且高重复性的连续血压分析。
现在参考与本发明的另一示范性实施例相对应的图2C和图2D,传感器单元200包括ECG传感器201、多个红外传感器202、多个压力传感器203、用于固定压力传感器203的PCB 210、环绕在红外传感器202周围的凝胶型环氧树脂处理单元220。
仍然参考图2C和图2D,根据本发明的传感器单元200的该示范性实施例,ECG传感器201检测指示心脏的电活性的ECG信号,并且向模数处理单元(图4中所示的411)发送该ECG信号。在图2A和图2B的示范性实施例的情况下,由于通常使用包括位于装置300的外部的电极(图1的201)的三个ECG传感器,所以在带状(strap)区域中通常使用两个额外的电极。在图2C和图2D的示范性实施例的情况下,使用传感器单元200中的两个电极和位于装置300的外部的电极(图1的201)来获取ECG信号。
红外传感器202通常包括光电二极管和LED,由LED发射的光通过用户腕部350w周围的皮肤、皮下脂肪、肌肉和径向动脉被多倍(multiply)扩散,并被光电二极管接收,因而生成模拟输出信号。根据本发明的示范性实施例的传感器单元200的红外传感器202通常位于压力传感器203组的周围,并且通过控制器(图4中所示的450)的计算程序来处理每个红外传感器202的输出信号,从而形成矢量分量。
图2E是根据本发明的示范性实施例的、在图1中所示的装置300的传感器单元被放置在用户腕部上的侧视图。
图3是根据本发明的示范性实施例的用于无箍带无侵入地测量腕部血压的装置的侧视图。图3示出了连续血压测量装置的示范性配置,并且包括图1中所示的配置。现在将描述该装置的配置。将无侵入连续血压测量装置300环绕用户的腕部区域350w周围放置,并使用测量按钮101来操作它,通过状态显示LED 107来显示正常或异常操作状态。通过装置300的显示单元109来显示使用装置300而测量的连续血压。使用装置300测量的信号是脉搏波信号、通过其入射和反射来测量光强的红外信号以及ECG信号,并且为了测量ECG,用户350通常将手指放在ECG传感器单元201上。
此外,为了检测正常的脉搏波,使用腕套113来调整施加到经过用户的腕部350w的桡骨305b的动脉区域350a上的传感器单元200的压力和位置。为了与外部设备(图4中所示的470)通信,可以经由通信设备的端子150来发送使用装置300测量的连续血压。
图4是根据本发明的示范性实施例的血压测量装置的概念图。
参考图4,使用ECG传感器、用于测量正确的脉搏波信号的至少一个红外传感器202以及至少一个压力传感器203从与用户对应的操作对象350测量脉搏波信号。由与SC1 411对应的模拟信号处理单元对使用ECG传感器201测量的ECG信号进行滤波和放大。然后将经模拟信号处理的ECG信号输入到控制器450的模/数(A/D)转换器451的模拟输入端中,将其转换成数字信号,并存储在RAM 455中。
由与SC2 413对应的模拟信号处理单元对使用至少一个红外传感器202测量的每个红外传感器信号进行滤波和放大。然后将该经模拟信号处理的红外传感器信号输入到控制器450的A/D转换器451的模拟输入端中,将其转换成数字信号,通过数字信号处理器(DSP)453使用存储在只读存储器(ROM)457中的位置和深度分析程序对其进行数字信号处理,并显示在显示单元109上。
使用该红外传感器信号来补偿根据用户变化的各个条件,诸如所测量的位置和动脉深度。由与SC3 415对应的模拟信号处理单元对使用多个压力传感器203测量的脉搏波信号进行滤波和放大,将该信号输入到A/D转换器451的模拟输入端中,显示在显示单元109上,并将其存储在RAM 455中。存储在RAM 455中的ECG信号和脉搏波信号是由DSP 453使用存储在ROM 457中的连续血压分析程序处理过的数字信号,并且将分析结果显示在显示单元109上,并存储在闪存459中。可以通过使用诸如外部通信端的接口端150来向诸如个人计算机(PC)或个人数字助理(PDA)或服务器的外部设备470发送所存储的连续血压结果值。使用外部输入103和105来控制控制器450。
图5A、图5B和图5C分别是根据本发明的示范性实施例的用于处理由在连续血压测量装置300中使用的压力传感器203、红外传感器202和ECG传感器201测量的模拟信号的电路图。
图5A是根据本发明的示范性实施例的用于处理来自压力传感器的模拟信号的单元的电路图,示出了负责对由连续血压和动脉弹性测量装置300的压力传感器203测量的脉搏波信号进行模拟信号处理的电路。
现在参考图5A,将压力传感器(图4的203)从用户的腕部350w测量的具有两个极性的脉搏波信号输入到模拟信号处理单元(图4的415)的输入端。当将所输入的+信号和-信号输入到差分放大器21时,与相同相位对应的噪声分量被抵消,而仅放大两个信号之间的差,通过输入电阻器R6或R9(R6=R9)与反馈电阻器R4或R14(R4=R14)的比率来调节该差分放大器21的放大率。使用高通滤波器(HPF)23和4阶低通滤波器(LPF)25从最初放大的信号中除去对分析连续血压和动脉弹性不必要的信号,所述高通滤波器的截止频率是0.1Hz,用于截止低于0.1Hz的低频噪声,所述4阶低通滤波器的截止频率是10Hz,用于截止高于10Hz的高频噪声。反向放大电路27将去除噪声的信号二次放大为不高于所提供的电压,并将其输入到控制器(图4的450)的A/D转换器(图4的451)的模拟输入端,以转换成数字信号。
图5B是根据本发明的示范性实施例的用于处理来自红外传感器的模拟信号的单元的电路图,示出了负责对连续血压测量装置300的红外传感器(图4的202)测量的红外传感器信号进行模拟信号处理的电路。
参考图5B,使用HPF 33和4阶LPF 35将对分析动脉位置信息不必要的信号从由红外传感器(图4的202)从用户的腕部350w测量的红外传感器信号(即光电晶体管的射极输出信号)中除去,所述HPF 33的截止频率是0.1Hz,用于截止低于0.1Hz的低频噪声,所述4阶LPF 35的截止频率是10Hz,用于截止高于10Hz的高频噪声。反向放大电路37将去除噪声的信号二次放大为不高于所提供的电压,并将其输入到控制器(图4的450)的A/D转换器(图4的451)的模拟输入端,以转换成数字信号。
图5C是根据本发明的另一示范性实施例的用于处理来自ECG传感器的模拟信号的单元的电路图,示出了负责对连续血压测量装置300的ECG传感器(图4的201)测量的ECG信号进行模拟信号处理的电路。
参考图5C,ECG信号是通过将三个电极(即ECG传感器)(图4的201)测量的心脏活性电势转换成电压而示出的信号,并且如果共模抑制比(CMRR)(其指示通过人体输入的共模噪声的比率)增加,则使用差分放大器41来去除共模噪声,而只放大+电极和-电极之间的电势差。使用HPF 43、4阶LPF 45和陷波滤波器47从最初放大的信号中去除对分析连续血压不必要的信号,所述HPF 43的截止频率是1Hz,用于截止低于1Hz的低频噪声,所述4阶LPF 45的截止频率是30Hz,用于截止高于30Hz的高频噪声,所述陷波滤波器47用于去除由于通过电极输入的通用频率(50/60Hz)导致的噪声。反向放大电路49将去除噪声的信号二次放大为不高于所提供的电压,并将其输入到控制器(图4的450)的A/D转换器(图4的451)的模拟输入端,以转换成数字信号。
图6是根据本发明的另一示范性实施例的连续血压测量装置300中的、包括输入单元、状态显示单元107和显示单元111的控制器450的电路图。
参考图6,根据本发明的当前示范性实施例的连续血压测量装置300中的控制器450(图4中所示)包括:装置300的显示单元109;用于进行装置300中的测量的测量按钮101;用于外部输入的测量按钮103和105;显示装置300的操作状态的状态显示LED 107;以及用于与诸如PC或PDA的外部设备470接口的通信端150。
将经模拟信号处理的脉搏波信号、红外传感器信号以及ECG信号输入到A/D转换器(图4中所示的451)的模拟输入端,并将它们转换成数字信号。通过对所转换的数字信号执行信号处理,在显示单元109上显示该脉搏波信号,并将其存储在控制器450(图4中所示)的RAM 455中。使用存储在控制器450的ROM(图4中的457)中的连续血压分析程序从所存储的数字信号中导出出连续血压值,并在显示单元109上显示该连续血压值。
将所计算的结果数据存储在控制器450的闪存459中,并且可以经由通信端150向诸如蜂窝电话的外部设备470发送该所计算的结果数据。控制器450以8位为基础计算数据,其具有16信道模拟输入端,使用多路器(MUX)71选择存在输入的信号,并且经由输出电路输出所选择的信号。所配置的A/D转换器451具有10位分辨率,并且由于控制器450包括外部通信端150(图1中所示),所以控制器450无需额外的通信接口即可以与诸如PC或PDA的外部设备470接口。控制器450也可以使用ROM(图4的457)来存储该计算程序。
此外,尽管控制器450本身可以处理输入数据,但是为了扩展数据存储存储器并连接显示液晶显示器(LCD),存储器映射是必要的。为了执行存储器映射,优选地使用地址和数据总线。然而,由于AVR使用地址(16位)/数据(8位)方法并且使用相同引脚作为较低位地址数据,所以使用锁存器73来划分数据和地址。数据存储存储器和LCD是彼此映射的存储器,并且为了生成芯片选择信号,使用解码器75将数字信号转换成模拟信号。
控制器450通过使用存储在ROM 457中的计算程序混合多于一个的红外传感器信号而形成矢量分量,使用所形成的矢量分量来搜索动脉的正确位置和深度信息,并且可以通过比较和分析所测量的脉搏波信号和ECG信号来显示连续血压分析结果。
图7是示出根据本发明的示范性实施例的在连续血压测量装置300中的血压测量方法的示范性步骤的流程图。
参考图7,当在步骤F1中开始该使用连续血压测量装置300来测量用户腕部350w的脉搏波信号时,在步骤F3向控制器(图4中所示的450)的外部输入(图4中所示的103和105)输入由于测量按钮(图1的101)产生的信号。通过在步骤F5中使用至少一个红外传感器(图4中所示的202)获取动脉的位置和深度信息、使用压力传感器(图4中所示的203)测量脉搏波信号以及使用ECG传感器(图4中所示的201)测量ECG信号,在步骤F7中,模拟信号处理器对ECG信号、红外传感器信号和脉搏波信号执行处理。在步骤F9中,向控制器(图4中所示的450)的A/D转换器(图4中所示的451)的模拟输入端输入经模拟信号处理的ECG信号、红外传感器信号和脉搏波信号中的每一个,并且将它们转换成数字信号。仍然参考图7,向被转换成数字信号的径向脉搏波信号应用数字LPF,并且在步骤F11中去除其走向(trend)之后,在步骤F12中显示该径向脉搏波信号。在步骤F13中,通过使用来自红外传感器信号的位置和深度信息以及随后要描述的ECG信号的R峰值时间,根据经信号处理的径向脉搏波信号来计算不失真的径向动脉压力值,从而补偿由于压力差导致的变化,在步骤F15中,从所补偿的径向脉搏波信号中检测特征点,并且在步骤F17中基于该特征点应用用于计算手臂血压值的算法。在步骤F16中根据脉搏波的特征点的检测计算每分钟的脉搏速率,在步骤F19中显示所计算的脉搏速率,并且在步骤F21中显示基于所述算法计算的收缩血压值和舒张血压值。将参考图8A来描述算法计算过程。
图8A是根据本发明的示范性实施例的连续血压测量算法的计算过程的流程图。
参考图8A,当在步骤D1检测到每个特征点时,使用ECG信号根据表示心脏的电活性的一个周期的P-QRS-T波形来检测R峰值。该R峰值表示心脏的左心室的去极化(de-polarization)时间。根据各个脉搏波信号检测开始点、最高点和陷波点。使用红外的脉搏波信号用于补偿最高点的检测。
仍然参考图8A,在步骤D3中,使用利用特征点计算的变量来计算与通过在实际侵入性方法中使用导管的临床实例检测的实际血压值关联的线性回归表达式,在步骤D7和D9中,根据线性回归表达式来计算最高血压值和最低血压值。当最终计算出最高血压值和最低血压值时,结束该使用算法的计算过程,然后在步骤D11中显示该最高血压值和最低血压值。
图8B是根据本发明的示范性实施例的通过临床实例使用用于检测径向动脉血压值的设备获取的ECG信号E1和四个脉搏波形E2至E5的图。在图8B中所示的图中,示出了通过使用图7中所描述的血压计算算法检测的特征点。
参考图8B,根据来自ECG信号E1的指示心脏的电活性的一个周期的P-QRS-T波形来检测R峰值。R峰值G1表示心脏的左心室的去极化时间。根据各个脉搏波信号E2至E5检测开始点G2、最高点G4和陷波点G3。
当向这些特征点应用图8中所描述的算法时,通过计算从R峰值G1到脉搏波开始点G2的时间、从R峰值G1到脉搏波最高点G4的时间、从脉搏波最高点G4到脉搏波陷波点G3的时间、从脉搏波开始点G2到脉搏波陷波点G3的面积,并且通过将与实际血压值的关系表现为线性回归表达式来计算最高血压值和最低血压值。
图9A、图9B和图9C是根据本发明的示范性实施例的、使用计算算法和从临床实例获取的实际值计算的最低血压值、最高血压值和脉搏压力值的散点图。通过向使用导管的侵入性检测得到的最高血压值和最低血压值以及为了临床验证由连续血压测量装置检测的ECG信号E1和脉搏波形E2至E5应用根据本发明的示范性实施例的算法,从而导出所示出的代表性变量的散点图。
图9A示出了从R峰值G1(其是示出与所提取的变量中的最高血压值的高度相关性的变量)到脉搏波最高点G4的时间值的散点图和线性回归线,图9B示出了从脉搏波最高点G4(其是示出与所提取的变量中的最低血压值的高度相关性的变量)到脉搏波陷波点G3的时间值的散点图和线性回归线,图9C示出了所补偿的脉搏压力值(其用于通过使用脉搏波信号E2至E5中的至少一个之间的幅度差设置施加到腕部区域的压力标准来补偿绝对压力值)的绝对值与从脉搏波开始点G2到脉搏波陷波点G3的面积值的散点图和线性回归线。
具体而言,当归纳上述算法时,ECG信号的R峰值和脉搏波的最高点之间的时间差与最高血压高度地相关,而从脉搏波的最高点到陷波点的时间与最低血压高度地相关。由于通过时间来表达这些值,所以这些值不涉及所测量的压力。此外,连接脉搏波的开始点与陷波点的直线以及在脉搏波的波形和连接脉搏波的开始点与陷波点的直线之间的面积与脉搏压力高度地相关,所述脉搏压力表示最高血压和最低血压之间的差。根据临床实例推导出三个相关性表达式,并且可以从该三个相关性表达式中的两个或它们的任意组合中获得最高血压、最低血压和平均血压。
如上所述,根据本发明,使用利用特征点计算的变量(图8A的步骤D3)和使用绝对血压补偿的脉搏压力(图8A的步骤D5)得到了与通过临床实例检测的实际血压值关联的线性回归表达式,并最终计算出了的最高血压(图8A的步骤D7)和最低血压(图8A的步骤D9),然后结束使用该算法的计算过程,并且显示最高血压值和最低血压值(图8A的步骤D11)。此外,可以定期地或当值超过预定阈值时向诸如护士站、网络、健康监视系统等的外部设备发送最高和最低血压值。所述阈值可以高于或低于预设范围。
如上所述,根据本发明,可以将无侵入连续血压测量装置(其可以容易地用于人体并且具有便携性)及其方法应用于系统的开发,其用于显著改进不使用箍带的传统血压测量装置的准确度,并且其考虑了各种测量条件而显示准确血压的定量值。因此,对于与疾病相关的心脏/血液早期诊断,可以毫无问题地使用该装置和方法。
此外,当用户到医院时,通过将在日常生活中定期存储的血压值交付给医生,可以有助于诊断和开取药方,并且,通过基于一天中的血压变化趋势提出有计划的健康保健指导,可以降低药物的过渡滥用。因此,在康乐社会中,该装置可能是必不可少的健康护理设备。尽管已参考本发明的某些优选示范性实施例示出和描述了本发明,但是本领域技术人员应当明白,在不背离本发明的精神和所附权利要求书的范围的情况下,可以对其做出各种形式上和细节上的改变。

Claims (16)

1.一种与通信设备结合来无箍带无侵入地测量腕部血压的方法,该方法包括:
(a)使用心电图ECG传感器和压力传感器从用户的腕部区域检测ECG和脉搏波信号;
(b)根据从用户检测的所述ECG和脉搏波信号来检测特征点;
(c)通过将在步骤(b)中检测的特征点应用于血压计算算法而提取用于计算最高血压和最低血压的变量;以及
(d)通过使用所提取的变量导出散点图来计算该用户的最高血压和最低血压。
2.根据权利要求1所述的方法,其中,步骤(a)中的所述检测ECG和脉搏波信号包括:
(i)使用所测量的多于一个的脉搏波信号的幅度差来设置向腕部施加的压力的标准;以及
(ii)补偿用户环境以及根据传感器施加的压力差的标准值改变,所述用户环境包括使用红外传感器测量的位置和动脉的深度中的至少一个。
3.根据权利要求1所述的方法,其中,步骤(b)中的所述根据从用户检测的ECG和脉搏波信号检测特征点包括:
(i)从所测量的ECG信号中检测指示心脏的电活性的一个周期的P-QRS-T波形中的R峰值;以及
(ii)检测开始点、最高点和陷波点。
4.根据权利要求1所述的方法,其中,所述用于计算最高血压和最低血压的变量包括:从所检测的ECG信号的R峰值到脉搏波开始点的时间值、从R峰值到脉搏波最高点的时间值、从脉搏波开始点到脉搏波最高点的时间值、从脉搏波最高点到脉搏波陷波点的时间值和从脉搏波开始点到脉搏波陷波点的面积值,并且
将从ECG信号中获得的R峰值用作时间的标准值。
5.根据权利要求1所述的方法,其中,所述计算最高血压和最低血压包括:
通过使用所提取的变量作为独立变量来导出线性回归表达式;以及
根据所导出的线性回归表达式计算该用户的所述最高血压和最低血压。
6.根据权利要求1所述的方法,其中,将所述ECG传感器和压力传感器集成在传感器单元中,用于不用箍带地测量腕部区域的血压。
7.根据权利要求1所述的方法,还包括:(e)向外部设备发送所计算的最高和最低血压值。
8.根据权利要求5所述的方法,还包括:(e)向外部设备发送所计算的最高和最低血压值。
9.根据权利要求5所述的方法,还包括:(e)将来自步骤(d)的最高和最低血压值存储在存储器中。
10.根据权利要求5所述的方法,还包括:(e)显示在步骤(d)计算的最高和最低血压值。
11.根据权利要求8所述的方法,其中,当所述最高和最低血压值超过预定阈值时,发送所述最高和最低血压值。
12.一种用于与通信设备结合而无箍带无侵入地测量腕部血压的装置,该装置包括:
传感器单元,用于从用户测量心电图ECG信号和脉搏波信号,其中所述传感器单元不包括箍带;
控制器,用于控制由所述传感器单元测量的ECG和脉搏波信号;以及
显示单元,用于显示所控制的信号。
13.根据权利要求12所述的装置,其中,所述传感器单元包括:
ECG传感器,用于测量ECG信号;
压力传感器,用于测量脉搏波信号;以及
红外传感器,用于测量红外信号,该红外信号提供在用户腕部区域的位置和动脉的深度的至少一个,并且
其中,所述传感器单元还包括填充在传感器单元的封闭空间内的凝胶。
14.根据权利要求12所述的装置,其中,所述控制器包括:
模数A/D转换器,用于将每个传感器测量的模拟信号转换成各自的数字信号;
随机存取存储器RAM,用于存储来自数字信号中的ECG信号;
只读存储器ROM,用于存储红外信号和脉搏波信号;
数字信号处理器,用于通过将连续血压分析程序连续测量的信号添加到一起而执行数字信号处理;以及
闪存,用于存储由所述数字信号处理器处理的信号。
15.根据权利要求12所述的装置,其中,所述显示单元包括:
外部输入,用于向控制器提供命令;
外部设备,用于使用接口端与一个或多个通信设备通信;以及
状态显示发光二极管LED,用于显示所测量的值。
16.根据权利要求15所述的装置,其中,所述接口设备包括外部通信端,并且当所述传感器单元感应预定范围外的值时所述控制器与该外部设备通信。
CN2008100837769A 2007-03-12 2008-03-12 无箍带无侵入地测量腕部血压的方法和装置 Expired - Fee Related CN101264011B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070024163A KR100871230B1 (ko) 2007-03-12 2007-03-12 통신 장치와 연동되는 비가압적이고 비침습적인 손목형혈압 측정 방법 및 장치
KR24163/07 2007-03-12

Publications (2)

Publication Number Publication Date
CN101264011A true CN101264011A (zh) 2008-09-17
CN101264011B CN101264011B (zh) 2011-06-22

Family

ID=39493531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100837769A Expired - Fee Related CN101264011B (zh) 2007-03-12 2008-03-12 无箍带无侵入地测量腕部血压的方法和装置

Country Status (4)

Country Link
US (1) US8086301B2 (zh)
EP (1) EP1970000B1 (zh)
KR (1) KR100871230B1 (zh)
CN (1) CN101264011B (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101933801A (zh) * 2010-08-31 2011-01-05 天津九安医疗电子股份有限公司 一种数字压力表
CN102106725A (zh) * 2011-03-02 2011-06-29 哈尔滨工业大学 光电与压力融合的中医脉象传感器
CN102397064A (zh) * 2011-12-14 2012-04-04 中国航天员科研训练中心 连续血压测量装置
CN102429649A (zh) * 2011-12-14 2012-05-02 中国航天员科研训练中心 连续血压测量装置
CN102551690A (zh) * 2011-12-29 2012-07-11 乐普(北京)医疗器械股份有限公司 人体信号自适应分析方法
CN103517669A (zh) * 2011-03-11 2014-01-15 太空实验室健康护理有限公司 在病人监测期间确定多参数管理报警等级的方法和系统
CN104622440A (zh) * 2015-02-09 2015-05-20 中国科学院深圳先进技术研究院 一种提取脉搏波时标点的方法及装置
CN104887218A (zh) * 2014-03-06 2015-09-09 美盛医电股份有限公司 传感器模块及其使用方法和用途
CN105120737A (zh) * 2013-02-13 2015-12-02 莱曼微设备有限公司 个人健康数据收集
WO2015192700A1 (en) * 2014-06-18 2015-12-23 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Method and device for tonometric blood pressure measurement
CN107735018A (zh) * 2015-07-01 2018-02-23 浜松光子学株式会社 血压比计算装置、血压比计算方法、血压比计算程序及存储该程序的存储介质
WO2018040680A1 (en) * 2016-09-05 2018-03-08 Boe Technology Group Co., Ltd. Method and apparatus for determining blood pressure
CN107847165A (zh) * 2016-07-05 2018-03-27 欧姆龙健康医疗事业株式会社 血压计
CN107920742A (zh) * 2015-07-02 2018-04-17 威里利生命科学有限责任公司 具有集成电子元件的手腕式设备
CN108926335A (zh) * 2017-05-26 2018-12-04 深圳市玉成创新科技有限公司 基于脉搏波和心电的血压获取方法及其系统和装置
CN109157202A (zh) * 2018-09-18 2019-01-08 东北大学 一种基于多生理信号深度融合的心血管疾病预警系统
CN109788917A (zh) * 2016-12-01 2019-05-21 林世明 脉搏侦测模组及包含其的血压随测装置
CN110613436A (zh) * 2018-06-20 2019-12-27 三星电子株式会社 用于测量生物信息的设备
CN110786837A (zh) * 2018-08-01 2020-02-14 三星电子株式会社 生物信息测量设备和生物信息测量方法
CN111065323A (zh) * 2017-07-21 2020-04-24 皇家飞利浦有限公司 用于确定对象的血压的装置和方法
CN111067502A (zh) * 2018-10-19 2020-04-28 三星电子株式会社 估计生物信息的装置和方法
US10758143B2 (en) 2015-11-26 2020-09-01 Huawei Technologies Co., Ltd. Blood pressure parameter detection method and user equipment

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100732600B1 (ko) * 2005-07-21 2007-06-27 삼성전자주식회사 생체신호 측정장치를 구비한 휴대 단말기
US20080221930A1 (en) 2007-03-09 2008-09-11 Spacelabs Medical, Inc. Health data collection tool
KR101366809B1 (ko) * 2007-09-06 2014-02-24 삼성전자주식회사 혈압측정장치 및 혈압측정방법
US8398556B2 (en) * 2008-06-30 2013-03-19 Covidien Lp Systems and methods for non-invasive continuous blood pressure determination
US9044146B2 (en) * 2008-10-06 2015-06-02 Korea Institute Of Oriental Medicine Arm-fastening device for pulse diagnosis, pulse sensor, pulse diagnosis apparatus comprising the device and sensor, and method for manufacturing pulse sensor
KR20100060141A (ko) * 2008-11-27 2010-06-07 삼성전자주식회사 휴대용 혈압측정 장치 및 방법
WO2011046636A1 (en) 2009-10-16 2011-04-21 Spacelabs Healthcare, Llc Light enhanced flow tube
US9604020B2 (en) 2009-10-16 2017-03-28 Spacelabs Healthcare Llc Integrated, extendable anesthesia system
CN102905616B (zh) 2010-03-21 2017-02-08 太空实验室健康护理有限公司 多显示器床旁监护系统
BR112013012329B1 (pt) 2010-11-19 2021-05-04 Spacelabs Healthcare, Llc Dispositivo de tela para uso em um sistema de monitoramento de paciente e sistema de monitoramento de paciente
US9629566B2 (en) 2011-03-11 2017-04-25 Spacelabs Healthcare Llc Methods and systems to determine multi-parameter managed alarm hierarchy during patient monitoring
CN102293642A (zh) * 2011-08-04 2011-12-28 浙江富美家健康科技有限公司 血压测量的方法及实施该方法的血压计
US9204809B2 (en) * 2012-02-01 2015-12-08 Hong Kong Applied Science and Technology Research Institute Company Limited Blood pressure measuring device and method of calibrating thereof
KR101288391B1 (ko) * 2012-03-08 2013-07-22 주식회사 유메딕스 혈압 측정 방법 및 그에 따른 혈압 측정 장치
BR112015004878A2 (pt) * 2012-09-10 2017-07-04 Koninklijke Philips Nv dispositivo e método para determinar se as condições predeterminadas para medir um primeiro parâmetro fisiológico de um indivíduo são atendidas, e, vestimenta para ser vestida pelo indivíduo
US20140196131A1 (en) * 2013-01-07 2014-07-10 Salutron, Inc. User authentication based on a wrist vein pattern
FI124971B (fi) * 2013-03-22 2015-04-15 Murata Manufacturing Co Laite verenpaineen mittaamiseksi ja verenpainelaitteen kalibrointimenetelmä
FI20136306L (fi) * 2013-03-22 2014-09-23 Murata Manufacturing Co Parannettu verenpaineen seurantamenetelmä
US10987026B2 (en) 2013-05-30 2021-04-27 Spacelabs Healthcare Llc Capnography module with automatic switching between mainstream and sidestream monitoring
US9314172B2 (en) 2013-10-24 2016-04-19 JayBird LLC System and method for providing a training load schedule for peak performance positioning
US9864843B2 (en) 2013-10-24 2018-01-09 Logitech Europe S.A. System and method for identifying performance days
US9622685B2 (en) 2013-10-24 2017-04-18 Logitech Europe, S.A. System and method for providing a training load schedule for peak performance positioning using earphones with biometric sensors
US10078734B2 (en) 2013-10-24 2018-09-18 Logitech Europe, S.A. System and method for identifying performance days using earphones with biometric sensors
US9626478B2 (en) 2013-10-24 2017-04-18 Logitech Europe, S.A. System and method for tracking biological age over time based upon heart rate variability
US9848828B2 (en) 2013-10-24 2017-12-26 Logitech Europe, S.A. System and method for identifying fatigue sources
US20150116125A1 (en) * 2013-10-24 2015-04-30 JayBird LLC Wristband with removable activity monitoring device
USD777186S1 (en) 2014-12-24 2017-01-24 Logitech Europe, S.A. Display screen or portion thereof with a graphical user interface
US20150230754A1 (en) * 2014-02-14 2015-08-20 Kevin Willis Restraint System
US9636023B2 (en) 2014-03-12 2017-05-02 John M. Geesbreght Portable rapid vital sign apparatus and method
KR101646529B1 (ko) * 2014-07-10 2016-08-08 연세대학교 산학협력단 혈압파형 자동 검출 장치 및 그 방법
US10092197B2 (en) * 2014-08-27 2018-10-09 Apple Inc. Reflective surfaces for PPG signal detection
KR102299361B1 (ko) 2014-09-03 2021-09-07 삼성전자주식회사 혈압을 모니터링하는 장치 및 방법, 혈압 모니터링 기능을 갖는 웨어러블 디바이스
CN107106054B (zh) 2014-09-08 2021-11-02 苹果公司 使用多功能腕戴式设备进行血压监测
US10694960B2 (en) 2014-09-29 2020-06-30 Microsoft Technology Licensing, Llc Wearable pulse pressure wave sensing device
US9848825B2 (en) * 2014-09-29 2017-12-26 Microsoft Technology Licensing, Llc Wearable sensing band
TWI608826B (zh) 2014-10-31 2017-12-21 財團法人工業技術研究院 光學感測裝置及其量測方法
US9849538B2 (en) 2014-12-24 2017-12-26 Logitech Europe, S.A. Watertight welding methods and components
KR102411658B1 (ko) 2015-01-15 2022-06-21 삼성전자주식회사 생체 정보 검출 장치
US9782098B2 (en) * 2015-02-17 2017-10-10 MD Biomedical, Inc. Cardiovascular monitoring device
KR102384225B1 (ko) * 2015-03-06 2022-04-07 삼성전자주식회사 혈압 측정 장치 및 방법
WO2016146364A1 (en) * 2015-03-13 2016-09-22 Koninklijke Philips N.V. Photoplethysmography device
US10178975B2 (en) 2015-03-19 2019-01-15 Htc Corporation Detecting system and mobile electronic apparatus, and method for detecting physiological characteristic thereof method thereof
KR20160115017A (ko) * 2015-03-25 2016-10-06 삼성전자주식회사 생체 정보 검출 장치 및 방법
USD784961S1 (en) 2015-06-05 2017-04-25 Logitech Europe, S.A. Ear cushion
US9729953B2 (en) 2015-07-24 2017-08-08 Logitech Europe S.A. Wearable earbuds having a reduced tip dimension
KR102434701B1 (ko) 2015-09-01 2022-08-22 삼성전자주식회사 생체 정보 획득 장치 및 생체 정보 획득 방법과 생체 정보 검사 장치
US10849555B1 (en) 2015-09-29 2020-12-01 Apple Inc. Devices and systems for correcting errors in blood pressure measurements
US10537284B1 (en) 2015-09-30 2020-01-21 Apple Inc. Enhanced sensor signal collection and reflection of reflected and/or scattered light
US9743745B2 (en) 2015-10-02 2017-08-29 Logitech Europe S.A. Optimized cord clip
JP6854612B2 (ja) 2015-10-06 2021-04-07 三星電子株式会社Samsung Electronics Co.,Ltd. 生体情報測定装置及び生体情報測定方法並びにコンピュータ読み取り可能な記録媒体
US10117015B2 (en) 2015-10-20 2018-10-30 Logitech Europe, S.A. Earphones optimized for users with small ear anatomy
US10559220B2 (en) 2015-10-30 2020-02-11 Logitech Europe, S.A. Systems and methods for creating a neural network to provide personalized recommendations using activity monitoring devices with biometric sensors
US10292606B2 (en) 2015-11-05 2019-05-21 Logitech Europe, S.A. System and method for determining performance capacity
US9986323B2 (en) 2015-11-19 2018-05-29 Logitech Europe, S.A. Earphones with attachable expansion pack
US10129628B2 (en) 2016-02-01 2018-11-13 Logitech Europe, S.A. Systems, methods and devices for providing an exertion recommendation based on performance capacity
US10420474B2 (en) 2016-02-01 2019-09-24 Logitech Europe, S.A. Systems and methods for gathering and interpreting heart rate data from an activity monitoring device
US10112075B2 (en) 2016-02-01 2018-10-30 Logitech Europe, S.A. Systems, methods and devices for providing a personalized exercise program recommendation
EP3241494A1 (en) 2016-05-04 2017-11-08 Valtronic Technologies (Holding) SA Device for detecting or monitoring bioelectrical parameters
CN106419879B (zh) * 2016-09-22 2020-10-30 上海潓美医疗科技有限公司 基于桡动脉生物传感器技术的血压动态监测系统及方法
KR102655671B1 (ko) 2016-10-12 2024-04-05 삼성전자주식회사 생체정보 추정 장치 및 방법
KR102605897B1 (ko) 2016-10-25 2023-11-23 삼성전자주식회사 혈압 측정 장치, 휴대용 압력 측정 장치, 및 혈압 측정 장치의 캘리브레이션 방법
US10722125B2 (en) * 2016-10-31 2020-07-28 Livemetric (Medical) S.A. Blood pressure signal acquisition using a pressure sensor array
CN108348176B (zh) * 2016-11-02 2021-03-23 华为技术有限公司 一种智能穿戴设备
US11000193B2 (en) 2017-01-04 2021-05-11 Livemetric (Medical) S.A. Blood pressure measurement system using force resistive sensor array
KR101872395B1 (ko) * 2017-01-12 2018-06-28 주식회사 룩센테크놀러지 다중 채널 독출 회로의 신호 중첩 방지 스위칭 회로 및 방법
KR102042700B1 (ko) * 2017-11-17 2019-11-08 가천대학교 산학협력단 딥러닝 기반의 혈압 예측 시스템 및 방법
KR102580267B1 (ko) * 2018-01-18 2023-09-19 삼성전자주식회사 생체 신호 측정 장치
KR102158498B1 (ko) * 2018-01-19 2020-09-22 한국과학기술원 인체 상에 부착 가능한 압전 맥박 소자를 이용한 압전 기반 혈압 측정 장치
KR102544669B1 (ko) 2018-04-12 2023-06-16 삼성전자주식회사 생체정보 측정 장치 및 방법
KR20210007368A (ko) 2019-07-11 2021-01-20 삼성전자주식회사 생체정보 추정 장치 및 방법
US11478606B1 (en) 2020-01-08 2022-10-25 New Heights Energy, LLC Wearable devices and methods for providing therapy to a user and/or for measuring physiological parameters of the user
US11523766B2 (en) 2020-06-25 2022-12-13 Spacelabs Healthcare L.L.C. Systems and methods of analyzing and displaying ambulatory ECG data
WO2022013858A1 (en) * 2020-07-12 2022-01-20 CardiacSense Ltd. Optical-based device and system for determining a physiological parameter of a subject
KR20220012581A (ko) 2020-07-23 2022-02-04 삼성전자주식회사 생체정보 추정 장치 및 방법
WO2022101809A1 (en) * 2020-11-10 2022-05-19 University Of Southern California Noninvasive heart failure detection
US20240071617A1 (en) * 2021-01-15 2024-02-29 Kyocera Corporation Electronic device
US11490852B1 (en) 2021-08-09 2022-11-08 hemal b kurani Wearable device for detecting microorganisms, sterilizing pathogens, and environmental monitoring

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2664926B2 (ja) * 1988-03-23 1997-10-22 コーリン電子株式会社 血圧測定装置
US5535753A (en) * 1994-10-04 1996-07-16 Rutgers University Apparatus and methods for the noninvasive measurement of cardiovascular system parameters
WO1999009884A1 (fr) * 1997-08-26 1999-03-04 Seiko Epson Corporation Procede et appareil de mesure, de detection et de diagnostic d'un signal impulsionnel, de la fonction cardiaque et de l'intensite de mouvement
AT408066B (de) * 1999-03-30 2001-08-27 Juergen Dipl Ing Fortin Kontinuierliches nicht-invasives blutdruckmessgerät
JP4571317B2 (ja) * 1999-06-01 2010-10-27 マサチューセッツ インスティテュート オブ テクノロジー 無加圧帯式連続血圧監視装置
KR100467056B1 (ko) 2002-08-31 2005-01-24 (주)유인바이오테크 자동혈압측정장치 및 방법
KR100585845B1 (ko) * 2003-12-29 2006-06-01 학교법인연세대학교 용적맥파를 이용한 비관혈적 혈압 측정 시스템
JP2006149846A (ja) 2004-11-30 2006-06-15 Olympus Corp 血管観察システム
KR100732600B1 (ko) 2005-07-21 2007-06-27 삼성전자주식회사 생체신호 측정장치를 구비한 휴대 단말기
KR100877207B1 (ko) * 2006-01-13 2009-01-07 (주)한별메디텍 비침습적 연속 혈압, 동맥탄성도 측정장치

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101933801A (zh) * 2010-08-31 2011-01-05 天津九安医疗电子股份有限公司 一种数字压力表
CN101933801B (zh) * 2010-08-31 2013-06-19 天津九安医疗电子股份有限公司 一种数字压力表
CN102106725A (zh) * 2011-03-02 2011-06-29 哈尔滨工业大学 光电与压力融合的中医脉象传感器
CN102106725B (zh) * 2011-03-02 2013-03-27 哈尔滨工业大学 光电与压力融合的中医脉象传感器
CN103517669B (zh) * 2011-03-11 2016-04-20 太空实验室健康护理有限公司 在病人监测期间确定多参数管理报警等级的方法和系统
CN103517669A (zh) * 2011-03-11 2014-01-15 太空实验室健康护理有限公司 在病人监测期间确定多参数管理报警等级的方法和系统
CN102397064B (zh) * 2011-12-14 2014-02-19 中国航天员科研训练中心 连续血压测量装置
CN102397064A (zh) * 2011-12-14 2012-04-04 中国航天员科研训练中心 连续血压测量装置
CN102429649A (zh) * 2011-12-14 2012-05-02 中国航天员科研训练中心 连续血压测量装置
CN102551690A (zh) * 2011-12-29 2012-07-11 乐普(北京)医疗器械股份有限公司 人体信号自适应分析方法
CN102551690B (zh) * 2011-12-29 2013-10-09 乐普(北京)医疗器械股份有限公司 人体信号自适应分析方法
CN105120737A (zh) * 2013-02-13 2015-12-02 莱曼微设备有限公司 个人健康数据收集
CN104887218A (zh) * 2014-03-06 2015-09-09 美盛医电股份有限公司 传感器模块及其使用方法和用途
WO2015192700A1 (en) * 2014-06-18 2015-12-23 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Method and device for tonometric blood pressure measurement
CN104622440A (zh) * 2015-02-09 2015-05-20 中国科学院深圳先进技术研究院 一种提取脉搏波时标点的方法及装置
CN104622440B (zh) * 2015-02-09 2018-02-09 中国科学院深圳先进技术研究院 一种提取脉搏波时标点的方法及装置
CN107735018A (zh) * 2015-07-01 2018-02-23 浜松光子学株式会社 血压比计算装置、血压比计算方法、血压比计算程序及存储该程序的存储介质
CN107735018B (zh) * 2015-07-01 2020-12-08 浜松光子学株式会社 血压比计算装置、血压比计算方法、血压比计算程序及存储该程序的存储介质
US10772513B2 (en) 2015-07-01 2020-09-15 Hamamatsu Photonics K.K. Blood pressure ratio calculation device, blood pressure ratio calculation method, blood pressure ratio calculation program, and recording medium recording said program
CN107920742A (zh) * 2015-07-02 2018-04-17 威里利生命科学有限责任公司 具有集成电子元件的手腕式设备
US10758143B2 (en) 2015-11-26 2020-09-01 Huawei Technologies Co., Ltd. Blood pressure parameter detection method and user equipment
CN107847165A (zh) * 2016-07-05 2018-03-27 欧姆龙健康医疗事业株式会社 血压计
US11006885B2 (en) 2016-09-05 2021-05-18 Boe Technology Group Co., Ltd. Apparatus for determining blood pressure
WO2018040680A1 (en) * 2016-09-05 2018-03-08 Boe Technology Group Co., Ltd. Method and apparatus for determining blood pressure
CN109788917A (zh) * 2016-12-01 2019-05-21 林世明 脉搏侦测模组及包含其的血压随测装置
CN108926335A (zh) * 2017-05-26 2018-12-04 深圳市玉成创新科技有限公司 基于脉搏波和心电的血压获取方法及其系统和装置
CN111065323A (zh) * 2017-07-21 2020-04-24 皇家飞利浦有限公司 用于确定对象的血压的装置和方法
CN111065323B (zh) * 2017-07-21 2023-04-28 皇家飞利浦有限公司 用于确定对象的血压的装置和方法
CN110613436A (zh) * 2018-06-20 2019-12-27 三星电子株式会社 用于测量生物信息的设备
CN110786837A (zh) * 2018-08-01 2020-02-14 三星电子株式会社 生物信息测量设备和生物信息测量方法
CN109157202A (zh) * 2018-09-18 2019-01-08 东北大学 一种基于多生理信号深度融合的心血管疾病预警系统
CN109157202B (zh) * 2018-09-18 2021-06-01 东北大学 一种基于多生理信号深度融合的心血管疾病预警系统
CN111067502A (zh) * 2018-10-19 2020-04-28 三星电子株式会社 估计生物信息的装置和方法
CN111067502B (zh) * 2018-10-19 2024-05-24 三星电子株式会社 估计生物信息的装置和方法

Also Published As

Publication number Publication date
EP1970000B1 (en) 2016-04-27
EP1970000A3 (en) 2008-09-24
US20080228089A1 (en) 2008-09-18
KR100871230B1 (ko) 2008-11-28
US8086301B2 (en) 2011-12-27
CN101264011B (zh) 2011-06-22
EP1970000A2 (en) 2008-09-17
KR20080083505A (ko) 2008-09-18

Similar Documents

Publication Publication Date Title
CN101264011B (zh) 无箍带无侵入地测量腕部血压的方法和装置
US11763665B2 (en) Non-invasive multifunctional telemetry apparatus and real-time system for monitoring clinical signals and health parameters
US20190059752A1 (en) Method and apparatus for cuff less blood pressure monitoring based on simultaneously measured ECG and PPG signals designed in wristband form for continuous wearing
JP3656088B2 (ja) 消費カロリー測定装置
US20170202459A1 (en) Wireless monitoring system
US20140073979A1 (en) eCard ECG Monitor
JP2006230679A (ja) 健康管理装置
WO2002085203A1 (en) Central blood pressure waveform estimating device and peripheral blood pressure waveform detecting device
KR100855043B1 (ko) 비침습적 연속 혈압, 동맥탄성도 측정방법
KR100697211B1 (ko) 무구속 맥파도달시간 측정을 이용한 혈압측정시스템 및방법
KR100877207B1 (ko) 비침습적 연속 혈압, 동맥탄성도 측정장치
US10395055B2 (en) Scale-based data access control methods and apparatuses
KR101012810B1 (ko) 단채널 휴대용 무선 심전도 측정장치 및 방법
CN102048526A (zh) 基于fpga的心血管参数无创检测装置及控制方法
GB2523880A (en) Sensor
CN115734745A (zh) 具有体积描记传感器的可穿戴设备
KR100855042B1 (ko) 비침습적 연속혈압, 동맥탄성도 측정장치
KR100949309B1 (ko) 모바일 컴퓨터를 이용한 건강 모니터링 시스템 및 그 방법
KR100877212B1 (ko) 비침습적 연속 혈압, 동맥탄성도 측정장치
CN201422873Y (zh) 一种基于蓝牙技术的容积脉搏波信号采集系统
Fattah et al. Wrist-card: PPG sensor based wrist wearable unit for low cost personalized cardio healthcare system
JP2003000555A (ja) 中枢血圧波形推定装置および末梢血圧波形検出装置
Huda Handheld Electrocardiogram Design
KR20180065039A (ko) 바이탈통합 의료장비를 이용한 스마트폰 유비쿼터스 헬스퀘어 진단시스템
JP2004081285A (ja) 携帯型血圧測定装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110622