CN101207195A - 一种电池极片的制备方法 - Google Patents

一种电池极片的制备方法 Download PDF

Info

Publication number
CN101207195A
CN101207195A CNA2006101706135A CN200610170613A CN101207195A CN 101207195 A CN101207195 A CN 101207195A CN A2006101706135 A CNA2006101706135 A CN A2006101706135A CN 200610170613 A CN200610170613 A CN 200610170613A CN 101207195 A CN101207195 A CN 101207195A
Authority
CN
China
Prior art keywords
pole piece
battery
thickness
calendering
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006101706135A
Other languages
English (en)
Inventor
申奇
孙华军
肖峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CNA2006101706135A priority Critical patent/CN101207195A/zh
Publication of CN101207195A publication Critical patent/CN101207195A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种电池极片的制备方法,该方法包括将含有电极活性物质、添加剂和溶剂的电极材料浆料负载到集电体上,然后将所得负载有电极材料的集电体干燥、压延,其中,所述压延的次数至少为两次,且对负载有电极材料的集电体的两个相对表面进行直接压延。本发明提供的电池极片的制备方法一方面能够大大提高电池极片上的电极材料密度,另一方面还能使同一表面和相对两个表面之间的电极材料密度均一,从而能够有效克服极片在烘烤干燥以及充放电过程中体积膨胀较大、致使电池发鼓的现象,提高使用该极片的电池的循环性能和容量。

Description

一种电池极片的制备方法
技术领域
本发明是关于一种电池极片的制备方法。
背景技术
近年来,高技术电子工业的发展已经可以提供小型化且轻质量的电子设备,这导致越来越多的便携式电子设备被广泛使用,而锂离子二次电池以其放电电压高、能量密度高和循环使用寿命长的优点成为这些便携式电子设备的首选能源。
在锂离子电池的制作过程中,电池极片的制备方法包括将含有电极活性物质、导电剂、粘合剂和溶剂的电极材料的浆料涂覆和/或填充在集电体上,干燥,压延后得到电极片(正极片或负极片),所述压延是通过轮子挤压电极片的一个表面,通过施加足够的力一次压成,使电极材料的密度增大,从而保证在不增加电池厚度的情况下增大电池的容量。使用这种电池极片制得的电池容量较低,且电池的循环性能较差。
为此,CN 1532984A公开了一种锂离子二次电池的制备方法,该方法包括如下步骤:(a)正极浆料的配制;(b)将正极浆料均匀地涂布在电极集流体上,干燥、压延后得到一定厚度的正极片;(c)负极浆料的配制;(d)将负极浆料均匀地涂布在电极集流体上,干燥、压延后得到一定厚度的负极片;(e)将制备好的正、负极片与隔膜卷绕成电池芯,装入电池壳中并焊接,随后将电解液注入电池壳中,密封,制成锂离子二次电池;其中,所述步骤(a)包括将正极活性物质、碳系材料导电剂、水溶性粘合剂、增粘剂溶解在水中,搅拌均匀即得正极浆料,所述水溶性粘合剂由PTFE或SBR或者它们的混合物组成,用量为正极活性物质的0.5-15.0重量%;所述增粘剂为甲基纤维素(MC)、羧甲基纤维素(CMC)、羟丙基甲基纤维素(HPMC)、羧甲基羟乙基纤维素(CMHEC)和羟丙基纤维素(HPC)中的一种或几种,用量为正极活性物质的0.2-10.0重量%。该方法试图通过改进粘合剂来改善电池的循环性能和使电池的制备方法更加环保。然而,该方法对电池的初始容量并无改进,甚至还稍有降低。
CN 1652373A公开了一种锂离子二弟电池正极涂料的制备方法,该方法包括使用具有混炼部和稀释部、在混炼部和/或稀释部还具有沿和运送混炼物相反的方向返回的叶片和/或叶片的组合的连续式双轴混炼机,调配该正极用涂料。该发明试图通过使用不同的设备来制备电极浆料,使电极浆料混合更均匀而提高电极对电解液的透过性,然而对电池的容量仍无明显改进。
CN 1229888C公开了一种非水系二次电池的制备方法,该方法包括获得含有由含锂的过渡金属氧化物构成的正极活性物质、第一粘合剂A和分散介质的糊状物A的工序(i);获得含有由炭黑构成的导电剂、第2粘合剂B和分散介质的糊状物B的工序(ii);将糊状物A和糊状物B混合来获得正极合剂糊状物C的工序(iii);将正极合剂糊状物C涂布到正极芯材上并进行压延和干燥来获得正极的工序(iv);以及使用上述正极、负极和非水电解液来组装电池的工序(V),并且上述非水电解液对粘合剂A的接触角θA和上述非水电解液对粘合剂B的接触角θB满足θBA≥15°。该方法试图通过改进粘合剂在电极片上的分布状态而提高电池的容量。虽然使用该方法能在一定程度上提高电池的容量,但该方法存在操作工艺复杂,不便工业化生产的缺点。
发明内容
本发明的目的是为了克服现有的电池极片制备方法制得的电池极片使得电池容量低或者存在工艺复杂的缺点,提供一种电池容量高、循环性能好且工艺简单的电池极片的制备方法。
本发明的发明人通过试验研究发现,采用传统一次压延方法制得的电池极片存在直接受压和非直接受压极片两面的体密度不均,极片在烘烤干燥以及充放电过程中体积膨胀较大,致使电池发鼓,不仅使得使用该极片的电池的循环性能和容量低,而且还存在爆炸的安全隐患。
本发明提供的电池极片的制备方法包括将含有电极活性物质、添加剂和溶剂的电极材料浆料负载到集电体上,然后将所得负载有电极材料的集电体干燥、压延,其中,所述压延的次数至少为两次,且对负载有电极材料的集电体的两个相对表面进行直接压延。
由于本发明提供的电池极片的制备方法采用对负载有电极材料的集电体进行至少两次压延且对负载有电极材料的集电体的两个相对表面进行直接压延,因而一方面能够大大提高电池极片上的电极材料密度,另一方面还能使同一表面和相对两个表面之间的电极材料密度均一,从而能够有效克服极片在烘烤干燥以及充放电过程中体积膨胀较大、致使电池发鼓的现象,提高使用该极片的电池的循环性能和容量。
具体实施方式
按照本发明提供的电池极片的制备方法,所述压延的次数可以是不小于两次的任意次数。尽管进行大于4次的压延也能实现本发明的目的,但是4次压延后更多次的压延对提高电池极片电极材料的密度、提高电池容量和循环性能并无明显的改进,而且还增加生产周期,因此本发明所述压延的次数优选为2-4次。所述压延的次数可以平均分配在电池极片的两个相对表面(即“正反两面”)上,也可以对其中一个表面进行多次压延,而对另一个表面进行更少次数或者一次压延,只要保证正反两面都直接受到压延即可。
为子进一步降低电池极片两面的体密度差,优选情况下,相邻的两次压延分别作用在两个相对表面上。例如,对于压延次数为3次时,优选先在首先受压的表面进行第一次压延,然后再在与之相对的表面进行第二次压延,最后再在首先受压的表面进行第三次压延。
所述压延的压力大小优选使所有压延完成后,作用在最先受压的表面的压延引起的电池极片厚度的变化量为电极片厚度变化总量的50-90%,优选为60-90%;作用在与之相对的另一个表面的压延引起的电池极片厚度的变化量为电极片厚度变化总量的10-50%,优选为40-10%。压延压力的具体大小视电极材料的种类和用量不同而不同,本领域技术人员根据具体的电极材料种类和用量可以很容易得出具体的压延压力。所述压延的具体操作已为本领域技术人员所公知,例如可以采用辊压法。
根据本发明提供的方法,第一次压延时所施加的压力有助于电极材料颗粒的滑动,达到排布规整的目的;第一次压延后的压延的目的是在颗粒排布规整的基础上进一步施加外力,以缩小颗粒之间形成的空隙,使材料达到较大的体积密度。对电极极片的正反两面进行压延是为了使电极极片两面的体密度均一。采用由这种方法制得的电池极片制得的电池厚度膨胀较小、材料体积密度均一、电池容量和循环性能都能得到改善。
由于本发明只涉及对电池极片制备方法中压延方法的改进,对电池极片制备方法中的将含有电极活性物质、添加剂和溶剂的电极材料浆料负载到集电体上的方法和随后将所得负载有电极材料的集电体干燥的方法以及电极材料浆料的组成和制备方法没有特别限定,可以是本领域技术人员公知的方法和组成。例如,可以通过辊涂法、棒涂法、凹印法、反向凹印法等方法中的一种或几种将含有电极活性物质、导电剂和溶剂的电极材料浆料负载到集电体上。对所述电极材料浆料在集电体上的负载量没有特别要求,为常规量即可,例如,所述电极材料浆料的负载量可以为使得负载有电极材料的集电体上电极材料的最终厚度为0.1-0.18毫米。可以通过常规的真空干燥、鼓风干燥等方法将所得负载有电极材料的集电体干燥,干燥的温度可以是50-150℃,具体视制备电极材料浆料的溶剂不同可以略有不同,但均可在上述范围内实现干燥目的。
可以通过各种方法将电极活性物质、添加剂和溶剂混合均匀得到糊状物制得电极材料浆料。本发明提供的方法既可适用于正极的制备,也可以适用于负极的制备。正极和负极的制备方法基本相同,不同的是使用不同的电极材料浆料和集电体。根据本发明提供的方法,所述电池可以是各种需要通过压延步骤制备电极极片的电池,例如,锂离子二次电池。下面以锂离子二次电池为例详细说明本发明。
对所述正极活性物质没有特别限制,可以为本领域常规的可嵌入脱嵌锂的正极活性物质,优选以下物质中的一种或者其混合物:LixNi1-yCoO2(其中,0.9≤x≤1.1,0≤y≤1.0)、Li1+aMbMn2-bO4(其中,-0.1≤a≤0.2,0≤b≤1.0,M为锂、硼、镁、铝、钛、铬、铁、钴、镍、铜、锌、镓、钇、氟、碘、硫元素中的一种)、LimMn2-nBnO2(其中,B为过渡金属,0.9≤m≤1.1,0≤n≤1.0)。所述负极活性物质没有特别限制,可以使用本领域常规的可嵌入释出锂的负极活性物质,天然石墨、人造石墨、石油焦、有机裂解碳、中间相碳微球、碳纤维、锡合金、硅合金中的一种或几种,优选人工石墨
所述添加剂可以是导电剂、粘合剂以及其它各种助剂中的一种或几种。所述导电剂可以为本领域常规的导电剂,比如ketjen碳黑、乙炔黑、炉黑、碳纤维VGCF、纳米石墨、碳纳米管、石墨和导电石墨中的一种或几种。以正极活性物质的重量为基准,所述导电剂的含量可以为0.01-20重量%,优选为0.5-10重量%。
所述粘合剂的种类和含量为本领域技术人员所公知,例如含氟树脂和聚烯烃化合物如聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、丁苯橡胶(SBR)中的一种或几种。一般来说,以正极活性物质的重量为基准,粘合剂的含量可以为0.01-8重量%,优选为0.02-5重量%。
所述的溶剂可以选自N-甲基吡咯烷酮(NMP)、二甲基甲酰胺(DMF)、二乙基甲酰胺(DEF)、二甲基亚砜(DMSO)、四氢呋喃(THF)以及水和醇类中的一种或几种。溶剂的用量能够使所述糊状物具有粘性和流动性,能够负载到所述集电体上即可。一般来说,以电极活性物质的重量为基准,所述溶剂的含量可以为20-70重量%,优选为30-60重量%。
正极集电体可以为锂离子电池中常规的正极集电体,在本发明的具体实施方式中使用铝箔作为正极集电体。
所述负极活性物质没有特别限制,可以使用本领域常规的可嵌入释出锂的负极活性物质,比如天然石墨、人造石墨、石油焦、有机裂解碳、中间相碳微球、碳纤维、锡合金、硅合金中的一种或几种,优选人工石墨。
所述添加剂可以是导电剂、粘合剂以及其它各种助剂中的一种或几种。对所述导电剂没有特别限制,可以为本领域常规的负极导电剂,比如ketjen碳黑、乙炔黑、炉黑、碳纤维VGCF、纳米石墨、碳纳米管、导电碳黑和导电石墨中的一种或几种。以负极活性物质的重量为基准,所述导电剂的含量为1-15重量%,优选为2-10重量%。
所述负极粘合剂的种类和含量为本领域技术人员所公知,例如含氟树脂和聚烯烃化合物如聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、丁苯橡胶(SBR)中的一种或几种。一般来说,以负极活性物质的重量为基准,负极粘合剂的含量可以为0.01-8重量%,优选为0.02-5重量%。
优选情况下,所述负极粘合剂采用纤维素基聚合物与橡胶胶乳的混合物,如纤维素基聚合物与丁苯橡胶(SBR)的混合物。所述纤维素基聚合物与丁苯橡胶的用量为本领域技术人员所公知。
负极集电体可以为锂离子电池中常规的负极集电体,如冲压金属,金属箔,网状金属,泡沫状金属,在本发明的具体实施方式中使用铜箔作为负极集电体。
所述的溶剂可以选自N-甲基吡咯烷酮(NMP)、二甲基甲酰胺(DMF)、二乙基甲酰胺(DEF)、二甲基亚砜(DMSO)、四氢呋喃(THF)以及水和醇类中的一种或几种;溶剂的用量能够使所述糊状物具有粘性和流动性,能够涂覆到所述集电体上即可。一般来说,以负极活性物质的重量为基准,所述溶剂的用量为100-150%。
通过将本发明的正极片、负极片和隔膜制备成极芯,将得到的极芯和电解液密封在电池壳中即可制得锂离子二次电池。所述隔膜可以是具有电绝缘性能和液体保持性能的各种隔膜,如高分子聚合物微孔薄膜,包括聚丙稀微孔薄膜和聚丙烯与聚乙烯的多层复合微孔薄膜。所述隔膜的位置、性质和种类为本领域技术人员所公知。所述电解液可以使用本领域常规的非水电解液,所述非水电解液为电解质锂盐和溶剂的混合溶液。所述电解质锂盐可以选自六氟磷酸锂(LiPF6)、高氯酸锂、四氟硼酸锂、六氟砷酸锂、卤化锂、氯铝酸锂及氟烃基磺酸锂中的一种或几种。有机溶剂选用链状酸酯和环状酸酯混合溶液,其中链状酸酯可以为碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸甲丙酯(MPC)、碳酸二丙酯(DPC)以及其它含氟、含硫或含不饱和键的链状有机酯类中的至少一种,环状酸酯可以为碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸亚乙烯酯(VC)、γ-丁内酯(γ-BL)、磺内酯以及其它含氟、含硫或含不饱和键的环状有机酯类中的至少一种。电解液的注入量一般为1.5-4.9克/安时,电解液的浓度一般为0.5-2.9摩/升。
下面以锂离子二次电池为例通过实施例的方式对本发明进行更详细的描述。
实施例1
本实施例用于说明本发明提供的电池电极的制备方法。
将100克正极活性物质LiCoO2、5克粘合剂聚偏二氟乙烯、5克导电剂乙炔黑加入到50克N-甲基吡咯烷酮中,然后在搅拌机中搅拌形成均匀的正极材料浆料。
将该浆料在厚度为16微米的铝箔上进行均匀地双面涂布,在150℃下烘干,得到厚度为0.225微米的负载有正极材料浆料的铝箔,在该铝箔表面未观察到敷料脱落现象,然后进行辊压,辊压的次数为2次,辊压的方式为正反两面辊压,第一次辊压的压力为0.5兆帕,辊压后的厚度为0.175微米,第二次辊压的压力为1.5兆帕,辊压后的厚度为0.125微米。计算得到第一次辊压后正极极片厚度的变化量为极片厚度变化总量的50%,第二次辊压后正极极片厚度的变化量为极片厚度变化总量的50%。裁切制得尺寸为485毫米(长)×44毫米(宽)×0.205毫米(厚度)的正极片,烘干后极片没有发生膨胀,得到正极片ZP1,其中含有8.8克正极活性物质LiCoO2
对比例1
该对比例用于说明现有技术电池电极的制备方法。
将100克正极活性物质LiCoO2、5克粘合剂聚偏二氟乙烯、5克导电剂乙炔黑加入到50克N-甲基吡咯烷酮中,然后在搅拌机中搅拌形成均匀的正极材料浆料。
将该浆料在厚度为16微米的铝箔上进行均匀地双面涂布,在150℃下烘干,得到厚度为0.225微米的负载有正极材料浆料的铝箔,在该铝箔表面未观察到敷料脱落现象,然后进行辊压,辊压的次数为1次,辊压的压力为1.8兆帕,辊压后的厚度为0.125毫米。裁切制得尺寸为485亳米(长)×44毫米(宽)×0.215毫米(厚度)的正极片,烘干后极片发生轻微膨胀,得到正极片CP1,其中含有8.8克正极活性物质LiCoO2
实施例2
该实施例用于说明本发明提供的电池电极的制备方法。
按照实施例1的方法制备电池极片,不同的是,在辊压过程中改变辊压的压力,使第一次辊压后正极极片厚度的变化量为极片厚度变化总量的90%;第二次辊压后正极极片厚度的变化量为极片厚度变化总量的10%,烘干后极片没有发生膨胀,得到正极片ZP2。
实施例3
该实施例用于说明本发明提供的电池电极的制备方法。
按照实施例1的方法制备电池极片,不同的是,在辊压过程中改变辊压的压力,使第一次辊压后正极极片厚度的变化量为极片厚度变化总量的70%;第二次辊压后正极极片厚度的变化量为极片厚度变化总量的30%,烘干后极片没有发生膨胀,得到正极片ZP3。
实施例4
该实施例用于说明本发明提供的电池电极的制备方法。
按照实施例1的方法制备电池极片,不同的是,在辊压过程中改变辊压的压力,使第一次辊压后正极极片厚度的变化量为极片厚度变化总量的95%;第二次辊压后正极极片厚度的变化量为极片厚度变化总量的5%,烘干后极片没有发生膨胀,得到正极片ZP4。
实施例5
该实施例用于说明本发明提供的电池电极的制备方法。
按照实施例1的方法制备电池极片,不同的是,在辊压过程中改变辊压的压力,使第一次辊压后正极极片厚度的变化量为极片厚度变化总量的40%;第二次辊压后正极极片厚度的变化量为极片厚度变化总量的60%,烘干后极片没有发生膨胀,得到正极片ZP5。
实施例6
该实施例用于说明本发明提供的电池电极的制备方法。
按照实施例1的方法制备电池极片,不同的是,辊压的次数为4次,对正反两面按照正面、反面、正面、反面的顺序依次进行两次辊压,第一次辊压后正极极片厚度的变化量为极片厚度变化总量的60%;第二次辊压后正极极片厚度的变化量为极片厚度变化总量的25%;第三次辊压后正极极片厚度的变化量为极片厚度变化总量的10%;第四次辊压后正极极片厚度的变化量为极片厚度变化总量的5%,烘干后极片没有发生膨胀,得到正极片ZP6。
实施例7
本实施例用于说明本发明提供的电池电极的制备方法。
将100克负极活性物质天然石墨、9克粘合剂聚偏二氟乙烯加入到100克N-甲基吡咯烷酮中,在搅拌机中搅拌形成均匀的负极材料浆料。
将该浆料在厚度为12微米的铜箔上进行均匀地双面涂布,在90℃下烘干,得到厚度为220微米的负载有负极材料浆料的铜箔,在该铜箔表面未观察到敷料脱落现象,然后进行辊压,辊压的次数为2次,辊压的方式为正反两面辊压,第一次辊压的压力为0.3兆帕,辊压后的厚度为0.170毫米,第二次辊压的压力为0.6兆帕,辊压后的厚度为0.120毫米。计算得到第一次辊压后正极极片厚度的变化量为极片厚度变化总量的50%,第二次辊压后正极极片厚度的变化量为极片厚度变化总量的50%。裁切制得尺寸为477毫米(长)×44毫米(宽)×0.210毫米(厚度)的负极片烘干后极片没有发生膨胀,得到负极片FP1,其中含有4.0克负极活性物质天然石墨。
对比例2
该对比例用于说明现有技术电池电极的制备方法。
将100克负极活性物质天然石墨、9克粘合剂聚偏二氟乙烯加入到100克N-甲基吡咯烷酮中,在搅拌机中搅拌形成均匀的负极材料浆料。
将该浆料在厚度为12微米的铜箔上进行均匀地双面涂布,在90℃下烘干,得到厚度为220微米的负载有负极材料浆料的铜箔,在该铜箔表面未观察到敷料脱落现象,然后进行辊压,辊压的次数为1次,辊压的压力为0.7兆帕辊压后的厚度为0.120毫米。裁切制得尺寸为477毫米(长)×44毫米(宽)×0.120毫米(厚度)的负极片烘干后极片发生轻微膨胀,得到负极片CP2,其中含有4.0克负极活性物质天然石墨。
实施例8-15
下列实施例分别用于测定采用本发明提供的方法制备的电池极片对电池性能的影响。
按照下述方法分别测定由上述实施例1-7制得的电池极片的两面体密度差(克/立方厘米),结果如下表1所示。
测试方法:称取长L1、宽W1的两面均敷料极片的重量,记为M1,测量极片厚度d1,用刀片将极片一面的敷料刮除,称取重量记为M2,测量极片厚度d2,再将极片另一面的敷料刮除,称取集流体重量记为M3,测量集流体厚度记为d3,则极片两面体密度ρ1、ρ2分别为(M1-M2)/(L1×W1×(d1-d2))和(M2-M3)/(L1×W1×(d2-d3)),ρ1与ρ2的差值(ρ1-ρ2)即为极片两面体密度差。
分别按照下表1的组合方式将正极片、负极片与聚丙烯/聚乙烯/聚丙烯(PP/PE/PP)三层隔膜材料卷绕成一个方型锂离子二次电池的极芯,随后将LiPF6按1摩尔/升的浓度溶解在EC/DMC=1∶1(体积比)的混合溶剂中形成非水电解液,将该电解液以3.8克/安时的量注入电池壳中,密封,制成尺寸为50毫米×34毫米×5毫米、设计电池容量为1150毫安时的方形铝壳锂离子二次电池053450。
在室温条件下,将各电池分别以1150毫安的电流充电至4.2伏后以恒定电压充电,截止电流为0.05C,搁置10分钟;电池以1150毫安电流放电至3.0伏,搁置5分钟。重复以上步骤,记录当电池的容量下降到其初始容量的80%时所经过的循环次数结果如表1所示。
对比例3
按照实施例8-15所述的方法制备锂离子二次电池并进行相同的性能测定,不同的是,电池的正极和负极分别为对比例1和对比例2制得的正极片和负极片,结果如表1所示。
表1
从表1可以看出,按照本发明提供的方法制得的电池极片的两面体密度差大大减小,使用由本发明提供的方法制备的电池极片制得的电池的容量均达到设计容量,且当电池容量降低为电池初始容量的80%时,电池的循环次数均达到400次以上,具有良好的循环性能,容量衰减缓慢。

Claims (6)

1.一种电池极片的制备方法,该方法包括将含有电极活性物质、添加剂和溶剂的电极材料浆料负载到集电体上,然后将所得负载有电极材料的集电体干燥、压延,其特征在于,所述压延的次数至少为两次,且对负载有电极材料的集电体的两个相对表面进行直接压延。
2.根据权利要求1所述的方法,其中,所述压延的次数为2-4次。
3.根据权利要求1-2中任意一项所述的方法,其中,相邻的两次压延分别作用在两个相对表面上。
4.根据权利要求1所述的方法,其中,所述压延的压力大小使所有压延完成后,作用在最先受压的表面的压延引起的电池极片厚度的变化量为电极片厚度变化总量的50-90%,作用在与之相对的另一个表面的压延引起的电池极片厚度的变化量为电极片厚度变化总量的10-50%。
5.根据权利要求1所述的方法,其中,所述电极材料浆料的负载量使得负载有电极材料的集电体上电极材料的最终厚度为0.1-0.18毫米。
6.根据权利要求1所述的方法,其中,所述电池极片为锂离子二次电池的正极片和/或负极片。
CNA2006101706135A 2006-12-22 2006-12-22 一种电池极片的制备方法 Pending CN101207195A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2006101706135A CN101207195A (zh) 2006-12-22 2006-12-22 一种电池极片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2006101706135A CN101207195A (zh) 2006-12-22 2006-12-22 一种电池极片的制备方法

Publications (1)

Publication Number Publication Date
CN101207195A true CN101207195A (zh) 2008-06-25

Family

ID=39567189

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006101706135A Pending CN101207195A (zh) 2006-12-22 2006-12-22 一种电池极片的制备方法

Country Status (1)

Country Link
CN (1) CN101207195A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102324496A (zh) * 2011-09-19 2012-01-18 江苏乐能电池股份有限公司 一种锂离子电池正极片的压片方法
CN102496699A (zh) * 2011-12-22 2012-06-13 上海奥威科技开发有限公司 一种化学电源电极制造方法
CN106804115A (zh) * 2014-09-12 2017-06-06 丰田自动车株式会社 制造锂离子二次电池电极的方法
CN107403905A (zh) * 2016-05-18 2017-11-28 宁德新能源科技有限公司 锂离子电池正极片及其制备方法
CN109713226A (zh) * 2018-12-19 2019-05-03 广西卡耐新能源有限公司 一种改善软包装锂离子电池厚度反弹的方法
CN114420885A (zh) * 2022-01-25 2022-04-29 上海兰钧新能源科技有限公司 一种极片制作方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102324496A (zh) * 2011-09-19 2012-01-18 江苏乐能电池股份有限公司 一种锂离子电池正极片的压片方法
CN102496699A (zh) * 2011-12-22 2012-06-13 上海奥威科技开发有限公司 一种化学电源电极制造方法
CN106804115A (zh) * 2014-09-12 2017-06-06 丰田自动车株式会社 制造锂离子二次电池电极的方法
US10431807B2 (en) 2014-09-12 2019-10-01 Toyota Jidosha Kabushiki Kaisha Method of manufacturing lithium-ion secondary battery electrode
CN106804115B (zh) * 2014-09-12 2020-09-04 丰田自动车株式会社 制造锂离子二次电池电极的方法
CN107403905A (zh) * 2016-05-18 2017-11-28 宁德新能源科技有限公司 锂离子电池正极片及其制备方法
CN107403905B (zh) * 2016-05-18 2020-02-14 宁德新能源科技有限公司 锂离子电池正极片及其制备方法
CN109713226A (zh) * 2018-12-19 2019-05-03 广西卡耐新能源有限公司 一种改善软包装锂离子电池厚度反弹的方法
CN114420885A (zh) * 2022-01-25 2022-04-29 上海兰钧新能源科技有限公司 一种极片制作方法

Similar Documents

Publication Publication Date Title
CN103515607B (zh) 一种锂离子电池负极浆料、负极及电池
CN103597638B (zh) 锂离子二次电池
CN105283998A (zh) 具有合成固体电解质界面的电极材料
CN103891030B (zh) 非水电解液二次电池及其利用
CN103633363B (zh) 一种锂离子电池及其制备方法
CN109817868B (zh) 一种高电压、高安全锂离子电池及其制备方法
CN109155434A (zh) 一种二次电池及其制备方法
CN101154730A (zh) 锂离子电池正极材料和含有该材料的正极和锂离子电池
CN105470494A (zh) 正极活性材料组合物、正极浆料及其制备方法、正极片及其制备方法、锂离子电池
CN111653732A (zh) 一种正极材料、正极极片及锂离子电池
CN103855401A (zh) 一种锂离子电池正极极片及其制备方法和含有该极片的锂离子电池
CN105122507A (zh) 非水电解质二次电池
CN104347847A (zh) 一种锰酸锂-三元材料复合正极极片的制备方法
CN101207195A (zh) 一种电池极片的制备方法
CN100449824C (zh) 电池极片及含有该极片的锂离子二次电池的制备方法
CN101315975A (zh) 电池正极和使用该正极的锂离子电池及它们的制备方法
CN1971980A (zh) 电池正极及使用该正极的锂离子电池及它们的制备方法
KR20170034774A (ko) 저온 특성이 향상된 리튬 이차전지의 제조방법 및 리튬 이차전지
KR20170112345A (ko) 리튬 이차전지용 전극 제조 방법
CN100470884C (zh) 一种电池正极和锂离子电池及它们的制备方法
US10490821B2 (en) Electrode for lithium secondary battery comprising hygroscopic material and lithium secondary battery comprising the same
KR101554692B1 (ko) 양극 활물질 전구체, 양극 활물질, 이의 제조 방법 및 이를 이용한 리튬 이차전지
JP2013114847A (ja) リチウムイオン二次電池とその製造方法
CN106058260B (zh) 非水电解质二次电池
CN101212038A (zh) 一种锂离子二次电池及极片的处理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20080625