CN101263679A - 用于在多载波mimo系统中布置导频的方法、系统、装置和计算机程序产品 - Google Patents

用于在多载波mimo系统中布置导频的方法、系统、装置和计算机程序产品 Download PDF

Info

Publication number
CN101263679A
CN101263679A CNA2006800336247A CN200680033624A CN101263679A CN 101263679 A CN101263679 A CN 101263679A CN A2006800336247 A CNA2006800336247 A CN A2006800336247A CN 200680033624 A CN200680033624 A CN 200680033624A CN 101263679 A CN101263679 A CN 101263679A
Authority
CN
China
Prior art keywords
dimensional constellation
frequency pilot
frequency
pilot tone
pilot sign
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800336247A
Other languages
English (en)
Inventor
D·M·艾奥尼斯卡
B·拉格霍撒曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Oyj
Original Assignee
Nokia Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Oyj filed Critical Nokia Oyj
Publication of CN101263679A publication Critical patent/CN101263679A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2604Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0232Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

提供一种方法、系统、装置和计算机程序产品,用于在使用具有衍生自通用正交设计的可分辨扩展的结构的多维点集合的OFDM系统中布置导频符号。这些多维点集合可以用于在二维频率-时间导频符号网格上形成导频符号,用于在OFDM MIMO系统、发射天线和OFDM符号的各种子载波上对平坦衰落过程进行采样。当在对候选基站进行分辨时,与导频符号相关的导频信息可以用于执行初始载波同步以及OFDM符号定时。

Description

用于在多载波MIMO系统中布置导频的方法、系统、装置和计算机程序产品
技术领域
本发明的实施方式一般涉及通信系统,并且尤其涉及正交频分复用(OFDM)通信系统中对导频符号的布置。
背景技术
随着诸如蜂窝电话、卫星和微波通信系统之类的无线通信系统部署得越来越广泛并且持续吸引越来越多的用户,亟需提供一种利用诸如固定信道带宽之类的固定资源传送不断增长的数据量的大型并且数量可变的通信子系统。基于快速增长的用户,使用固定资源(例如,分配给每个用户的固定频率或固定时隙)的传统通信系统设计已经面临挑战。
可以通过经由信道传送正交信号而操作高性能通信系统。接收器可以使用相干(或匹配的)信号处理来分离正交信号,相干(或匹配的)信号处理依靠于对诸如信道增益、载波频率、载波相位和系统定时之类的信号参数的准确了解。这样的上述通信系统是正交频分复用(OFDM)通信系统。
作为OFDM通信系统的一个示例,来自于由包括数字格式数据的比特序列{ai},i=0,…,(N-1)表示的信号源的一组N比特数据映射为具有实部和虚部的复平面中的“星座”点序列{Xi},i=0,…,(N-1)(即,N比特数据映射为由N个复数信号点表示的2·N个实数)。使用传统技术来形成信号点的星座,该传统技术将复平面中的信息信号的信号点隔开成在映射点之间具有充足的距离。2·N个实数中两个额外因素认识到复数是利用两个实部形成的。N个复数点可以视为“频域”中的点。
然后,通过对复数信号序列{Xi}执行快速傅立叶逆变换(IFFT)而将N个复数点映射为带有复数值{xi},i=0,…,(N-1)的采样时间函数。复数值的采样时间函数{xi}具有对应于IFFT过程的频率分量的频率分量。在将相应的循环前缀添加到普通的、复数值的、连续时间函数x(t)之后,通过数模转换和滤波来转换采样时间函数{xi}。复数值信号x(t)用于调制载波波形的同相和正交两者,诸如1.9GHz载波用于蜂窝电话或诸如数字音频或视频广播的其他应用。
以多个步骤处理发射到接收器(例如,用于移动台的接收器)的宽带信号,并且该信号被未知和随机过程劣化,该过程包括放大、天线耦合、信号反射和折射、噪声增加引起的恶化、以及接收器的移动和传送路径中不可预测的变化引起的频率和定时错误导致的恶化。这些造成信道“色散”的处理步骤导致来自于关于感兴趣的信号帧传送的信号帧和来自于由同时占用相同信道带宽的相邻蜂窝基站(与移动台进行通信)传送的信号帧的符号间干扰(ISI)。那么,色散机制恶化了信号帧,并且信号帧偶然地获取感兴趣的信号的特征。
为了保护免受ISI,经常将对应于多个导前或拖尾信号分量的保护间隔插入到连续信号帧之间。通常,通过在每个信号帧的开始插入“循环前缀”而在蜂窝电话系统中形成保护间隔。通常选择循环前缀作为信号帧的一组最后信号分量,其通过循环前缀的所选长度在前端扩展了该信号帧的长度。在接收扩展的信号帧时,丢弃循环前缀(表示冗余的信号信息)。循环前缀的添加使信号对于多路径传播更强健。
为了允许尤其在使用正交频分复用的系统中的移动台的接收器可靠地接收并且检测信号帧(即使插入了循环前缀)中的信息,优选的是知道诸如载波频率偏移、信道增益和相位、以及全局定时之类的信道参数,由于上述原因,所有这些参数在接收器通常是未知并且不同的。
为了补偿未知的信道参数,发射器插入一组导频符号,使用已知的数据序列和已知的幅度在固定的已知频率时间模式位置中将该组导频符号连续传送到接收器。本质上,该导频符号提供用于该接收器的“训练数据”。导频符号允许接收器估计信道冲激响应以及下降到码片级的定时,其对于可靠识别和接收未知数据序列是优选的,并且甚至可以用于识别以及抽取多径信号分量。
可以利用未调制的序列发射导频符号以在初始接收器频率采集过程中减少信号搜索维度并且适应可变的采集次数。导频符号可以被多个用户共享并且可以随增强的能量内容而发射。由于导频符号占用了宝贵的信道资源并且消耗了发射器能量,那么优选为此类导频符号的有限集。
导频音通常由每个发射器以指定将要使用的导频音序列的频率时间模式来插入,该导频音是用于发射导频符号的子载波,频率时间模式如图1示出的频率时间模式,其中“X”代表发射的导频音。然而,一个基站发射的导频音可以干扰另一个基站,通常是相邻基站发射的导频音。为了减少或避免导频音干扰,用于邻近群组基站的导频音可以布置于由邻近群组中的所有基站共享的周期性频率时间模式的随机但固定的位置。已经使用了其他导频音布置策略,诸如以拉丁方序列开始的模式,其中不同相邻基站的导频音在平行斜面布置中规律地移位并且具有不同的初始位移位置值。对于在多载波扩频系统中使用导频音的示例来说,参见优先权日期为2000年4月18日,题为“Pilot use in Multicarrier Spread Spectrum Systems”,Laroia等的欧洲专利申请No.EP1148674A2(此后为“Laroia等”),通过引用将其合并于此。
一种用于独立基站通过在经过信道的指定频率位置插入导频音来保持接收过程的质量的布置由R.Negi和J.Cioffi在“Pilot ToneSelection for Channel Estimation in a Mobile OFDM System,”IEEETransactions on Consumer Electronics,vol.44,no.3,pp.1122-1128,1998年8月(此后为“Negi等”)中,以及由S.Ohno和G.B.Giannakis在“Optimal Training and Redundant Precoding for Block Transmissionwith Application to Wireless OFDM,”IEEE Transactions onCommunications,vol.50,no.12,pp.2113-2123,2002年12月(此后为“Ohno等”)中进行了描述,在此通过引用将其合并。基于上述参考的发现,将导频音相等地隔开并且使用相等功率进行发射,以通过使用例如均方差标准提供增强的信道参数估计。例如,对于具有512个频率分量的信道来说,可以将11个导频音插入到诸如0,50,100,150,…,500之类的频率位置以允许接收器对信道特征的充分准确的估计。通过内插在接收器中估计导频音之间的中间频率位置处的信道特征。
对于频分双工(FDD)系统(即,同时在用于发射和接收的分开的信道上操作的系统),L.Ping在“A Combined OFDM-CsCDMAApproach to Cellular Mobile Communications,”IEEE Transactions onCommunications,vol.47,no.7,pp.979-982,1999年7月(此后为L.Ping”)中阐述了通过将多个OFDM符号打包到循环前缀CDMA超帧中具有多个、相邻小区的蜂窝电话系统的部署,在此通过引用合并。此方法将额外的保护间隔(在CDMA级)添加到嵌在OFDM符号中的已经可用的保护间隔中,从而降低复合信号的频谱效率。只要使用循环前缀CDMA,则不需要将信号预编码到OFDM符号中。因此,在接收器处检测到CDMA层信号并且移除了其循环前缀之后,其不必具有用于嵌入的OFDM符号的额外保护间隔,因为已经对多路径传播的影响进行了补偿。因为L.Ping使用了用于插入循环前缀的CDMA层,该参考没有成功解决在诸如多蜂窝OFDM通信系统之类的无线通信系统环境中的导频音选择问题。
载波频率偏移的估计由M.Speth、S.Fetchel、G.Fock和H.Meyr在“Digital Video Broadcasting(DVB):Framing,Structure andModulation for Digital Terrestrial Television”,ETSI EN 300744,v1.4.1,2001年1月(此后为“Speth等”)中进一步阐述,并且在名为“Optimum Receiver Design for OFDM-Based BroadbandTransmission-Part II:a Case Study,”IEEE Transactions onCommunications,vol.49,no.4,pp.571-578,2001年4月的实例研究中进一步阐述了载波频率偏移的估计,在此通过引用合并。Speth等提供了针对DVB标准的接收器的实例研究。描述了在OFDM符号的固定位置上发生的连续导频音以修正载波频率偏移,该载波频率偏移是导频音的整数倍。应该理解DVB标准是广播系统,其中基站向多个接收器同时发射或广播相同的信息。作为结果,接收器不需要使用DVB标准来区分不同的基站。
基站通常连续进行连续广播并且使用频分双工系统(即,用于下行链路和上行链路的是分开的信道)。在出现来自于相邻基站的干扰的情况下,此类环境中的移动台面临与期望的基站同步的任务。关于下一代通信系统(例如,3.9G或4G系统),频间切换(从一个频率子带切换到不同的频率子带)可以是重要的因素。在移动台和基站之间获取快速并且准确的同步是有利的。基站唯一地依靠可识别的发射信号(例如,导频音)来允许移动台与覆盖区域中的目标基站同步。
在同步过程中,移动台的接收器不知道如上所述的传播路径的延迟或者信道参数以及载波频率偏移。同步过程可以描述如下。基站“k”通常在由导频音频率的固定集合{Setk}给定的位置上具有导频音,并且OFDM通信系统通常使用大小为N的离散傅立叶逆变换以及直接傅立叶变换以产生发射的信号。当接收器执行初始同步时,假设发射基站和移动台接收器的载波频率之间的初始偏移不大于某些极限频率差dFmax音。因此,移动台的接收器通常在标称基站发射器频率周围的[-dFmax,dFmax]范围内搜索以锁定在期望的基站上。
作为同步的特定示例,假设基站“k”的导频音是平均间隔的如Negi等和Ohno等提出的(即,{Setk}={mk+j·m},m=0,…,L-1,其中“mk”是专用于基站“k”的正整数偏移,“L”是OFDM通信系统可以容纳的信道多径范围,以及“J”是为基站“k”提供导频音间隔的整数常数,其中N/L≥J)。假设导频音是等功率的。进一步假设移动台接收来自基站“k”(目标基站)的信号以及来自另一个基站“j”的信号,该基站“j”可以是干扰基站。因此,移动台尝试分别同步到基站“k”以及移动台和基站“j,k”之间的初始载波频率偏移dFj,dFk。并且假设n=dFj-dFk+mj-mk处于频率搜索范围[-dFmax,dFmax]内。对于此情况,我们观察到n+dFk+{Setk}=dFj+{Setj},其表示该移动台可以锁定在相对于目标基站“k”的干扰基站“j”上。因此,该移动台执行额外操作以区分其锁定到错误基站。这些操作需要额外时间,特别是对于具有严格切换时间要求的频率间切换,该额外时间是一种有限的资源。
作为一个示例,考虑具有频率分量(N=512)、11个导频音(L=11)以及导频音间间隔为50(J=N/L)的基站下行链路信道布置。如图2中所示,假设对于基站“k”,我们有mk=0,即{Setk}={0,50,100,…,500},而对于基站“j”,我们有mj=5,即{Setj}={5,55,105,155,…,505}。注意这是如Laroia等提出的导频音位置布局解决OFDM通信系统的多小区部署的一个特例,其中初始导频音位置位移mk和mj是不同的,导频音间隔是常数J并且模式频率-时间周期是一。继续该示例,令初始同步的搜索范围为[-dFmax,dFmax]=[-10,10];并且相应基站相对于接收器的(移动)载波频率的载波频率偏移是dFk=1和dFj=-2。注意在初始同步阶段,载波偏移dFj、dFk在接收器处不是已知的。由于载波偏移,接收器所观察到的导频音的位置移位为dFk+{Setj}={1,51,101,151,…,501}和dFj+{Setj}={3,53,103,153,…,503},其也不被接收器所知。注意集合dFj+{Setj}是集合dFk+{Setj}右循环移位了n=dFj-dFk+mj-mk=-2-1+5-0=2,并且两个集合都处于接收器处的搜索范围[-10,10]内。
因此,当接收器执行搜索以同步于目标基站(例如,基站“k”)时,它实际上检测初始偏移值为一和三的两个基站。然而,因为基站的导频音位置是另一基站导频音位置的循环移位,所以接收器不具有额外信息来确定为一的初始偏移值是属于基站“k”还是属于基站“j”。如果来自于期望基站“k”的信号弱于来自于潜在干扰基站“j”的信号,则同步更加困难。因此,接收器将更可能同步于最强信号基站,如Laroia等观察到的,该基站可以不是频间切换过程中的目标基站。
因此,现有技术需要的是使用针对多个潜在干扰基站的导频音模式设计的系统和方法,该系统和方法能够降低移动台的接收器在其监听范围内锁定在干扰基站上的可能性,从而减少对于确认适当采样和同步的处理需要,而提供改进的通信系统性能,同时减少终端用户的通信启动时间。
除了上述内容,3.5G、3.9G和4G(分别是三代半、三点九代以及四代)系统中的当前趋势是以相对低的成本达到高数据速率,并且因此强制多载波设计、高频谱效率以及多输入、多输出(MIMO)设计。当设计用于MIMO OFDM系统的导频音模式时,必须记住这些系统需要足够数量的导频音来估计所有限定了MIMO的配置的多发射接收天线对中的可分辨路径。然而,添加更多导频音增加了信号发射到接收器的开销。
因此,需要一种系统和方法用于在MIMO OFDM系统中布置充足的导频音以估计所有限定了MIMO的配置的多发射接收天线对中的可解析路径,同时限制增加到信号发射到接收器上的开销量。
发明内容
一般来说,本发明特定实施方式提供了对已知现有技术的改进,其中提供了使用具有衍生自通用正交设计的可分辨扩展的特定结构的多维点集合在OFDM系统中布置导频符号的方法和装置。在示例性实施方式中,多维点的这些集合用于在二维频率-时间导频符号网格上形成导频符号,从而在OFDM MIMO系统、发射天线以及OFDM符号的各种子载波上对平坦衰落过程进行采样。换言之,在示例性实施方式中,当与特定子载波相关的多维导频符号被视为矩阵时,则通过将已知矩阵的元布置于多个OFDM符号以及各种发射天线而将所述多维导频符号插入到发射信号中。例如,某些导频子载波(即,装载有对于接收器已知的符号,并且用于信道估计的子载波或导频音)通过从第一发射天线发射沿着第一行的元,从第二发射天线发射沿着第二行的元等来传递2×2导频矩阵的元素。而且,以某种周期性从第一天线发送两个元,将在OFDM符号期间发送一个元,并且在另一个OFDM符号期间发送另一个元;对于剩余的导频子载波是同样的。这样,对子载波上的信道进行采样用作导频音,并且通过内插,将估计所有子载波上的信道值而不论接收器何时能够估计导频音位置处的信道值,并且提供用作导频音的子载波之间的空间是足够的。另外,在对候选基站进行分辨时,导频信息(即,对于接收器已知的信息是导频音位置处的已知符号形式)可以用于执行初始载波同步以及OFDM符号定时。
根据本发明的一个方面,提供一种方法,用于在多载波多输入多输出(MIMO)系统中布置一个或多个导频符号。在一个示例性实施方式中,该方法包括首先构造正交多维星座,该正交多维星座包括多维星座点的集合。接下来,可以从该正交多维星座形成导频符号。该导频符号可以包括对应于多维星座点集合的导频点集合。
在一个示例性实施方式中,该方法进一步包括扩展正交多维星座从而增加可以容纳的导频点数量(即,增加组成导频符号的导频点集合中的导频点数量)。在一个示例性实施方式中,在扩展之前和之后,该正交多维星座的结构对于平坦衰落可以是不变的。
在另一个示例性实施方式中,该导频符号可以包括具有一行或多行以及一列或多列的矩阵,其中该矩阵的每行对应于单独的或不同的天线。此示例性实施方式的方法可以进一步包括从对应的天线发射与该矩阵的行相关的导频点。在另一个示例性实施方式中,这可以包括在独立的正交频分复用(OFDM)符号期间发射相应的导频点。在又一个示例性实施方式中,在接收时,当对一个或多个候选基站进行分辨时,导频点能够用于执行初始载波同步以及OFDM符号定时。
根据本发明的另一个方面,提供一种用于在多载波多输入多输出(MIMO)系统中布置一个或多个导频符号的装置。在一个示例性实施方式中,该装置包括导频音发生器,其配置用以生成并且交织一个或多个导频音以便携带各自的一个或多个导频符号。可以从扩展的正交多维星座形成每个导频符号,并且每个导频符号可以包括对应于扩展的正交多维星座的多维星座点集合的导频点集合。
根据本发明的又一个方面,提供一种移动台。在一个示例性实施方式中,该移动台包括接收器,其配置用以接收从正交多维星座形成的导频符号。导频符号可以包括对应于正交多维星座的多维星座点集合的导频点集合。在一个示例性实施方式中,该接收器包括一个或多个天线。在此示例性实施方式中,接收导频符号包括在一个或多个正交频分复用(OFDM)符号期间并且经由一个或多个天线接收导频点集合。
根据本发明的一个方面,提供一种系统,用于发射一个或多个导频符号。在一个示例性实施方式中,该系统包括基站和移动台,其中基站配置用以生成并且发射从正交多维星座形成的一个或多个导频符号,并且移动台配置用以接收一个或多个从正交多维星座形成的导频符号。
在一个示例性实施方式中,该基站进一步配置用以构造正交多维星座并且配置用以从该形成的正交多维星座形成导频符号。在另一个示例性实施方式中,该基站进一步配置用以扩展该正交多维星座,使得导频符号额外地包括导频点。在又一个示例性实施方式中,发射导频符号包括通过一个或多个天线并且在一个或多个正交频分复用(OFDM)符号中发射导频点集合。此示例性实施方式的移动台可以进一步配置用以使用接收的导频符号来执行初始载波同步和OFDM符号定时。
根据本发明的又一个方面,提供了一种计算机程序产品,用于在多载波多输入多输出(MIMO)系统中布置一个或多个导频符号,其中该计算机程序产品包括具有存储在其中的计算机可读程序代码部分的至少一个计算机可读存储介质。在一个示例性实施方式中,该计算机可读程序代码部分包括第一可执行部分,用于构造包括多维星座点集合的正交多维星座;以及第二可执行部分,用于从该正交多维星座形成导频符号。该导频符号可以包括对应于正交多维星座的星座点集合的导频点集合。
根据本发明的另一个方面,提供一种集成电路组件,用于在多载波多输入多输出(MIMO)系统中布置导频符号。在一个示例性实施方式中,该集成电路组件包括第一逻辑元件,用于构造包括多维星座点集合的正交多维星座;以及第二逻辑元件,用于由该正交多维星座形成导频符号。
附图说明
这样已经概括性地描述了本发明,现在将对附图进行参考,所述附图不必按比例绘出,并且其中:
图1示出了多个基站共享的导频音位置模式的框图;
图2示出了用于多个基站的导频音位置模式的框图;
图3示出了根据本发明实施方式原理的OFDM通信系统实施方式的系统级图示;
图4示出了根据本发明实施方式原理构造的移动台中可使用的发射器实施方式的框图;
图5示出了根据本发明实施方式的原理构造的移动台中可使用的接收器实施方式的框图;
图6是能够操作为根据本发明示例性实施方式的移动台和/或基站的实体的示意性框图;以及
图7是能够根据本发明示例性实施方式操作的移动台的示意性框图。
具体实施方式
现在,在下文中将参考附图更全面地描述本发明的实施方式,其中示出了本发明的一些而不是全部实施方式。实际上,这些发明可以以不同的形式实现,并且不应该被构造成限制为此处阐述的实施方式;而是,提供这些实施方式从而此公开将满足可申请的法律要求。同样的数字指示同样的元素。
概述
如上所述,在OFDM MIMO系统中布置导频符号增加了信号被发射到接收器的开销。为了减少此种开销,可以将导频符号布置在频域和时域两者中(即,将导频布置在隔开的子载波(频域)上,以及隔开的OFDM符号间隔(时域)中)。(参见Hoeher,p;Kaiser,S;Roberson,P,“Two-dimensional pilot-symbol-aided channelestimation by Wiener filtering,”Proc.1977IEEE InternationalConference on Acoustics,Speech,and Signal Processing,vol.3,pp.1845-1848,1997年4月21-24日,在此通过参考将其全部内容引入)。那么,可以将导频符号视为多维符号,该多维符号的分量布置在时域和频域两者中。
导频符号的配置遵循在二维、特定子载波以及特定OFDM符号中‘采样’的网格。因此,从二维采样理论来看,导频符号的频率和时间中的间隔应该是足够捕捉由于频率选择性引起的子载波间的变化以及由于时间改变特性引起的时间中的变化。频率和时间中变化的扩展分别由相干带宽和相关时间给出。如果满足二维采样速率,那么对于相干间间隔内的所有OFDM符号来说,导频估计对于在所有子载波处估计信道是足够的。
本质上,频率选择性信道的变化以这样的方式表示,该方式是采样的子载波处的平坦衰落信道值在OFDM符号期间近似地保持为常数,该OFDM符号位于相干时间间隔内并且将要由导频符号来采样。因此,如果多维导频符号用在频率时间网格上,那么导频分量可以与特定子载波(将要估计的平坦衰落过程)、各种发射天线、以及不同的OFDM符号间隔相关,其中各自的衰落系数近似地保持为常数。
从任何接收天线来看,多维导频符号可以视为可能的复数值的矩阵,从而行与发射天线相关并且列与使用的多输入多输出(MIMO)信道相关(即,使用MIMO信道,从而对具有N发射天线的MIMO信道的使用包括从N发射天线发送N符号),其中该信道是平坦衰落的并且在使用各种信道期间保持为常数。因此,多维导频符号将经历瑞利块衰落。
问题是要提供足够的这种多维导频“点”并且确保在网格点处的信道估计期间不同的导频点尽可能的可分辨,其中可分辨性根据保留有效星座点之间的相对欧氏距离来定义,从而当导频布置在不同子载波上时,不太可能将它们彼此混淆,并且MIMO信道估计很可能成功。
因此,通常,提供给导频符号的有效多维点集合相对于块衰落将是强健的(即,各种候选导频点之间的相对欧氏距离不应该被衰落引起的数倍失真所改变),从而在信道估计期间有利于导频符号的正确分离(即,为了确保导频符号是可分辨的)。另外,导频符号将优选地具有常数范数(即,导频符号将在超球面上),从而根据欧氏距离更好地分离导频符号。向量的平方范数是向量元素的平方幅度的总和。如果若干多维向量在超球面上,那么所有范数将是相等的(即,超球面的半径),并且那些向量具有常数范数。范数是多维空间中的向量长度(例如,在三维中,范数是向量的一般长度)。最终,不论何时可能,导频符号应该利于初始载波同步以及OFDM定时,例如,当出于接收较高带宽服务目的而改变基站时。
为了至少达到这些目的,本发明示例性实施方式提出了使用来自于多维星座的点来在频率-时间网格上布置导频符号,该多维星座是足够丰富的,对于块衰落具有回复能力并且驻留在超球面上。
特别地,示例性实施方式提供了一种通过从具有衍生自通用正交设计的可分辨扩展结构的多维星座构造导频符号,在多载波MIMO系统中布置多维导频点的装置。这使多维星座能够具有可以保留的对称性,尽管数倍失真是衰落信道固有的(即,在平坦、块衰落信道中保留星座的形状)。然后,这些导频符号可以用于对OFDM MIMO系统、发射天线和OFDM符号的各种子载波上的平坦衰落过程进行采样。
另外,本发明的另一个方面是当可以分辨候选基站时,使用采用的导频信息以执行初始载波同步和OFDM符号定时。
本发明的实施方式是有益的,因为它们有利于初始载波同步和期望基站的OFDM符号定时采集。另外,它改进了任何类型OFDMMIMO系统中的信道估计质量(例如,频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)、或扩频多载波多址(SS-MC-MA))。
OFDM系统
下面更详细地讨论示例性实施方式的形成和使用。然而,应该理解本发明的实施方式提供可以在各种特定环境中实现的很多可应用的发明性概念。讨论的特定实施方式仅是形成和使用本发明的指定方式的说明,并且不限制本发明的范围。
针对将关于特定环境中的示例性实施方式描述本发明的原理,该指定环境,即,具有多个基站的OFDM通信系统,多个基站使用通过信道到各自移动台的接收器进行通信的导频音位置的不同模式。移动台与目标基站进行通信从而共享训练数据用于基本上没有来自另一个基站的干扰的可靠数据接收。应该理解,该信道可以是用于同步信息等的专用信道,或者它可以是承载用户信息的信道的一部分。本发明的概括范围不限于信道的分类。
现在参考图3,示出的是根据本发明的原理的OFDM通信系统实施方式的系统级图示。在示出的实施方式中,OFDM通信系统是包括第一基站BS_A和第二基站BS_B和移动台MS的蜂窝通信系统。如上所述,每个基站BS_A、BS_B均覆盖一个小区:指定为小区A用于第一基站BS_A并且小区B用于第二基站BS_B。在蜂窝通信系统的多小区环境中,移动台MS可以通过信道从相邻小区接收多个信号。
在具有多小区OFDM通信系统的蜂窝通信系统的环境中,“频率重用”指在相邻小区中分配不同频率的子带以基本上避免蜂窝间干扰。例如,被六个相邻小区环绕的小区可以使用七个频率子带的分配以避免相互干扰。频率重用“一”表示相邻基站在同一频率子带中操作,并且不使用用于非干扰操作的不同频率子带。假设频分双工用于发射和接收(即,下行链路和上行链路使用不同的频率子带),基站通常在特定的、分配的通用子带中连续发射。基站的发射器支持系统和方法,该系统和方法用于定位导频音的频率,从而例如利于基站和移动台之间的初始信号采集过程的载波偏移估计。结果,移动台可以更容易地与目标基站同步而不因为来自于另一个基站的干扰而恶化通信性能。
现在转到图4,示出的是根据本发明的原理构造的基站中的可使用的发射器实施方式的框图。经由基站的编码器410对来自于数据源的比特流进行编码(例如,映射到在复平面中的“星座”点)。编码器410可以包括数据的串并转换。导频音发生器420生成导频音并且将导频音交织到导频音位置模式中,这是针对诸如OFDM通信系统中的移动台接收器使用的等间隔音的扰动。
实质上,如上所述,导频音是子载波,并且在任何这样的子载波上调制的值是导频符号。子载波的子集通常是等间隔分配的,以承载导频符号。从而,每个子载波将在频域中对信道采样,因为它承载了对于接收器已知的符号。自然地,此信道采样必须随每个子载波上的信道频率响应的时间来捕捉多天线以及变化。而且,复(导频)符号来自于一个多维导频符号,并且其意味着探测一个特定导频音(或子载波),根据某种周期,将该复(导频)符号分配给各种发射天线(例如,按行地)以及连续的OFDM符号。从而,对于每个发射天线,在频率(子载波)以及时间(OFDM符号)中创建网格用于对信道采样。一旦接收器在每个天线上估计导频位置处的信道值(基于已知的导频符号),则其内插从而特征化所有子载波处(不仅仅是那些已分配为导频音的)的信道。
回到图4,此后,将编码的数据和导频音经由IFFT模块430转换为采样的、时域序列。经由格式器440添加循环前缀以帮助基本上避免符号间干扰,后面是脉冲成形滤波器450。
得到的波形经由乘法器470调制由载波频率发生器460生成的载波频率波形,并且得到的乘积波形由带通滤波器480滤波。过滤的信号可以由放大器(未示出)放大并且该过滤的信号可以耦合到天线490以生成发射的信号。应该理解尽管示出的导频音发生器420位于IFFT模块430的上游,但导频音发生器420可以位于发射器中的其他位置处以支持特定的应用。尽管该发射器包括进行编码、调制和发射信号的单个路径,但应该理解可以使用多个路径以支持多个用户。另外,可以使用多个发射天线,每个天线均具有它们自己的导频音发生器。为了简化描述,描述单个发射天线。
现在转到图5,示出的是根据本发明实施方式原理构造的移动台中可使用的接收器实施方式的框图。在接收器处,经由天线510接收发射的信号(现在也称作接收的信号)并且由带通滤波器520对其进行滤波。检测过程包括经由同步器530的载波频率生成、定时和同步,其生成了与发射器处生成的载波信号同步的本地载波信号。同步器530可以包括锁相环或者其他用于信号定时和同步的技术,这些技术是本领域公知的。由乘法器540对本地载波信号和带通滤波的接收的信号相乘。在反格式过程中经由反格式器550从检测的信号中移除循环前缀。结果是对应于参考图4描述的时域序列的采样的、时域序列。
此后,经由FFT模块560对时域序列执行快速傅立叶变换(FFT),在复平面生成对应于原始发射的数据的点序列。然后,数据选择器570从此序列中将导频音移除,并且通过解码器580将剩余的点重映射到原始发射的数据序列(例如,将复数点重映射为二进制数据),其也可以包括并串数据转换。此后为了使用户获益而提供数据。
类似于关于图4示出以及描述的发射器,出于说明的目的而提供接收器并且可以以通用计算机或专用集成电路来实现该接收器。而且,为了更好地理解OFDM通信系统,已经在高层描述了图4和图5的发射器和接收器的子系统。对于OFDM通信系统和相关子系统的更多细节,参见例如McGraw-Hill公司出版的,John G.Proakis的“Digital Communications”第4版(2001)。
如上所述,为了允许诸如移动台的接收器之类的接收器使用正交频分复用以可靠地接收并且检测信号帧中的信息(甚至插入了循环前缀),优选的是知道诸如载波频率偏移、信道增益和相位、以及全局定时之类的信道参数,由于上述原因,所有这些信道参数在接收器处通常是未知的并且可变的。为了对未知信道参数进行补偿,基站的发射器插入发射到移动台接收器的导频音集合。实质上,该导频音提供用于接收器的“训练数据”。
示例性基站和/或移动台
图6是能够操作为根据本发明示例性实施方式的移动台和/或基站的实体的示意性框图。能够操作为移动台和/或基站的实体包括用于执行根据本发明示例性实施方式的一个或多个功能的各种装置,尤其包括那些这里示出并且描述的装置。然而,应该理解,在不脱离本发明的精神和范围的情况下,一个或多个实体可以包括用于执行一个或多个同样功能的可替换装置。例如,一个或多个实体可以包括集成电路组件,该组件包括一个或多个逻辑元件或者与该实体集成的集成电路或与该实体通信的集成电路,或者更具体地,例如实体的处理器40。如所示,能够操作为移动台和/或基站的实体通常可以包括装置,诸如连接到存储器42的处理器40,用于执行或控制各种实体功能。存储器可以包括易失性和/或非易失性存储器,并且通常存储内容、数据等。例如,存储器通常存储从该实体发射的内容和/或由该实体接收的内容。而且例如,存储器通常存储软件应用、指令等以便处理器执行与根据本发明实施方式的实体操作相关的步骤。
除了存储器42,处理器40还可以连接到至少一个接口或其他用于显示、发射和/或接收数据、内容等的装置。这样,该一个或者多个接口可以包括至少一个通信接口44或用于发射和/或接收数据、内容等的其他装置,以及可以包括显示器46和/或用户输入接口48的至少一个用户接口。用户输入接口可以依次包括任何数量的允许实体从用户接收数据的设备,诸如键盘、触摸显示器、游戏杆或其他输入设备。
现在参考图7,其示出了将从本发明的实施方式中获益的一种移动台。然而,应该理解,示出以及此后描述的移动台仅仅是将从本发明中获益的移动台的一个类型,因此不应该用来限制本发明的范围。虽然示出了并且为了示范将在之后描述移动台的若干实施方式,但是其它类型的移动台,诸如个人数字助理(PDA)、寻呼机、膝上计算机以及其它类型的电子设备,可以容易地使用本发明的实施方式。
移动台包括用于执行根据本发明的示例性实施方式的一个或多个功能的各种装置,尤其包括那些这里示出以及描述的装置。然而,应该理解,在不脱离本发明的精神和范围的情况下,移动台可以包括用于执行一个或多个同样功能的可替换装置。更特别地,例如,如图7中所示,移动台包括天线12、发射器204、接收器206、以及诸如处理设备208(例如,处理器、控制器等)之类的设备,这些设备分别向发射器204提供信号并且从接收器206接收信号。如进一步的示例,移动台可以包括集成电路组件,该组件包括一个或多个逻辑元件或者与该移动台集成的集成电路或与该移动台通信的集成电路,或者更具体地,例如移动台的处理设备208。提供给发射器204以及从接收器206接收的信号可以包括根据可应用蜂窝系统的空中接口标准的信令信息以及用户语音和/或用户生成的数据。这样,可以利用一个或多个空中接口标准、通信协议、调制类型和接入类型操作移动台。更特别地,移动台能够根据任何数量的第二代(2G)、2.5G和/或第三代(3G)通信协议等来操作。而且,例如,移动台能够根据任何数量的不同无线网络互联技术进行操作,这些无线网络互联技术包括蓝牙、IEEE 802.11 WLAN(或
Figure A20068003362400221
)、IEEE 802.16WiMAX、超宽带(UWB)等。
应该理解,处理设备208(诸如处理器、控制器或其他计算设备)包括实现移动台的视频、音频和逻辑功能所需的电路,并且该处理设备208能够执行用于实现这里讨论的功能性的应用程序。例如,处理设备可以各种装置,包括数字信号处理器设备、微处理器设备以及各种模数转换器、数模转换器以及其他支持电路。移动设备的控制和信号处理功能根据这些设备的各自能力在它们之间进行分配。因此,该处理设备208还包括在调制和传输之前对消息和数据进行卷积编码和交织的功能。该处理设备可以额外地包括内部语音编码器(VC)208A,并且可以包括内部数据调制解调器(DM)208B。而且,处理设备208可以包括操作可以存储在存储器中的一个或多个软件应用的功能性。例如,控制器能够操作连接程序,诸如传统的Web浏览器。接着例如根据HTTP和/或无线应用协议(WAP)的连接程序可以允许移动台发射和接收Web内容。
移动台还可以包括诸如用户接口的装置,该用户接口包括例如常规耳机或扬声器210、振铃器212、麦克风214、显示器216,所有的这些都连接到控制器208。允许移动设备接收数据的用户输入接口可包括允许移动设备接收数据的多个设备中的任意一个,例如小键盘218、触摸屏(未示出)、麦克风214或其他输入设备。在包括小键盘的实施方式中,小键盘可以包括常规数字(0-9)和相关键(#,*)以及用于操作移动台的其他键,并且可以包括全套的字母键或可以被激活以提供全套字母键的一组按键。尽管没有示出,移动台可包括电池,例如震动电池组,从而为操作移动台所需的各种电路提供电源,以及可选地提供机械震动作为可检测的输出。
移动台还可包括诸如存储器之类的装置,该存储器例如包括订户身份模块(SIM)220、可拆装用户身份模块(R-UIM)(未示出)等,其通常存储涉及移动订户的信息元素。除了SIM,移动设备可包括其他存储器。在这点上,移动台可包括易失性存储器222,以及其他非易失性存储器224,其可以被嵌入和/或可以是可拆装的。例如,其他非失性存储器可以被嵌入或可以是可拆装的多媒体存储卡(MMC)、如Sony公司制造的存储棒、EEPROM,闪存、硬盘等。存储器可存储多个或大量移动设备所使用的信息和数据中的任意一个以实现移动台的功能。例如,存储器可存储能够唯一地标识移动设备的标识符,例如国际移动设备识别(IMEI)码、国际移动订户识别(IMSI)码、移动设备综合业务数字网络(MSISDN)码等。存储器还可以存储内容。例如,存储器可以存储用于应用和其他计算机程序的计算机程序代码。例如,在本发明的一个实施方式中,存储器可以存储用于使移动台能够接收发射的信号的计算机程序代码,发射的信号包括根据本发明的示例性实施方式布置的导频符号。
应该理解,虽然示出以及描述的移动台包括移动电话,但是移动电话仅是将从本发明中获益的移动台的一个类型,因此不应该用来限制本发明的范围。虽然示出了并且为了示范将在之后描述移动台的若干实施方式,但是其它类型的移动台,诸如个人数字助理(PDA)、寻呼机、膝上计算机、平板计算机以及其它类型的电子设备,包括移动的、无线设备以及固定的、有线设备两者,可以容易地使用本发明的实施方式。
针对导频符号布置的扩展的正交多维星座的使用
如上所述,导频符号的布置增加了发射信号的开销。可以通过在频域和时域中布置导频符号将此开销减小到某种程度。因此,可以将该导频符号视为多维导频符号,其中每一个多维导频符号都具有多维导频点的集合。本发明示例性实施方式提出了在多载波MIMO系统中通过由具有衍生自通用正交设计的可分辨扩展的结构的多维星座构造导频符号来布置这些多维导频点。其中,这使多维星座能够具有可以保留的对称性,尽管数倍失真是衰落信道固有的(即,在平坦、块衰落信道中保留星座的形状)。
已经证明正交多维星座的形状对于平坦衰落信道具有回复能力。(参见H.Schulze,”Geometrical Properties of OrthogonalSpace-Time Codes”IEEE Commun.Letters,vol.7,pp.64-66,2003年1月;以及,M.Gharavi-Alkhansari和A.B.Gershman,“ConstellationSpace Invariance of Orthogonal Space-Time Block Codes,”IEEETrans.Inform.Theory,vol.51,pp.331-334,2005年1月)。这主要是因为以下事实,这样的设计允许将任何星座点表示为基矩阵的线性组合。因此使用正交多维星座来在频率-时间网格中布置导频符号提供了导频符号的可分辨性。换言之,多维导频点布置在距离彼此为指定的欧氏距离处,这些距离将不因多维星座通过非理想通信信道传输而改变。因此,这些点将保持彼此之间足够的距离以被分辨。
也已经示出了可以在不损失正交星座的形状不变性的情况下扩展这些正交星座(即,可以增加定义星座的星座点的数量)。(参见,题为Method and Apparatus for Constructing MIMO Constellationsthat Preserve Their Geometric Shape in Fading Channels的美国申请号No.11/112,270,以及D.M.Ionescu和Z.Yan提交给IEEETrans.Inform.Theory的“Fading Resilient Super-Orthogonal Space-TimeSignal Sests:Can Good Constellations Survive in Fading”,其可从http://arxiv.org/abs/cs.IT/0505049获取,(此后为“Ionescu等”)。上述每个的内容在此通过参考将其全部合并)。通过增加星座点的数量,可以达到导频点的增加数量覆盖多个天线,以及相关的相干带宽。
因此,根据本发明的示例性实施方式,通过从扩展的正交多维星座构造导频符号,可以添加足够数量的导频符号以在定义了MIMO配置的多个发射接收天线对中估计所有可解析的路径,并且因为扩展的星座形状对于平坦衰落是不变的,导频符号在全部信道估计中将是可分辨的。
另外,这些由通用正交设计获取的星座具有多维栅格结构并且位于超球面上。例如,如果存在两个发射天线,则32个点的八维扩展的星座是
Figure A20068003362400251
栅格的第二外壳(两个四维棋盘栅格的直和)。如上所述,导频符号具有常数范数是优选的,当符号位于超球面上时可以保证导频符号具有常数范数。这帮助确保了有效导频符号(即多维点)之间的良好相对间隔。
初始载波同步和OFDM符号定时
根据傅立叶变换的基本性质,(弧度)频率载波偏移Δω在频域中(在傅立叶变换之后)将所有子载波频率的移位改变Δω。由于载波偏移修正值(来自于搜索范围内)应用于时域中,主管导频的所有子载波的频率移位相同的量。在某些点处,形成导频符号期望支持集合的离散点集合将正确地匹配从预期目标基站(BS)(移动台正在监听以试图获取并且锁定到基站)接收的信号中的导频布置。需要检测该事件(对应于载波偏移Δω)并且与所有候选BS进行区分(下面讨论)。注意,符号定时偏移Δt0的出现改变为在频域中与exp(jωΔt0)相乘;因为在此阶段中,所有处理将是非相干的-即,仅幅度值是相关的-这不影响载波同步算法(当|exp(jωΔt0)|=1,参见下文)。
在具有等间隔导频的情况中特别可能出现下面的潜在问题,即使相邻BS处导频支持点之间的相对循环移位是必须的(参见例如Laroia等)。形成用于若干候选BS处的等间隔导频符号的支持集合的点的离散集合可以正确地匹配接收自预期BS的信号中的直到循环位移的导频布置。如果发生此情况,那么两个或多个载波偏移修正值将使那些BS的导频支持网格匹配来自预期BS(移动台试图与之同步的BS)的信号中的导频布置。在该情况中,需要一种机制帮助移动台锁定到预期BS上,并且帮助识别和排除具有循环移位(而是等间隔的)导频的BS。如果缺少此类机制,那么替换机制是实际上将对各个帧(来自于所有BS的)进行解码,然后识别各自的BS ID等。然而,这增加了时间、延迟并且是无效率的。
在2005年5月26日提交的名为System and Method for SelectingPilot Tone Positions in Communication System的相关美国临时申请号No.60/685,034中可以找到一个关于此问题的解决方案,在此通过参考对其全部内容进行合并。根据此申请中提供的一个方案,来自于相邻BS的导频支持网格除了相对于另一个BS进行循环移位之外,还仅仅并且是有意地扭斜,这样防止希望的导频布置的任何循环位移匹配不希望的BS的导频布置。此方案的一个缺点在于以下事实,不等间隔的导频(此方法的结果)是次优的(参见H.Minn和N.Al-Dhahir,“Optimal Training Signals for MIMO OFDM ChannelEstimation”,Globecom 2004,pp.219-224)。然而,可能包含损耗。
本发明的示例性实施方式提出了性质上不同的初始载波同步和OFDM符号定时采集的方案。如上所述,导频符号是多维点。换言之,如果存在N个发射天线,则导频符号意味着探测(即,采样)频域中频率选择性MIMO信道,在子载波i0处,导频符号可以是2×2的复数矩阵,其列和行分别与发射天线和时间点(epoch)相关。在此,时间点对应于一个OFDM符号时间点。通常,如上所述,导频符号来自于通用正交设计的可分辨星座扩展。与导频符号相关的多维点是K×T矩阵(参见Ionescu等)。下标i表示第i个(多维)导频符号。另外,使用将s=[z1…-zK]T∈CK映射到实向量
Figure A20068003362400271
的常规等距。已经示出了在所有信道使用涉及第i个导频符号期间的观察向量可以布置到实向量中(通过上述的同构)以重写如yi=||hi||Gχi+ni的接收等式,其中G是正交矩阵,n表示噪声和干扰项,为了简化将忽略n(导频符号具有较高的信噪比(SNR))。(参见Ionescu等,Sec.II.C)。另外,hi是从发射天线到任意接收天线的平坦衰落系数的N×1信道向量。而且,hi在导频符号覆盖的时间点上是常数。
在初始采集与同步期间的处理当然是非相干的。第一,接收器必须针对每个载波偏移修正值计算||yi||(当这补偿了载波偏移时,期望的导频位置将全部匹配预期BS发射的信号中的导频配置),其中 | | y i | | = ( y i T y i ) 1 / 2 = | | h i | | | | χ i | | . 优选地,导频符号位于超球面上,其将保证||χi||=κ, | | y i | | = ( y i T y i ) 1 / 2 = κ | | h i | | .
在已知导频位置处的所有观测中收集能量,导致(对于修正载波偏移修正值)组合所有向量hi中的信道能量的分集。结果值服从卡方分布,并且导致传递补偿载波偏移的峰值能量对应于具有直到循环位移的相同导频布置的BS。当应用来自于期望范围的载波偏移修正值时,如果仅发现一个全局最大值,那么已经识别了修正BS并且与之同步。最后阶段将是OFDM符号定时采集。
然而,形成用于若干候选BS处的等间隔导频符号的支持集合的点的离散集合可以正确匹配接收自预期BS的信号中的直到循环移位的导频布置,参见上面的内容。在该情况中,将不会发现清楚的全局最大值,而是将观测到若干近似最大值。
由于导频符号中出现的结构,可以在第二阶段中对此不确定性进行解析,其中算法必须针对所有有效的计算, χ ~ i T G T y i = | | h i | | χ ~ i T G T Gχ i = | | h i | | χ ~ i T x i ≤ | | h i | | | | χ i | | 2 = κ | | h i | | , 其中不等式遵循Cauchy-Schiwartz,并且当且仅当 χ ~ i = χ i 时等式成立。对所有已知的导频符号位置求和将允许接收器区分具有直到频域中循环移位的同一导频符号布置的基站,从而解析该不确定性。
注意,上述论据是更完整证明的简化版本。实际上,如上表示的以及在Ionescu等中的矩阵G将信道和与每个χi向量元素相关的某些基矩阵的影响集中到一起。通过将G表示为仅取决于信道的矩阵和仅取决于基矩阵(接收器已知)的矩阵之间的乘积来分离信道和基矩阵各自的贡献是可能的。然而,实质部分是以下事实,Cauchy-Schiwartz不等式可以如上调用,在计算了直接范数之后,这是典型的非相干处理。
注意导致(多维)导频符号(例如,以矩阵形式表示)的向量χi可以是正交序列,诸如Hadamard(包括复数版本),其将确保正交性。在yi中布置非零观测以对应于测试的
Figure A20068003362400284
也是可以的(参见Ionescu等)。
这是本方法的本质,该方法用于解析具有频域中直到循环移位的同一导频符号布置的BS间的不确定性。(参见例如Laroia等)。
在非常有限的情况中,可以允许在第二阶段之后对没有清楚解析的所有BS的消息的解码的选项。几乎不需要该选项,因为误报警的可能性非常低。
最后,可以推测,导频符号的维数越高,
Figure A20068003362400291
的标量积越低,如果这是真的,其将更好地帮助解析BS的不确定性,因为如果嵌入空间的维数较高,则点可以在超球面上更有效地分开。
上述推测的物理解释是依靠具有对角矩阵形式 p 0 ( 1 ) 0 0 p 1 ( 2 ) 的导频符号不太有效(假设N=2发射天线)。显然,此形式的导频比具有非零条目的导频具有更小的维数。
如证明,考虑n维超球面上的两点A=(a1,…,an),B=(b1,…,bn)。连同该球的中心O与这两点在n维空间中形成二维三角。可以将这两点视为向量a=[a1,…,an]T,b=[b1,…,bn]T。Cauchy-Schiwartz不等式表示aTb=∑iaibi≤||a||b||。注意当a⊥b时左手侧消失,该情况中标量积消失。从而,减少了aTb=∑iaibi,当不保持正交性时,需要降低可到达的上边界(最大值)||a||||b||。但是边AB的长度,即欧氏距离dE(a,b),验证 d E 2 ( a , b ) = | | a | | 2 + | | b | | 2 - 2 cos θ | | a | | | | b | | , 其中θ是角度∠AOB。那么,考虑以下事实,||a||=||b||=κ(超球面上的点),其遵循
| | a | | | | b | | = ( | | a | | 2 + | | b | | 2 - d E 2 ( a , b ) ) / 2 cos θ ( 2 κ 2 - d E 2 ( a , b ) ) / 2 , 除非a⊥b。从而,在不具有正交性的情况中降低||a||||b||需要增加欧氏距离dE(a,b)。众所周知,当超球面的维数较高时,可以将给定数量的点布置得在超球面表面上彼此相距更远。
这完成了以下事实的证明,为了降低
Figure A20068003362400295
导频符号的维数应该尽可能的高,其接着意味着对角矩阵形式的导频不太有效。现在可以将推测阐述为引理。
另一个问题是导频符号是否可以是任意单位矩阵,而不是具有上述结构的矩阵(即,从通用正交设计的可分辨星座扩展形成的)。换言之,形成用于在子载波i0处(所有发射天线)估计信道系数的多维导频符号的复数值(对应于各自天线以及OFDM符号时间点)是否可以形成单位矩阵?
如下所示,单位是不够的。确实,假设多维导频符号仅是单位矩阵Pi。那么,yi=Pihi以及仅非相干处理正在通过例如 P ~ i y i = P ~ i P i h i 搜索来发现||yi||,或者直接计算||yi|作为平方幅度值的和。但是||yi||=||hi||,
Figure A20068003362400302
(因为单位矩阵保留了范数),并且从而合并信道能量总是导致信道能量峰值,而不论依次地,这导致不确定性。导频符号不能帮助解析不确定性,并且实际上该方案处理并且解码所有已经在各种载波偏移修正值应用期间产生了峰值的BS的消息。换言之,在帮助载波与预期BS的同步中,单位导频矩阵是不够的(如果若干BS在频域中具有直到循环移位的同一导频布置,诸如在Laroia等中)。
结论:
因此,通常,本发明的示例性实施方式提供用于在多载波MIMO系统中布置导频符号的方法和装置。特别地,在一个示例性实施方式中,其包括使用其结构是衍生自通用正交设计的可分辨扩展结构的多维点集合。这些多维点集合可以用于关于二维频率-时间导频符号网格形成导频符号,这些导频符号可以依次用于对OFDM系统、发射天线以及OFDM符号的各种载波上的平坦衰落过程进行采样。
本发明的示例性实施方式进一步提供一种方法和装置,该方法和装置在对候选基站进行分辨时,使用导频信息来执行初始载波同步和OFDM符号定时。
基于上面的描述,当考虑附图阅读时,应该理解,本发明的一些实施方式涉及在多载波MIMO系统中布置导频的方法。在一个示例性实施方式中,该方法包括:(1)扩展通用正交多维星座;以及(2)使用扩展的通用正交多维星座的多维点集合用于布置多载波MIMO系统中的导频符号。
本发明的某些示例进一步涉及一种方法,该方法在对候选基站进行分辨时使用导频信息来执行初始载波同步和OFDM符号定时。在一个示例性实施方式中,该方法可以包括,在发射器侧:(1)构造开始于通用正交设计的多维导频符号的集合;(2)对该集合进行扩展;(3)给导频音(子载波)分配各多维符号(矩阵);以及(4)在各种OFDM符号期间从各种天线发射在子载波上的矩阵元。在接收器侧,该方法可以包括利用已知χ向量执行相关操作。根据本发明的示例性实施方式,在将导频符号布置在相应的空间(天线)和时间(OFDM符号)网格上中不需要进行交错(stagger)。
本发明的某些示例涉及一种用于在多载波MIMO系统中布置导频符号的系统,该系统可以包括与一个或多个移动台进行通信的一个或多个基站,其中基站将包括一个或多个导频符号的数据发射到各自的移动台。在一个示例性实施方式中,基站包括能够使用具有衍生自扩展的通用正交多维星座的结构的多维星座点集合来布置导频符号的发射器。在另一个示例性实施方式中,移动台包括用于从基站接收数据的各自接收器,其中该数据包括使用扩展的通用正交多维星座所布置的一个或多个导频符号。
本发明的另一个示例涉及一种能够在多载波MIMO系统中布置导频符号的基站。在一个示例性实施方式中,该基站包括用于扩展通用正交多维星座的装置,以及用于使用扩展的通用正交多维星座的多维点集合来在多载波MIMO系统中布置导频符号的装置。
本发明的示例进一步涉及一种用于在多载波MIMO系统中布置导频符号的计算机程序产品。在一个示例性实施方式中,计算机程序产品包括至少一个具有存储在其中的计算机可读程序代码部分的计算机可读存储介质。这些计算机可读程序代码部分可以包括,例如,第一可执行部分,用于扩展通用正交多维星座;以及第二可执行部分,用于使用扩展的正交多维星座的多维点集合来在多载波MIMO系统中布置导频符号。
本发明的示例进一步涉及一种计算机程序产品,该计算机程序产品用于在对候选基站进行分辨时,使用导频信息来执行初始载波同步和OFDM符号定时。在一个示例性实施方式中,计算机程序产品包括至少一个具有存储在其中的计算机可读程序代码部分的计算机可读存储介质。
如上所述,并且本领域的技术人员应该理解,本发明的实施方式可以配置为系统、方法、移动终端设备或其他装置、或计算机程序产品。因此,本发明的实施方式可以包括各种装置,这些装置包括全硬件、全软件或软件和硬件的任何组合。而且,本发明的实施方式可以采用计算机可读存储介质上的计算机程序产品的形式,该计算机程序产品具有包含在存储介质中的计算机可读程序指令(例如,计算机软件)。可以使用任何适合的计算机可读存储介质,包括硬盘、CD-ROM、光存储介质设备或磁存储设备。
在上文中,参考示出了方法、装置(即,系统)以及计算机程序产品的框图和流程图已经描述了本发明的示例性实施方式。应该理解,可以通过包括计算机程序指令的各种装置分别实现框图和流程图的每个框以及框图和流程图中的框的组合。这些计算机程序指令可以装载在通用计算机、专用计算机或其他可编程数据处理装置上以制造机器,从而执行在计算机或者其他可编程数据处理装置上的该指令创建用于实现一个或多个流程框中指定的功能的装置。
这些计算机程序指令也可以存储在计算机可读存储器中,其可以指导计算机或其他可编程数据处理装置来以特定的方式执行功能,以便存储在计算机可读存储器中的指令生成制造产品,其包括计算机可读指令,用于实现一个或多个流程框中指定的功能。计算机程序指令还可以装载到计算机或其他可编程数据处理装置上,以在计算机或其他可编程装置上执行一系列可操作步骤,从而生成计算机实现的过程,以便执行在计算机或其他可编程装置上的指令提供用于实现一个或多个流程框中指定的功能的步骤。
因此,框图和流程图的框支持用于执行特定功能的装置组合、用于执行特定功能的步骤组合以及用于执行特定功能的程序指令装置。还应该理解,框图和流程图的每个框以及框图和流程图框的组合可以通过执行特定功能或步骤的专用的基于硬件的计算机系统,或者专用硬件以及计算机指令的组合来实现。
本发明相关领域的技术人员将认识到,这里陈述的本发明的很多修改和其他实施方式具有上述描述和相关附图中呈现的教导的益处。因此,应该理解,本发明不限于公开的特定实施方式,并且旨在将修改和其他实施方式包括在所附权利要求书的范围内。尽管在此使用了指定术语,但是仅一般性以及描述性地而并非出于限制的目的使用它们。

Claims (30)

1. 一种在多载波多输入多输出(MIMO)系统中布置一个或多个导频符号的方法,所述方法包括:
构造正交多维星座,所述正交多维星座包括多维星座点集合;以及
从所述正交多维星座形成导频符号,所述导频符号包括与所述多维星座点集合对应的导频点集合。
2. 根据权利要求1所述的方法,进一步包括:
扩展所述正交多维星座,从而增加所述导频符号的所述导频点集合中的导频点数量。
3. 根据权利要求2所述的方法,其中所述正交多维星座和所述扩展的正交多维星座的结构对于平坦衰落是不变的。
4. 根据权利要求2所述的方法,其中所述导频符号驻留在超球面上。
5. 根据权利要求2所述的方法,其中所述导频符号包括具有一行或多行以及一列或多列的矩阵,并且其中所述矩阵的各个行对应于单独的天线,所述方法进一步包括:
从所述相应天线发射与所述矩阵的行相关的导频点。
6. 根据权利要求5所述的方法,其中发射与行相关的导频点包括在单独的正交频分复用(OFDM)符号期间发射各自的导频点。
7. 根据权利要求2所述的方法,进一步包括:
在一个或多个正交频分复用(OFDM)符号期间从一个或多个天线发射所述导频符号的导频点集合,其中,在接收时,当对一个或多个候选基站进行分辨时,能够将所述导频点用于执行初始载波同步以及OFDM符号定时。
8. 一种用于在多载波多输入多输出(MIMO)系统中布置一个或多个导频符号的装置,所述装置包括:
导频音发生器,所述导频音发生器配置用以生成一个或多个导频音并且对一个或多个导频音进行交织,以便承载各自的一个或多个导频符号,其中各自的导频符号形成自扩展的正交多维星座,并且所述各自的导频符号包括对应于所述扩展的正交多维星座的星座点集合的导频点集合。
9. 根据权利要求8所述的装置,进一步包括:
一个或多个天线,其配置用以发射所述导频符号,其中各自的导频符号包括具有一行或多行以及一列或多列的矩阵,并且其中所述矩阵的各自行对应于所述一个或多个天线中的一个。
10. 根据权利要求9所述的装置,其中发射所述导频符号包括从所述对应天线发射与所述矩阵的各自行相关的导频点。
11. 根据权利要求10所述的装置,其中发射与各自行相关点的导频点包括在独立正交频分复用(OFDM)符号期间发射各自的导频点。
12. 一种移动台,包括:
接收器,所述接收器配置用以接收导频符号,其中所述导频符号形成自正交多维星座,所述导频符号包括对应于所述正交多维星座的多维星座点集合的导频点集合。
13. 根据权利要求12所述的移动台,其中所述接收器进一步配置用以接收形成自扩展的正交多维星座的导频符号。
14. 根据权利要求13所述的移动台,其中所述正交多维星座和所述扩展的正交多维星座的结构对于平坦衰落是不变的。
15. 根据权利要求13所述的移动台,其中所述接收器包括一个或多个天线,并且其中接收导频符号包括经由一个或多个天线并且在一个或多个正交频分复用(OFDM)符号期间接收导频点的集合。
16. 根据权利要求15所述的移动台,进一步包括:
同步器,所述同步器配置用以使用接收的所述导频符号来执行初始载波同步以及OFDM符号定时。
17. 一种用于发射一个或多个导频符号的系统,所述系统包括:
基站,所述基站配置用以生成并且发射一个或多个导频符号,其中各个导频符号形成自正交多维星座;以及
移动台,所述移动台配置用以接收一个或多个导频符号。
18. 根据权利要求17所述的系统,其中各个导频符号包括对应于正交多维星座的星座点集合的导频点集合。
19. 根据权利要求18所述的系统,其中所述基站进一步配置用以构造所述正交多维星座并且从构造的所述正交多维星座形成所述导频符号。
20. 根据权利要求19所述的系统,其中所述基站进一步配置用以扩展构造的所述正交多维星座从而增加所述导频符号的导频点的集合中的导频点的数量。
21. 根据权利要求18所述的系统,其中发射所述导频符号包括通过一个或多个天线并且在一个或多个正交频分复用(OFDM)符号中发射导频点的所述集合。
22. 根据权利要求21所述的系统,其中所述移动台进一步配置用以使用接收的所述导频符号来执行初始载波同步和OFDM符号定时。
23. 一种计算机程序产品,用于在多载波多输入多输出(MIMO)系统中布置一个或多个导频符号,其中所述计算机程序产品包括至少一个具有存储在其中的计算机可读程序代码部分的计算机可读存储介质,所述计算机可读程序代码部分包括:
第一可执行部分,用于构造包括多维星座点的集合的正交多维星座;以及
第二可执行部分,用于从所述正交多维星座形成导频符号,所述导频符号包括对应于多维星座点的所述集合的导频点的集合。
24. 根据权利要求23所述的计算机程序产品,其中所述计算机可读程序代码部分进一步包括:
第三可执行部分,用于扩展所述正交多维星座从而增加所述导频符号的所述导频点集合中的导频点的数量。
25. 根据权利要求24所述的计算机程序产品,其中所述正交多维星座和所述扩展的正交多维星座的所述结构对于平坦衰落是不变的。
26. 根据权利要求24所述的计算机程序产品,其中所述计算机可读程序代码部分进一步包括:
第四可执行部分,用于在一个或多个正交频分复用(OFDM)符号期间从一个或多个天线发射所述导频符号的导频点的所述集合,其中,在接收时,当对一个或多个候选基站进行分辨时,能够将所述导频点用于执行初始载波同步以及OFDM符号定时。
27. 一种用于在多载波多输入多输出(MIMO)系统中布置一个或多个导频符号的集成电路组件,所述集成电路组件包括:
第一逻辑元件,用于构造包括多维星座点的集合的正交多维星座;以及
第二逻辑元件,用于从所述正交多维星座形成导频符号,所述导频符号包括对应于多维星座点的所述集合的导频点的集合。
28. 根据权利要求27所述的集成电路组件,进一步包括:
第三逻辑元件,用于扩展所述正交多维星座从而增加所述导频符号的导频点的集合中的导频点的数量。
29. 根据权利要求28所述的集成电路组件,其中所述正交多维星座和所述扩展的正交多维星座的所述结构对于平坦衰落是不变的。
30. 根据权利要求28所述的集成电路组件,进一步包括:
第四逻辑元件,用于在一个或多个正交频分复用(OFDM)符号期间从一个或多个天线发射所述导频符号的导频点的集合,其中,在接收时,当对一个或多个候选基站进行分辨时,能够将所述导频点用于执行初始载波同步以及OFDM符号定时。
CNA2006800336247A 2005-08-12 2006-08-11 用于在多载波mimo系统中布置导频的方法、系统、装置和计算机程序产品 Pending CN101263679A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US70776105P 2005-08-12 2005-08-12
US60/707,761 2005-08-12

Publications (1)

Publication Number Publication Date
CN101263679A true CN101263679A (zh) 2008-09-10

Family

ID=37757943

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800336247A Pending CN101263679A (zh) 2005-08-12 2006-08-11 用于在多载波mimo系统中布置导频的方法、系统、装置和计算机程序产品

Country Status (6)

Country Link
US (1) US20070087749A1 (zh)
EP (1) EP1913724A2 (zh)
KR (2) KR20100017816A (zh)
CN (1) CN101263679A (zh)
BR (1) BRPI0614402A2 (zh)
WO (1) WO2007020512A2 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431497B (zh) * 2008-11-28 2010-12-01 清华大学 一种采用时频域联合的正交频分复用的多天线信号传输方法
US8112105B2 (en) 2008-11-12 2012-02-07 Huawei Technologies Co., Ltd. Method, apparatus and system for estimating channels
CN104781860A (zh) * 2012-11-07 2015-07-15 金泰克斯公司 用于通用发射器的频率偏移法
CN106341356A (zh) * 2015-07-10 2017-01-18 中兴通讯股份有限公司 下行载波平坦度补偿方法及装置
WO2017020837A1 (en) * 2015-08-04 2017-02-09 Huawei Technologies Co., Ltd. Device, network, and method for wideband lte single ofdm symbol uplink transmission
CN108494718A (zh) * 2018-04-19 2018-09-04 电子科技大学 一种基于二维的相关域调制解调方法
WO2023061277A1 (zh) * 2021-10-12 2023-04-20 维沃移动通信有限公司 导频信号发送方法、信道估计方法、装置及设备

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090086860A1 (en) * 2005-08-18 2009-04-02 Mitsubishi Electric Corporation Receiver apparatus
KR101259100B1 (ko) * 2005-11-04 2013-04-26 엘지전자 주식회사 Ofdm 또는 ofdma 무선 이동통신 시스템에서의초기 동기를 위한 신호 전송 방법, 초기 동기 획득 방법 및이동통신용 단말
KR101221706B1 (ko) * 2006-01-25 2013-01-11 삼성전자주식회사 고속 패킷 데이터 시스템의 순방향 링크에서 다중 입력 다중 출력 기술을 지원하는 송수신 장치 및 방법
US8077595B2 (en) * 2006-02-21 2011-12-13 Qualcomm Incorporated Flexible time-frequency multiplexing structure for wireless communication
US9461736B2 (en) * 2006-02-21 2016-10-04 Qualcomm Incorporated Method and apparatus for sub-slot packets in wireless communication
US8689025B2 (en) * 2006-02-21 2014-04-01 Qualcomm Incorporated Reduced terminal power consumption via use of active hold state
JP2009527997A (ja) * 2006-02-21 2009-07-30 クゥアルコム・インコーポレイテッド マルチアンテナ無線通信のための空間パイロット構造
US8780936B2 (en) * 2006-05-22 2014-07-15 Qualcomm Incorporated Signal acquisition for wireless communication systems
EP1903689B1 (en) * 2006-09-22 2016-11-09 Mitsubishi Electric R&D Centre Europe B.V. Method and device for transferring signals representative of a pilot symbol pattern
EP2068473B1 (en) * 2006-09-25 2018-09-12 Panasonic Intellectual Property Corporation of America Radio communication device and pilot arrangement method
US20090323515A1 (en) * 2007-02-09 2009-12-31 Katsutoshi Ishikura Ofdm transmittter and ofdm receiver
US8867570B2 (en) * 2007-05-01 2014-10-21 Broadcom Corporation Methods of transmitting pilot tones and data in spatial multiplexing transmission
US8009617B2 (en) * 2007-08-15 2011-08-30 Qualcomm Incorporated Beamforming of control information in a wireless communication system
US8014265B2 (en) * 2007-08-15 2011-09-06 Qualcomm Incorporated Eigen-beamforming for wireless communication systems
US9066306B2 (en) * 2007-09-21 2015-06-23 Qualcomm Incorporated Interference management utilizing power control
US9374791B2 (en) * 2007-09-21 2016-06-21 Qualcomm Incorporated Interference management utilizing power and attenuation profiles
US9137806B2 (en) 2007-09-21 2015-09-15 Qualcomm Incorporated Interference management employing fractional time reuse
US9078269B2 (en) * 2007-09-21 2015-07-07 Qualcomm Incorporated Interference management utilizing HARQ interlaces
US8824979B2 (en) * 2007-09-21 2014-09-02 Qualcomm Incorporated Interference management employing fractional frequency reuse
US20090080499A1 (en) * 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management employing fractional code reuse
US8948095B2 (en) 2007-11-27 2015-02-03 Qualcomm Incorporated Interference management in a wireless communication system using frequency selective transmission
US9072102B2 (en) 2007-11-27 2015-06-30 Qualcomm Incorporated Interference management in a wireless communication system using adaptive path loss adjustment
US20090268710A1 (en) * 2008-04-23 2009-10-29 Motorola, Inc. Uplink synchronization without periodic ranging in a communication system
US8374285B2 (en) 2008-05-05 2013-02-12 Texas Instruments Incorporated System and method for time domain interpolation of signals for channel estimation
US8711672B2 (en) * 2008-12-30 2014-04-29 Acer Incorporated Wireless communication system using pilot allocation, method and pilot pattern thereof
CN102362454A (zh) * 2009-04-10 2012-02-22 日本电气株式会社 无线通信系统、基站、服务器、无线通信方法及程序
US8953563B2 (en) * 2009-04-24 2015-02-10 Samsung Electronics Co., Ltd. Method and system for multi-layer beamforming
EP2288048A1 (en) * 2009-08-21 2011-02-23 Panasonic Corporation Rotated multi-dimensional constellations for improved diversity in fading channels
US10024972B2 (en) * 2009-09-10 2018-07-17 Nextnav, Llc Cell organization and transmission schemes in a wide area positioning system (WAPS)
US9288096B2 (en) * 2009-12-07 2016-03-15 Qualcomm Incorporated Enabling phase tracking for a communication device
US9065584B2 (en) 2010-09-29 2015-06-23 Qualcomm Incorporated Method and apparatus for adjusting rise-over-thermal threshold
JP5859913B2 (ja) * 2012-05-11 2016-02-16 シャープ株式会社 無線受信装置、無線送信装置、無線通信システム、プログラムおよび集積回路
CN105981344B (zh) * 2014-04-18 2019-10-25 华为技术有限公司 一种导频发送方法、信道估计方法和装置
CN104301275B (zh) * 2014-09-05 2017-09-12 江苏中兴微通信息科技有限公司 基于导频间隔优化的导频位置确定方法及收发装置
US10123329B2 (en) * 2015-10-07 2018-11-06 Intel IP Corporation Long training field in uplink multi-user multiple-input multiple-output communications
CN107204825B (zh) * 2016-03-16 2019-07-12 华为技术有限公司 数据发送方法、数据接收方法、发送端设备及接收端设备
JP7059615B2 (ja) * 2017-12-20 2022-04-26 日本電気株式会社 信号出力装置、信号送信システム、放送サービス提供方法、信号出力方法、および信号出力用プログラム
JP7059616B2 (ja) * 2017-12-20 2022-04-26 日本電気株式会社 信号出力装置、信号送信システム、放送サービス提供方法、信号出力方法、および信号出力用プログラム
US11171813B2 (en) * 2019-12-09 2021-11-09 Microsoft Technology Licensing, Llc Blind distributed multi-user MIMO for decoding multiple concurrent wireless transmissions
WO2022039287A1 (ko) * 2020-08-18 2022-02-24 엘지전자 주식회사 무선 통신 시스템에서 단말 및 기지국의 신호 송수신 방법 및 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6961364B1 (en) * 2000-04-18 2005-11-01 Flarion Technologies, Inc. Base station identification in orthogonal frequency division multiplexing based spread spectrum multiple access systems
US7233625B2 (en) * 2000-09-01 2007-06-19 Nortel Networks Limited Preamble design for multiple input—multiple output (MIMO), orthogonal frequency division multiplexing (OFDM) system
US6850481B2 (en) * 2000-09-01 2005-02-01 Nortel Networks Limited Channels estimation for multiple input—multiple output, orthogonal frequency division multiplexing (OFDM) system
US7009931B2 (en) * 2000-09-01 2006-03-07 Nortel Networks Limited Synchronization in a multiple-input/multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system for wireless applications
US7773699B2 (en) * 2001-10-17 2010-08-10 Nortel Networks Limited Method and apparatus for channel quality measurements
US7155171B2 (en) * 2001-12-12 2006-12-26 Saraband Wireless Vector network analyzer applique for adaptive communications in wireless networks
GB2392065B (en) * 2002-08-15 2004-12-29 Toshiba Res Europ Ltd Signal decoding methods and apparatus
DE60301270T2 (de) * 2003-03-27 2006-07-20 Nnt Docomo, Inc. Vorrichtung und verfahren zur schätzung einer mehrzahl von kanälen

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10687328B2 (en) 2008-11-12 2020-06-16 Huawei Technologies Co., Ltd. Method and apparatus for channel estimation
US8260211B2 (en) 2008-11-12 2012-09-04 Huawei Technologies Co., Ltd. Method, apparatus and system for estimating channels
US9807761B2 (en) 2008-11-12 2017-10-31 Huawei Technologies Co., Ltd. Method and apparatus for channel estimation
US8483619B2 (en) 2008-11-12 2013-07-09 Huawei Technologies Co., Ltd. Method, apparatus and system for estimating channels
US9125199B2 (en) 2008-11-12 2015-09-01 Huawei Technologies Co., Ltd. Method and apparatus for channel estimation
US8112105B2 (en) 2008-11-12 2012-02-07 Huawei Technologies Co., Ltd. Method, apparatus and system for estimating channels
CN101431497B (zh) * 2008-11-28 2010-12-01 清华大学 一种采用时频域联合的正交频分复用的多天线信号传输方法
CN104781860A (zh) * 2012-11-07 2015-07-15 金泰克斯公司 用于通用发射器的频率偏移法
CN104781860B (zh) * 2012-11-07 2018-11-13 金泰克斯公司 用于通用发射器的频率偏移法
CN106341356A (zh) * 2015-07-10 2017-01-18 中兴通讯股份有限公司 下行载波平坦度补偿方法及装置
CN106341356B (zh) * 2015-07-10 2020-01-21 中兴通讯股份有限公司 下行载波平坦度补偿方法及装置
WO2017020837A1 (en) * 2015-08-04 2017-02-09 Huawei Technologies Co., Ltd. Device, network, and method for wideband lte single ofdm symbol uplink transmission
US11005628B2 (en) 2015-08-04 2021-05-11 Futurewei Technologies, Inc. Device, network, and method for wideband LTE single OFDM symbol uplink transmission
US11582005B2 (en) 2015-08-04 2023-02-14 Futurewei Technologies, Inc. Device, network, and method for wideband LTE single OFDM symbol uplink transmission
CN108494718A (zh) * 2018-04-19 2018-09-04 电子科技大学 一种基于二维的相关域调制解调方法
CN108494718B (zh) * 2018-04-19 2020-07-31 电子科技大学 一种基于二维的相关域调制解调方法
WO2023061277A1 (zh) * 2021-10-12 2023-04-20 维沃移动通信有限公司 导频信号发送方法、信道估计方法、装置及设备

Also Published As

Publication number Publication date
EP1913724A2 (en) 2008-04-23
US20070087749A1 (en) 2007-04-19
WO2007020512A3 (en) 2007-04-26
BRPI0614402A2 (pt) 2011-03-29
KR20100017816A (ko) 2010-02-16
KR20080033516A (ko) 2008-04-16
WO2007020512A2 (en) 2007-02-22

Similar Documents

Publication Publication Date Title
CN101263679A (zh) 用于在多载波mimo系统中布置导频的方法、系统、装置和计算机程序产品
US20060291577A1 (en) System and method for selecting pilot tone positions in communication systems
US7616557B2 (en) Method and apparatus for canceling intercarrier interference through conjugate transmission for multicarrier communication systems
Abdzadeh-Ziabari et al. Joint maximum likelihood timing, frequency offset, and doubly selective channel estimation for OFDM systems
CA2339515A1 (en) Pilot use in orthogonal frequency division multiplexing based spread spectrum multiple access systems
CN102197628B (zh) 用于sc-fdma的发射分集方法和装置
EP4027551B1 (en) Data transmission method and apparatus
CA2355433A1 (en) Preamble design for multiple input-multiple output (mimo), orthogonal frequency division multiplexing (ofdm) system
CN102812774A (zh) 用于在无线通信网络中表明传输特性的方法和装置
CN106160816A (zh) 大规模mimo系统中实现完美全向预编码的同步信号和信号的发送与接收方法
CN104158619A (zh) 一种基于crs的lte信号屏蔽方法和系统
CN101119350B (zh) 正交频分复用系统、快速同步的方法和发送端设备
AU2004300288B2 (en) Wireless multicarrier system with subcarriers reserved for communication between unsynchronized nodes
CN1939027A (zh) 用于接收多个异步数据流的设备、系统和方法
CN101039499B (zh) 多载波通信中基于cazac序列的小区搜索系统及其搜索方法
Hara et al. Ambient OFDM pilot-aided backscatter communications: Concept and design
WO2008067721A1 (fr) Procédé de processus de synchronisation, station de base, dispositif utilisateur et système de communication
CN100596053C (zh) 一种在正交多路频分复用系统中实现帧同步的方法
CN113315610A (zh) 一种无线通信方法及装置
KR100964396B1 (ko) 채널 추정, 등화 방법 및 시스템
EP2007094B1 (en) Method and system for transmitting multiple data communications via ofdm modulations simultaneously over time and frequency
Chandran et al. Channel estimators for full-duplex communication using orthogonal pilot sequences
Maleki et al. A Tutorial on Chirp Spread Spectrum for LoRaWAN: Basics and Key Advances
CN101282318B (zh) 一种新的ofdm系统前缀序列的发送与接收方法
KR101000791B1 (ko) Drm 수신기의 프레임 동기화 장치, 그 방법 및 시스템

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080910