CN101205526B - 上流式厌氧污泥床反应器快速培养厌氧氨氧化菌的方法 - Google Patents

上流式厌氧污泥床反应器快速培养厌氧氨氧化菌的方法 Download PDF

Info

Publication number
CN101205526B
CN101205526B CN2007100327174A CN200710032717A CN101205526B CN 101205526 B CN101205526 B CN 101205526B CN 2007100327174 A CN2007100327174 A CN 2007100327174A CN 200710032717 A CN200710032717 A CN 200710032717A CN 101205526 B CN101205526 B CN 101205526B
Authority
CN
China
Prior art keywords
reactor
sludge
anaerobic
reaction zone
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007100327174A
Other languages
English (en)
Other versions
CN101205526A (zh
Inventor
周少奇
朱明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN2007100327174A priority Critical patent/CN101205526B/zh
Publication of CN101205526A publication Critical patent/CN101205526A/zh
Application granted granted Critical
Publication of CN101205526B publication Critical patent/CN101205526B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

本发明公开了一种上流式厌氧污泥床一生物膜反应器快速培养厌氧氨氧化菌的方法;该方法包括在UASB反应器内挂膜,保留所富集的微生物;选取垃圾填埋场处理渗滤液SBR工艺中的活性污泥为接种污泥,接种的污泥量为反应器有效容积的45~65%;采用恒温循环水浴控制反应区温度保持在32±1℃;采用人工合成废水,废水组分包括NH4Cl、NaNO2、MgSO4、KH2PO4、CaCl2、NaHCO3以及微量元素I和微量元素II,配水中NH4 +-N和NO2 --N的质量比控制为1∶1.0~1∶1.6;调节进水的pH为7.4~7.8。本发明具有工艺简单,系统运行稳定,对氮素去除率高,驯化富集时间短等优点。

Description

上流式厌氧污泥床反应器快速培养厌氧氨氧化菌的方法
技术领域
本发明涉及厌氧氨氧化菌的培育,特别涉及一种上流式厌氧污泥床反应器快速培养厌氧氨氧化菌的方法。
背景技术
随着工农业的发展和人们生活水平的提高,氮素的污染日益加剧,已成为水环境污染主要因素之一。许多国家对废水排放标准中氮的要求日趋严格,因此,废水生物脱氮技术的研究和开发受到人们的重视。但传统的生物脱氮技术都普遍存在着基建投资和运行费用较高、运行控制复杂、流程长、氧耗大、脱氮效果较低等缺陷。研究人员长期以来一直在积极探索和开发新型的生物脱氮工艺,以便能快速、高效去除废水中的氨氮。由此,一种新型的、有前景的、低成本的污水脱氮新工艺——厌氧氨氧化(ANAMMOXANaerobic AMMonia OXidation)生物脱氮技术应运而生。厌氧氨氧化(ANAMMOX)是在厌氧条件下以NO2 -作为电子受体,利用自养型细菌(ANAMMOX细菌)将氨直接氧化为氮气(N2)实现脱氮的工艺。ANAMMOX细菌属于Planctomycetales,并且命名为Candidatus Brocasia anammoxidans。Candidatus B.anammoxidans生长速率慢,据报道,在pH值为8.0、40℃的条件下,其倍增期为11天,ANAMMOX细菌驯化时间及反应器启动时间长,平均为100天~150天。因此,ANAMMOX细菌生长缓慢、驯化时间长、处理效率低、反应器运行不稳定等缺点限制了厌氧氨氧化技术在废水脱氮处理中的应用。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的问题,提出一种厌氧氨氧化细菌驯化技术,以缩短厌氧氨氧化细菌驯化时间,通过提供ANAMMOX细菌生长最佳环境,使微生物快速繁殖、富集,在脱氮过程中发挥最大的活性,提高反应器处理效率及反应器运行稳定性。
本发明解决上述技术问题采用的技术方案为:
一种上流式厌氧污泥床—生物膜反应器快速培养厌氧氨氧化菌的方法,包括如下步骤和工艺条件:
(a)在UASB反应器内挂膜,保留所富集的微生物;选取垃圾填埋场处理渗滤液SBR工艺中的活性污泥为接种污泥,接种的污泥量为反应器有效容积的45~65%,在驯化厌氧氨氧化菌前通入氮气驱除反应器内的溶解氧;
(b)采用恒温循环水浴控制反应区温度保持在32±1℃;
(c)采用人工合成废水,废水组分包括NH4Cl、NaNO2、280~320mg/LMgSO4、28~32mg/L KH2PO4、13~140mg/L CaCl2、480~520mg/L NaHCO3以及每升废水中含0.8~1.2ml微量元素I和0.8~1.2ml微量元素II,废水中NH4 +-N和NO2 --N的质量比控制为1∶1.0~1∶1.6;微量元素I包含4800~5200mg/L FeSO4,微量元素II包含13~15mg/L H3BO4、420~450mg/LZnSO4·7H2O、220~250mg/L CoCl2·6H2O、950~1000mg/L MnCl2·4H2O、220~250mg/L CuSO4·5H2O和180~200mg/L NiCl2·6H2O,所有药品均为分析纯。
(d)通过添加NaHCO3调节进水的pH为7.4~7.8;驯化系统密闭,出水管及排气管均通过各自的水封装置。
所述接种污泥为红褐色,普通光学显微镜镜检显示污泥结构细碎,有钟虫、楯纤虫和轮虫,丝状菌少,MLSS为50~60g/L。
所述接种的污泥量为反应器有效容积的60~70%。
所述的恒温循环水浴控制反应区温度控制是将反应区设计为套筒式,通过套筒中的热水循环保持恒温,从反应器上部插入一根水银温度计达到反应区中部,实时观测反应区温度,及时根据天气状况调整恒温水浴的运行参数。
本发明接种污泥取自处理垃圾渗滤液的好氧SBR工艺,SBR工艺本身具有厌氧、缺氧、好氧和静置阶段的工艺运行特点,而且取污泥时SBR工艺的硝化效果好,因此污泥中存在多种微生物。厌氧氨氧化细菌驯化经历了两个阶段:污泥适应期(1~46天)、厌氧氨氧化活性表现及提高期(47~56天)。污泥适应期反应器系统内的污泥逐渐向缺氧、厌氧状态转变,不能适应厌氧及无机环境的微生物大量解体,成功筛选有用菌种;厌氧氨氧化活性表现及提高期反应器内部的反硝化作用开始减弱,具有厌氧氨氧化活性的细菌成为优势菌种,并迅速提高活性。成功驯化并富集厌氧氨氧化细菌,整个驯化过程仅用56天时间。厌氧氨氧化细菌驯化过程均在封闭装置内进行,始终保持反应器系统内部为严格厌氧状态,控制菌群内部温度为(32±1)℃,进水pH值保持在7.4~7.8之间,配水中各成分严格配比,为厌氧氨氧化细菌的筛选、富集、驯化及生长提供了最优环境。因此,在本驯化系统中,厌氧氨氧化细菌驯化时间比常规方法的100天~150天缩短了1/2以上,仅用了56天,并且反应器系统运行更稳定,氮素去除率更高,NH4 +-N、NO2 --N和TN的去除率分别达到99.3%、97.4%和89.6%。
本发明与现有厌氧氨氧化细菌驯化方法相比,有如下优点:
(1)接种污泥取自垃圾填埋场处理渗滤液SBR工艺中的活性污泥,含有大量微生物,污泥接种量较高,配水成分比例适当,添加微生物生长所需微量元素I、II,这大大缩短了厌氧氨氧化细菌驯化时间;
(2)反应器系统内部保持严格厌氧状态,控制菌群内部温度为(32±1)℃,进水pH值调节为7.4~7.8,配水中各成分严格配比,提高了氮素去除效率,反应器系统运行更稳定。
附图说明
图1a为本发明的驯化过程氨氮变化曲线图。
图1b为本发明的驯化过程亚硝氮变化曲线图。
图2为本发明上流式厌氧污泥床—生物膜反应器结构示意图。
具体实施方式
以下结合说明书附图来对本发明作进一步说明,但本发明所要求保护的范围并不局限于具体实施方式中所描述的范围。
如图2所示,本发明的上流式厌氧污泥床—生物膜反应器包括UASB反应器筒体1、进水隔膜泵2、配水桶3、循环水浴4、温度计5、排气口6、出水口7、取样口8、生物膜载体9和污泥区10。UASB反应器筒体1下端通过进水隔膜泵2与配水桶3连接;UASB反应器筒体1上不同高度处设置多个取样口8,UASB反应器筒体1上端设有出水口7,顶端设有排气口6,温度计5从顶端插入UASB反应器筒体1内,到达反应区中部,以便实时观测反应区温度,及时根据天气状况调整恒温水浴的运行参数,始终保持厌氧氨氧化菌最佳活性温度。UASB反应器筒体1套筒式。循环水浴4配置在UASB反应器筒体1外围。生物膜载体9固定在UASB反应器筒体1内,并均匀布置。污泥区10是污泥沉积于UASB反应器筒体1内形成,约占反应器有效容积的50-65%。
实施例1
(a)在UASB反应器内挂膜,生物膜能有效保留所富集的微生物,生物膜的培养有利于ANAMMOX菌积累。接种污泥取自某垃圾填埋场处理渗滤液SBR工艺中的活性污泥,此污泥为红褐色,普通光学显微镜镜检显示污泥结构细碎,有钟虫、楯纤虫和轮虫,丝状菌少,MLSS为55.63g/L,接种量为反应器有效容积的65%,SBR工艺本身具有的工艺运行特点,有厌氧、缺氧、好氧和静置阶段,而且取污泥时SBR工艺的硝化效果好,因此取自处理垃圾渗滤液的好氧SBR工艺的接种污泥中存在多种微生物,有利于加速厌氧氨氧化菌的富集。溶解氧对ANAMMOX细菌的具有抑制作用,在驯化厌氧氨氧化菌前必须通入氮气驱除反应器内的溶解氧,以保持反应器内厌氧状态。
(b)采用恒温循环水浴控制反应区温度保持在(32±1)℃,反应器反应区设计为套筒式。通过套筒中的热水循环保持恒温,从反应器上部插入一根水银温度计达到反应区中部,以便实时观测反应区温度,及时根据天气状况调整恒温水浴的运行参数;
(c)采用人工合成废水,废水组分包括NH4Cl、NaNO2、300mg/L MgSO4、30mg/L KH2PO4、135mg/L CaCl2、500mg/L NaHCO3以及每升废水中含1ml微量元素I和1ml微量元素II,配水中NH4 +-N和NO2 --N的质量比控制为1∶1.32;微量元素I包含5000mg/L FeSO4,微量元素II包含14mg/L H3BO4、430mg/L ZnSO4·7H2O、230mg/L CoCl2·6H2O、980mg/L MnCl2·4H2O、230mg/LCuSO4·5H2O和188mg/L NiCl2·6H2O,所有药品均为分析纯;NO2 --N与NH4 +-N以一定比例被同时转化是厌氧氨氧化的本质特征,进水中NO2 --N与NH4 +-N的比例σ与反应器效率之间的关系最为密切,对应于每一个TN负荷条件,均存在一个基质不受限制的区域[σ1,σ2],在此区间均出现一个TN去除率最大值,此时对应的进水基质比例σ=σTNmax,为反应器运行的最佳进水基质比例,配水中NH4 +-N和NO2 --N的质量比控制在进水基质比例,为1∶1.32。(d)pH值会影响细胞内的电解质平衡,直接影响微生物的活性甚至能否存活;另一方面,pH值还会影响溶液中基质或抑制物的浓度,而间接影响微生物活性,通过添加NaHCO3调节进水的pH为7.5,以保持厌氧氨氧化菌在最佳活性状态下驯化。如图1a和图1b所示,本发明的驯化过程中60天后,出水氨氮及亚硝氮含量比进水显著降低。
实施例2
(a)在UASB反应器内挂膜,生物膜能有效保留所富集的微生物,生物膜的培养有利于ANAMMOX菌积累。接种污泥取自某垃圾填埋场处理渗滤液SBR工艺中的活性污泥,此污泥为红褐色,普通光学显微镜镜检显示污泥结构细碎,有钟虫、楯纤虫和轮虫,丝状菌少,MLSS为50.23g/L,接种量为反应器有效容积的60%,SBR工艺本身具有的工艺运行特点,有厌氧、缺氧、好氧和静置阶段,而且取污泥时SBR工艺的硝化效果好,因此取自处理垃圾渗滤液的好氧SBR工艺的接种污泥中存在多种微生物,有利于加速厌氧氨氧化菌的富集。溶解氧对ANAMMOX细菌的具有抑制作用,在驯化厌氧氨氧化菌前必须通入氮气驱除反应器内的溶解氧,以保持反应器内厌氧状态。
(b)采用恒温循环水浴控制反应区温度保持在(32±1)℃,反应器反应区设计为套筒式。
(c)采用人工合成废水,废水组分包括NH4Cl、NaNO2、280mg/L MgSO4、32mg/L KM2PO4、130mg/L CaCl2、520mg/L NaHCO3以及每升废水中含0.8ml微量元素1.2ml微量元素II,配水中NH4 +-N和NO2 --N的质量比控制为1∶1;微量元素I包含4800mg/L FeSO4,微量元素II包含13mg/L H3BO4、420mg/LZnSO4·7H2O、250mg/L CoCl2·6H2O、950mg/L MnCl2·4H2O、250mg/LCuSO4·5H2O和198mg/L NiCl2·6H2O,所有药品均为分析纯;NO2 --N与NH4 +-N以一定比例被同时转化是厌氧氨氧化的本质特征,进水中NO2 --N与NH4 +-N的比例σ与反应器效率之间的关系最为密切,对应于每一个TN负荷条件,均存在一个基质不受限制的区域[σ1,σ2],在此区间均出现一个TN去除率最大值,此时对应的进水基质比例σ=σTNmax,为反应器运行的最佳进水基质比例,配水中NH4 +-N和NO2 --N的质量比严格控制在最佳进水基质比例,为1∶1.2。(d)pH值会影响细胞内的电解质平衡,直接影响微生物的活性甚至能否存活;另一方面,pH值还会影响溶液中基质或抑制物的浓度,而间接影响微生物活性,通过添加NaHCO3调节进水的pH为7.4,以保持厌氧氨氧化菌在最佳活性状态下驯化。
实施例3
(a)在UASB反应器内挂膜,生物膜能有效保留所富集的微生物,生物膜的培养有利于ANAMMOX菌积累。接种污泥取自某垃圾填埋场处理渗滤液SBR工艺中的活性污泥,此污泥为红褐色,普通光学显微镜镜检显示污泥结构细碎,有钟虫、楯纤虫和轮虫,丝状菌少,MLSS为59.67g/L,接种量为反应器有效容积的70%,SBR工艺本身具有的工艺运行特点,有厌氧、缺氧、好氧和静置阶段,而且取污泥时SBR工艺的硝化效果好,因此取自处理垃圾渗滤液的好氧SBR工艺的接种污泥中存在多种微生物,有利于加速厌氧氨氧化菌的富集。溶解氧对ANAMMOX细菌的具有抑制作用,在驯化厌氧氨氧化菌前必须通入氮气驱除反应器内的溶解氧,以保持反应器内厌氧状态。
(b)采用恒温循环水浴控制反应区温度保持在(32±1)℃,反应器反应区设计为套筒式。
(c)采用人工合成废水,废水组分包括NH4Cl、NaNO2、320mg/L MgSO4、28mg/L KH2PO4、140mg/L CaCl2、480mg/L NaHCO3以及每升废水中含1.2ml微量元素0.8ml微量元素II,配水中NH4 +-N和NO2 --N的质量比控制为1∶1.6;微量元素I包含5200mg/L FeSO4,微量元素II包含15mg/L H3BO4、450mg/L ZnSO4·7H2O、220mg/L CoCl2·6H2O、1000mg/L MnCl2·4H2O、220mg/LCuSO4·5H2O和180mg/L NiCl2·6H2O,所有药品均为分析纯;。NO2 --N与NH4 +-N以一定比例被同时转化是厌氧氨氧化的本质特征,进水中NO2 --N与NH4 +-N的比例σ与反应器效率之间的关系最为密切,对应于每一个TN负荷条件,均存在一个基质不受限制的区域[σ1,σ2],在此区间均出现一个TN去除率最大值,此时对应的进水基质比例σ=σTNmax,为反应器运行的最佳进水基质比例,配水中NH4 +-N和NO2 --N的质量比严格控制在最佳进水基质比例,为1∶1.5。(d)pH值会影响细胞内的电解质平衡,直接影响微生物的活性甚至能否存活;另一方面,pH值还会影响溶液中基质或抑制物的浓度,而间接影响微生物活性,通过添加NaHCO3调节进水的pH为7.8,以保持厌氧氨氧化菌在最佳活性状态下驯化。

Claims (4)

1.一种上流式厌氧污泥床-生物膜反应器快速培养厌氧氨氧化菌的方法,其特征在于包括如下步骤和工艺条件:
(a)在UASB反应器内挂膜,保留所富集的微生物;选取垃圾填埋场处理渗滤液SBR工艺中的活性污泥为接种污泥,接种的污泥量为反应器有效容积的45~65%,在驯化厌氧氨氧化菌前通入氮气驱除反应器内的溶解氧;
(b)采用恒温循环水浴控制反应区温度保持在32±1℃;
(c)采用人工合成废水,废水组分包括NH4Cl、NaNO2、280~320mg/LMgSO4、28~32mg/L KH2PO4、13~140mg/L CaCl2、480~520mg/L NaHCO3以及每升废水中含0.8~1.2ml微量元素I和0.8~1.2ml微量元素II,废水中NH4 +-N和NO2 --N的质量比控制为1∶1.0~1∶1.6;微量元素I包含4800~5200mg/L FeSO4,微量元素II包含13~15mg/L H3BO4、420~450mg/LZnSO4·7H2O、220~250mg/L CoCl2·6H2O、950~1000mg/L MnCl2·4H2O、220~250mg/L CuSO4·5H2O和180~200mg/L NiCl2·6H2O,所有药品均为分析纯;
(d)通过添加NaHCO3调节进水的pH为7.4~7.8;驯化系统密闭,出水管及排气管均通过各自的水封装置。
2.根据权利要求1所述的上流式厌氧污泥床-生物膜反应器快速培养厌氧氨氧化菌的方法,其特征在于:所述接种污泥为红褐色,普通光学显微镜镜检显示污泥结构细碎,有钟虫、楯纤虫和轮虫,丝状菌少,MLSS为50~60g/L。
3.根据权利要求1或者2所述的上流式厌氧污泥床-生物膜反应器快速培养厌氧氨氧化菌的方法,其特征在于接种的污泥量为反应器有效容积的60~65%。
4.根据权利1所述的上流式厌氧污泥床-生物膜反应器快速培养厌氧氨氧化菌的方法,其特征在于所述的恒温循环水浴控制反应区温度控制是将反应区设计为套筒式,通过套筒中的热水循环保持恒温,从反应器上部插入一根水银温度计达到反应区中部,实时观测反应区温度,及时根据天气状况调整恒温水浴的运行参数。
CN2007100327174A 2007-12-19 2007-12-19 上流式厌氧污泥床反应器快速培养厌氧氨氧化菌的方法 Expired - Fee Related CN101205526B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007100327174A CN101205526B (zh) 2007-12-19 2007-12-19 上流式厌氧污泥床反应器快速培养厌氧氨氧化菌的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007100327174A CN101205526B (zh) 2007-12-19 2007-12-19 上流式厌氧污泥床反应器快速培养厌氧氨氧化菌的方法

Publications (2)

Publication Number Publication Date
CN101205526A CN101205526A (zh) 2008-06-25
CN101205526B true CN101205526B (zh) 2011-09-07

Family

ID=39566010

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100327174A Expired - Fee Related CN101205526B (zh) 2007-12-19 2007-12-19 上流式厌氧污泥床反应器快速培养厌氧氨氧化菌的方法

Country Status (1)

Country Link
CN (1) CN101205526B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101948168B (zh) * 2010-09-29 2012-02-22 济南大学 一种分步进水运行模式培养好氧颗粒污泥的方法
CN102336505B (zh) * 2011-07-18 2013-05-08 杭州师范大学 一种厌氧氨氧化颗粒污泥的保存方法
CN102952764B (zh) * 2011-08-31 2014-11-05 中国石油化工股份有限公司 一种耐盐厌氧氨氧化菌群的培养方法
CN102432097B (zh) * 2011-10-31 2013-11-20 北京桑德环境工程有限公司 一种上流式填料床反应器快速启动厌氧氨氧化的方法
CN102976483B (zh) * 2012-10-30 2013-11-06 北京工业大学 一种uasb用于快速启动厌氧氨氧化颗粒污泥的方法
CN104710018B (zh) * 2015-02-26 2018-03-16 中国环境科学研究院 一种厌氧氨氧化细菌多相混培物的淹没式喷射回流快速扩增培养装置与方法
CN105152327B (zh) * 2015-09-30 2017-11-24 杭州师范大学 具有羟基磷灰石内核的厌氧氨氧化颗粒污泥的培养方法
CN106517539B (zh) * 2016-11-28 2019-06-14 北京工业大学 定向快速筛选富集广谱性氨氧化细菌的方法
CN107988132A (zh) * 2017-12-27 2018-05-04 齐鲁工业大学 一种耐硫酸盐型厌氧氨氧化菌的驯化方法
CN108103000B (zh) * 2017-12-27 2021-07-13 齐鲁工业大学 一种提高厌氧氨氧化菌的生长促进剂及其制备方法
TR201818516A2 (tr) 2018-12-04 2020-06-22 Tuerkiye Bilimsel Ve Teknolojik Arastirma Kurumu Tuebitak Anaerobi̇k amonyum oksi̇dasyonu bakteri̇si̇ni̇n otomati̇k kontrollü kesi̇kli̇ reaktörde zengi̇nleşti̇ri̇lmesi̇ i̇çi̇n bi̇r yöntem
CN111286467A (zh) * 2018-12-07 2020-06-16 姚仁达 一种基于反应速率调节流加速率的厌氧氨氧化菌富集方法
CN109678244B (zh) * 2019-01-14 2021-10-01 北京工业大学 一种低接种量下富集培养厌氧氨氧化菌的装置和方法
CN109748388A (zh) * 2019-03-11 2019-05-14 福建省环境科学研究院(福建省排污权储备和管理技术中心) 一种附着增殖型惰性生物载体培养厌氧氨氧化颗粒污泥的方法
CN110117558B (zh) * 2019-04-15 2020-10-30 杭州师范大学 一种培养同步脱氮除硫混合菌群的方法
CN111333181B (zh) * 2020-03-23 2022-04-01 西安建筑科技大学 一种处理低浓度含氮废水的快滤式厌氧氨氧化反应方法
CN111925913A (zh) * 2020-08-28 2020-11-13 桂林理工大学 一种培养厌氧氨氧化菌的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101007679A (zh) * 2007-01-19 2007-08-01 华南理工大学 Uasb-生物膜厌氧氨氧化方法及其设备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101007679A (zh) * 2007-01-19 2007-08-01 华南理工大学 Uasb-生物膜厌氧氨氧化方法及其设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
钟红春等.两种UASB-厌氧氨氧化反应器启动和运行特征对比.化工学报58 11.2007,58(11),第2798-2804页.
钟红春等.两种UASB-厌氧氨氧化反应器启动和运行特征对比.化工学报58 11.2007,58(11),第2798-2804页. *
钟红春等.垃圾渗滤液配水对UASB-ANAMMOX反应器进行二次启动的研究.环境科学28 11.2007,28(11),2473-2477.
钟红春等.垃圾渗滤液配水对UASB-ANAMMOX反应器进行二次启动的研究.环境科学28 11.2007,28(11),2473-2477. *

Also Published As

Publication number Publication date
CN101205526A (zh) 2008-06-25

Similar Documents

Publication Publication Date Title
CN101205526B (zh) 上流式厌氧污泥床反应器快速培养厌氧氨氧化菌的方法
Yu et al. Enhanced nitrogen removal of low C/N wastewater in constructed wetlands with co-immobilizing solid carbon source and denitrifying bacteria
Wang et al. Start-up and operational performance of Anammox process in an anaerobic baffled biofilm reactor (ABBR) at a moderate temperature
US5853589A (en) Advanced biological phosphorus removal using a series of sequencing batch reactors
CN101560486B (zh) 用于生物脱氮的木糖氧化无色杆菌菌株及其应用
CN112142199B (zh) 一种提高一体式部分反硝化-厌氧氨氧化耦合脱氮性能的装置及方法
CN103121754B (zh) 一种脱氮除磷工艺
CN107487840B (zh) 一种处理水中硝态氮的生物滤料
CN108191049A (zh) 培养好氧颗粒污泥的方法及培养其的装置
CN113307379B (zh) 一种以潮间带沉积物为接种体系的高盐废水纯膜mbbr启动方法
CN113060830B (zh) 一种利用电气石为晶核加速好氧污泥颗粒化的方法
CN101265458A (zh) 强成膜菌的制成和强化污水脱氮的方法
Xiao et al. Removal of ammonium-N from ammonium-rich sewage using an immobilized Bacillus subtilis AYC bioreactor system
CN110282749A (zh) 一种快速培养自养脱氮硫杆菌污泥的模拟废水及方法
CN105016468A (zh) AOB-AnAOB颗粒污泥及其制备方法和利用其自养脱氮处理废水的方法
CN110451643B (zh) 一种提高多级a/o处理低温市政污水效果的方法
CN110699285A (zh) 一种巴利阿里假单胞菌及其在处理垃圾渗滤液膜浓缩液中的应用
CN110054284A (zh) 城市污水处理的半亚硝化工艺启动与控制方法
CN111892161B (zh) 一种利用无机复合粉末载体快速启动厌氧氨氧化的方法
Mojiri et al. A review on anaerobic digestion, bio-reactor and nitrogen removal from wastewater and landfill leachate by bio-reactor
CN111675320B (zh) 一种在低温下运行Anammox工艺的方法
CN105174655A (zh) 一种低碳氮比城市污水的处理方法
CN107253761A (zh) 一种基于灭活污泥的厌氧氨氧化快速强化启动方法
CN102465106B (zh) 一种短程反硝化脱氮菌株及其应用
CN102642933A (zh) 厌氧微生物在降解含酚废水中的应用及利用其降解含酚废水的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110907

Termination date: 20131219