CN101203617B - 用于单个微生物的快速检测和鉴定而无需初步培养的装置 - Google Patents

用于单个微生物的快速检测和鉴定而无需初步培养的装置 Download PDF

Info

Publication number
CN101203617B
CN101203617B CN2006800221629A CN200680022162A CN101203617B CN 101203617 B CN101203617 B CN 101203617B CN 2006800221629 A CN2006800221629 A CN 2006800221629A CN 200680022162 A CN200680022162 A CN 200680022162A CN 101203617 B CN101203617 B CN 101203617B
Authority
CN
China
Prior art keywords
mikrobe
microchannel
biomolecules
virus
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800221629A
Other languages
English (en)
Other versions
CN101203617A (zh
Inventor
S·加津科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NanoLogix Inc
Original Assignee
NanoLogix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NanoLogix Inc filed Critical NanoLogix Inc
Publication of CN101203617A publication Critical patent/CN101203617A/zh
Application granted granted Critical
Publication of CN101203617B publication Critical patent/CN101203617B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor

Abstract

本发明描述了由微通道板、过滤器和在方法进行期间被纯琼脂块取代的用于过滤器的多孔支持物、和支持结构元件组成的装置。该装置希望用于微生物的快速检测和/或鉴定。通过在长的(直径/长度=1/10-1/100)、圆柱状、平行的、两侧开口并且一侧附着至过滤器的微通道中过滤来捕获微生物。微通道板安装有多个微通道(各通道可能的直径=1-30μm,长度100-1000μm,和每平方厘米上微通道的数目为100,000-1,000,000个)。将具有在过滤器的表面上被捕获的细胞的微通道板附着至人造底物的琼脂块,从而使人造底物的分子充满所有微通道。捕获的细胞从人造底物中产生着色的分子或荧光分子。这些分子被收集在微通道的非常小的体积内。微通道的极其小的体积(毫升的1/25百万分之一)使其可在极短的时间(数分钟)内收集可检测浓度的着色或荧光物质。通过酶-人造底物方法甚至可检测来自过滤样本中的一个细胞和/或通过酶免疫测定法进行鉴定。

Description

用于单个微生物的快速检测和鉴定而无需初步培养的装置
发明背景
1.发明领域
本发明涉及微生物的检测和鉴定,更具体说,本发明涉及微生物的检测和鉴定而无需初步培养。
2.相关领域的描述
现代微生物诊断学和分析用于存在于不同样本中的微生物的检测、计数和鉴定。在医学诊断学和兽医学领域内,这些生物是人或动物血液、内脏器官、皮肤、组织、呼吸器官等中的致病性微生物或危险微生物。在工业微生物学领域,微生物通常污染技术方法、材料、设备和成品。在环境分析中,通常存在水、室内和室外空气以及各种表面的微生物污染。在流行病学和生物防御中-来自人体或环境的传染性致病微生物。
微生物学分析的时间、质量和灵敏度因两个原因是至关重要的。首先,成千上万的国内微生物实验室每年花费数十亿美元用于工业中的产品和流程质量控制以及污染和腐败的预防。这些实验室也花费钱以提供用于人、动物、植物、食品、个人护理用品、土壤和环境的诊断检测。快速、可靠、流水线诊断检测长期可节约公司数百万美元。第二,既使在象美国一样高度发达的国家中数千人也由于长时间的诊断造成的医疗延迟而死亡。通过减少进行这些微生物诊断检测所花费的时间将导致分析可靠性和灵敏度的增加。最终,这可在世界范围内挽救数千人的生命。
可将用于微生物的检测、计数和鉴定的现代方法分成两大部分:1)需要初步培养(富集)以产生可检测量的细胞的方法和装置;2)因为其能够分析少至单个细胞从而不需要初步培养的方法。
第一组包括在固体或液体常规或选择营养培养基中的培养。其也包括几种免疫学方法。实例是乳汁和红细胞凝集、磁颗粒上的抗体、酶联免疫测定法如ELISA和Western印迹法、和“dipstick”法。第一组也包括脂肪酸的层析法、红外拉曼和FTIR光谱学、质谱法和ATP-、生物-和化学发光法。这些方法需要数百至数百万纯细胞来进行某些微生物的检测,从而需要长时间(许多小时或天)的初步培养。
第二组方法和装置不需要初步培养,因为它们能够检测和/或鉴定甚至单个细胞。这些方法和装置由成组的核酸方法如PCR和其不同的修饰、外荧光(Epi-fluorescent)法(荧光底物法(fluorogenicsubstrate method)、免疫荧光法)和成组的流式细胞计量术组成。
除了其他缺点外,无需初步培养的细胞检测和/或鉴定方法通常需要非常昂贵和复杂的设备以及高水平专业工作。例如,用于PCR的装置包括昂贵的热循环仪和复杂的荧光计。PCR也只用于鉴定目的。使用PCR进行最初污染的计数是不可靠的。PCR对于可污染检测本身的生物是非常敏感的。
外荧光通常只需要荧光显微镜来检测用荧光染料或荧光抗体(Ab+荧光染料)标记的单个细胞。然而,存在的荧光物质的量受到细胞体积或细胞表面的限制。小体积的目标(单个微生物)使单个细胞的检测非常困难,特别是大量背景荧光通常存在于大部分样本中。对于外荧光方法,流出细胞的物质或单个细胞的酶免疫测定是不可能的,因为这些指示剂物质立即分散在周围空间而不是集中在小体积内,如由本发明提及的小体积内。
流式细胞计量术(Flow Cytometry)基于非常复杂的光电子学系统。流式细胞仪由复杂的聚光装置、电子组件、复杂的水动力系统和高速计算机组成。不同类型的流式细胞仪的价格在$50,000至$140,000的范围内。流式细胞仪可在一个单个细胞流过各自具有10微米直径的通道过程中对其进行分析。通道的尺寸是如此狭窄以至于其需要17个小时才能使100ml液体通过,即使流速为每秒20米。因此,流式细胞仪目前用于血液学,因为血液细胞的量大(5-6百万个/ml)和或多或少稳定的浓度。同样,流式细胞仪在细胞学中作为细胞混合物的分选器是非常有效的。流式细胞计量术在微生物学中的使用不容易。在微生物学中通常不使用这些仪器,因为微生物可与其他颗粒产生群集体并且可与天然颗粒或死细胞混杂在一起。如果样本中细胞的浓度非常低,分析的时间急剧增加。因此,对于流式细胞计量术的微生物学应用,需要初始浓聚或甚至富集。微生物在尺寸和形状上的变化也比血细胞丰富得多,因此,经常发生错误。
已知,并且目前已用于实践中,将样本分成小体积有助于更快地检测细胞浓度。该效应基于在小体积中达到可检测的浓度比在大体积中快。美国专利5,716,798描述了用于在多个离散的区上分开的容器中快速检测微生物的方法,可通过在一些区中进行初步培养后达到可检测的细胞浓度就微生物的存在与否分别监测所述各区。该方法与其他方法相比节省大约10%至40%的时间。美国专利5,770,440基于相同的效应。本发明与这些专利不同在于单个细胞的分析。不需要费时的初步培养或营养培养基。
美国专利4,959,301基于将具有活力的生物实体的样本分成微滴,然后通过培养或通过微滴内的单个实体的生物化学反应来检测实体。该方法在一些变体中在少于30分钟内可显示单个细胞。然而,其在技术学上很复杂的。产生具有不同体积的微滴并且要求对计算结果进行统计分析。该方法只可在实验室中由高度专业的工作人员使用复杂的和昂贵的设备进行再现。
提及的装置与已知方法相比具有显著的有利方面:
能够通过着色的或荧光酶或酶免疫测定检测和/或鉴定少至一个在微通道中被捕获的单个细胞(一个微通道中的一个细胞对应于每ml25,000,000个细胞的浓度)。因此,不需要初始培养,且可在数分钟内达到可检测的浓度。
装置和分析的价格比流式细胞计量术或PCR低10倍(对于该诊断装置,只需要常规荧光或光学显微镜)。同样,需要的试剂的量显著低于使用常规96孔板需要的量。作为结果,分析是简单的并且成本低廉。
所述装置简单易用并且包括只用少量操作就可进行常规过滤。甚至非专业人员也可容易地采用该装置和方法,这对于广泛使用是非常重要的。
用提及的装置可进行许多不同的方法:通过荧光或显色底物检测活细胞、通过特定的酶和用于其的人造底物进行的区分、通过单个细胞的酶免疫测定进行的鉴定、不同液体或气体样本的分析。
这些有利方面提供了使用该装置和其形式用于医学诊断、工业、环境科学和生物防御中的优良机会。
发明概述
本发明建立了由微通道板、支持结构元件、过滤器和过滤器支持物(其在方法进行中被纯琼脂块或营养培养基块取代)组成的装置。所述装置希望通过在微通道的非常小的体积中提供生物化学酶学或酶免疫测定反应来进行微生物的快速检测和/或鉴定。甚至可在数分钟至数十分钟的时间内检测或/和鉴定在微通道中被捕获的单个的细胞。
通过在长形(直径/长度=1/10-1/100)、圆柱状、平行的微通道中的过滤材料,例如在本实施方案中为过滤器的表面过滤来捕获微生物,所述微通道两侧开口并且一侧附着至过滤材料。微通道板上安装了多个微通道(各通道可能的直径=1-30μm,长度100-1000μm,和1平方厘米上的微通道数目=100,000-1,000,000个)。在完成过滤后,松开装置,然后移出过滤器支持物并用纯琼脂块替代。预先用生物化学指示剂(酶的人造底物-生色的或发荧光的,取决于方法)试剂填充纯琼脂糖块(琼脂)。人造底物和溶剂的分子充满所有微通道和活细胞的天然酶或通过抗原-抗体反应附着至细胞表面的酶(用于单个细胞的酶免疫测定),这开始了无色人造底物分子至着色的或荧光分子的转化。这些分子聚集在包含细胞的微通道的非常小的体积中。微通道的极其小的体积(毫升的1/25百万分之一)允许其在非常短的时间内聚集具有可检测浓度的着色的物质或荧光物质。一个微通道的体积是如此小(在微通道的尺寸:直径10微米和长度500微米的情况下,只有40,000立方微米),以至于在微通道中捕获的一个单个的细胞对应于每毫升样本25,000,000个细胞的浓度)。包含细胞和浓缩的着色的(紫色、蓝色、深蓝色、黑色或其他颜色-取决于所用的生色底物)分子的微通道在常规光学显微镜下在明背景上看起来象着色的圆斑。包含细胞和浓缩的荧光分子的微通道在荧光显微镜下在暗背景上看起来象明亮(蓝色、绿色、红色-取决于使用的发荧光的物质)的圆斑。着色的斑或荧光斑(点)的数目对应于初步过滤的样本中的活细胞的数目或通过酶免疫测定鉴定的特别危险的或致病性细胞的数目。微通道板的表面上的着色点或荧光点的简单观察和计数允许进行低至每样本一个单个细胞的浓度的细胞的快速检测和/或鉴定。
附图概述
加入并形成本说明一部分的伴随的附图说明本发明的实施方案,并与公开的描述内容一起用于解释本发明的原理。
图1.显示根据本发明一个方面的微通道玻璃板的一般结构和形状。
图2.解释根据本发明一个方面的用于微生物的取样、检测和/或鉴定的装置的主要部分和一般结构。
图3.显示根据本发明一个方面的用着色的分子(左)和荧光分子(右)填充的微通道间的差异。
图4.该图显示根据本发明一个方面的已装配的装置的内部结构,所述装置用于通过过滤取样和将存在于样本中的细胞置于过滤材料表面上的微通道中。
图5.显示根据本发明一个方面的与图4中相同的装置的未装配的组件。
图6.显示根据本发明一个方面的图4和图5中显示的装置的真实工作模型。
图7.显示根据本发明一个方面的在进行过滤后,将装置的上部从下部的过滤漏斗移开。移开过滤器支持物,然后用纯琼脂块(5)取代。
图8.该图显示根据本发明一个方面的图7中显示的装置的未装配的组件。
图9.显示根据本发明一个方面的在过滤过程中装置的位置:具有用于液体样本的漏斗的装置(左)、具有用于加入抗体-酶缀合物的注射器的装置(中间)、在空气(生物气溶胶)过滤期间的装置(右)。
图10.显示根据本发明一个方面的经转换用于在微通道中沉积具有生物颗粒(细胞、病毒、生物分子)的磁性颗粒的装置的一般结构,所述生物颗料通过Ab-Ag相互作用调节至磁性颗粒的表面。
发明详述
本发明建立了用于细胞(所述细胞以达到单个细胞的浓度存在于被检查的样本中)的快速检测和/或鉴定而无需初步培养的装置。通过将被检查的样本通过装置进行过滤来达到该目的,所述装置由微通道板、过滤器和用于过滤器的支持物(在操作步骤中其被用试剂填充的琼脂糖块取代)组成。装置被支架围绕。在过滤过程中,微生物通过微通道,然后被捕获在过滤器表面。在完成过滤后,微通道被来自琼脂糖块的试剂充满,然后细胞酶和人造底物之间的反应开始。因为微通道的极其小的内部体积的缘故,这些反应的产物(着色的分子或荧光分子)快速充满微通道的体积。所述产物快速达到在光学或荧光显微镜下可检测的浓度。包含细胞的微通道看起来象着色的点或荧光点,很容易与空的微通道区分开。
所述装置的关键部位是微通道板(图1)。微通道板由玻璃板制造,该玻璃板可包含数千或数百万个微小的、精确制造的通道(孔)。微通道尺寸和体积的偏差通常不超过1%。通道通常具有1-20微米的直径和具有比其直径长10-100倍的长度。一个通道的体积可从1000至300,000μm3。微通道板可包含每cm2100,000-1,000,000个通道。通道之间的距离大约为1-2μm。板的直径可改变。通常其为25-47mm。板的厚度在0.2至5mm的范围内(通常为0.5mm)。
捕获在通道(长度-500μm、通道直径-10μm、体积-40,000μm3)中的一个单个的细胞对应于每ml 25,000,000个细胞的浓度。因此,来自一个细胞的分析的(着色的或荧光)物质的可检测浓度可在与25,000,000个类似的细胞能够产生的物质的时间相同的时间内达到。该时间是数分钟或数十分钟,取决于存在的细胞和使用的方法。微体积的效应的另一个实例:可通过肉眼看到的荧光物质(来自4-甲基伞形基(Methylumbelliferyl)乙酸酯的4-甲基伞形酮)的浓度由微通道(体积=40,000μm3)中的一个细胞(巨大芽胞杆菌(Bacillusmegatherium))在2分钟内达到。1毫升(体积=1012μm3)中的相同细胞将在95年后产生相同的浓度。
微通道板由特殊玻璃制造。其对不同的溶剂或玻璃清洁液具有抗性。微通道板在物理上也是耐用的。微通道可用黑色无荧光玻璃或无着色玻璃制造。
微通道因为通道(毛细管)的非常小的直径而展示极强的毛细管作用。事实上,其毛细管作用强到足以将水柱提升至百米的高度。甚至高度粘稠的液体如甘油也可容易地充满通道。因此,微通道将数秒左右充满来自附着至板下面的琼脂糖块的液体。
一些微通道板不是很适合发明的装置的微生物学目的,因为它们的通道是在与板的表面成特定角度下生产的。这不能给板读出器提供在显微镜下观察微通道的整个内部体积的机会。用于观察通道的最佳角度正好是90°。同样,为了产生用于颜色反应的无色板,板的生产方法需要改变。图3显示有着色的分子填充的(左侧)和荧光分子填充的(右侧)微通道之间的差异。该图显示了两种形式在光镜或荧光显微镜下的表现。
图1中显示的微通道板具有只用于说明目的的相对大和短(小比率的长度/宽度)的通道。用于本发明装置的微通道板的真实尺寸为:通道直径=10μm,通道长度=500μm,一个平方厘米上的微通道数目大约为700,000个,板直径为25mm。也可以产生具有其他参数的微通道板。一个微通道板的目前价格在$50-$300的范围内。对于本发明装置的分析目的,各微通道板可使用至少100次。
准备用于过滤的装置的主要部分显示于图2。装置由微通道板、过滤器和用于过滤器的支持物或用人工底物充填的琼脂块组成。该结构由图4(装配的)和图5(分开的)中显示的支架围绕:1-用塑料制作的用于板、过滤器和过滤器支持物的支架;2-防止微通道板突然破坏和支架与板之间的不希望出现的缝隙的橡皮环;3-微通道板;4-用于捕获细胞的过滤器;5-用于能够通过液体(液体样本)或空气(生物气溶胶)的过滤器的用塑料或玻璃颗粒制作的支持物;6-用于在过滤期间轻压用于过滤器的支持物的橡皮环;7-用于装置至滤液歧管的调节的塑料漏斗(也参见图7)。上部分(1-5)通过螺钉(支架(1)至漏斗(7))或通过摩擦与塑料漏斗(7)贴靠在一起。图2的左侧显示主要组成部分的位置:微通道板、过滤器、过滤器支持物和琼脂块。图2的右侧显示放大的结构的部分。来自一个在微通道中被捕获的细胞的荧光分子或着色分子的产物显示于通道中。
过滤的方法显示于图9中。将装配的装置附着至用于过滤的歧管。来自泵的负压使液体或空气样本通过微通道板。存在于样本中的细胞被捕获在过滤器表面上的一些微通道中。
当过滤步骤完成和不再有液体存在于微通道内部时,将装置从歧管取出,然后松解。移走用于过滤器的塑料支持物,将具有人造底物的块安装在其位置(图7和8)。所有微通道立即充满人造底物溶液,然后活细胞的酶或通过抗体附着至细胞表面的酶(酶免疫测定)之间发生反应。该过程发生在图7-8中显示的明显不同(经修饰的)的装置中。图7和8示出了装配的装置,其包括:1-用于板、过滤器和过滤器支持物的用塑料制作的支架;2-防止微通道板的突然破坏和支架与板之间的不希望出现的缝隙的橡皮环;3-微通道板,4-用于捕获细胞的过滤器,9-用人造底物充填的琼脂糖块,其中的底物在充满微通道的溶液中;10-用于琼脂块并附着支架1的板。板10可向上拧紧在支架1上或通过摩擦力保持就位。在进行需要的改变后,为了在包含被靶定微生物的微通道中产生可检测量的着色的分子或荧光分子,将该经改造的装置置于保温箱中。
琼脂块和人造底物
用于不同酶或酶组以产生可检测的吸收剂或荧光分子的浓度的人造底物是熟知的。人造底物用于酶活性的检测、活细胞检测和酶免疫测定和ELISA中的鉴定。人造底物的主要特征是其在通过酶转变后产生着色的分子或荧光分子的能力。许多不同的人造底物基于生色分子例如2-硝基酚、4-硝基酚、5-溴-4-氯-3-双甲氧苯吲哚(indoxol)、3-双甲氧苯吲哚、5-溴-氯3-双甲氧苯吲哚、6-氯-3-双甲氧苯吲哚、5-碘-3-双甲氧苯吲哚、N-甲基双甲氧苯吲哚、3,3′5,5′-四甲基联苯胺盐酸盐、四唑盐和其他分子。其他人造底物基于荧光分子例如4-甲基伞形酮、7-氨基-4-甲基香豆素、荧光素、曙红和其他分子。它们覆盖了不同酶(例如糖苷酶、酯酶、磷酸酶、肽酶、硫酸酯酶、脱氢酶和特殊的酶如辣根过氧化物酶、P-D-半乳糖苷酶或特定的氨基肽酶)的大部分光谱。从人造底物产生的一些着色的或荧光分子聚集在细胞内,而它们中的一些流到外面并收集在细胞外环境中。收集在细胞内部的分子(四唑盐、5-碘-3-双甲氧苯吲哚、荧光素和其他分子)对于流式细胞计量术和外荧光法是非常重要的,因为它们使细胞体着色并使其更加明显和/或可检测。这是非常少量的分子,因为其受到细胞体积的限制。这些分子在细胞内的聚集可使细胞死亡。分子/物质的其他组具有在酶-底物反应期间流出细胞的能力(4-甲基伞形酮、7-氨基-4-甲基香豆素、4-硝基酚和其他分子)。它们不导致细胞死亡,从而可进行长时间收集并达到很高的浓度。该组人造底物用于产生使用发明的装置进行检测和鉴定的方法,因为如图3中所示,在微通道中收集的分子使细胞着色或使它们发荧光。图3的左侧显示被作为显色反应的结果的着色分子填充的微通道与无细胞的微通道之间的差异。下面的圆圈显示在显微镜下的着色的微通道。图3的右侧显示荧光分子填充的微通道和无细胞的微通道之间的差异。下面的圆圈显示在显微镜下荧光分子填充的微通道。
可在用需要的人造底物填充的琼脂糖圆柱块帮助下进行微通道内的人造底物的递送(图2、图7和图8)。
充满琼脂糖凝胶(琼脂)的块的有利方面是溶解的物质(底物)对琼脂的分子-聚合物不具有拮抗性,从而可容易地流出并充满所有微通道(因为其强大的毛细管作用的缘故);可在各方向上挤压琼脂块,从而使其很容易地适合过滤器的表面而不产生洞或狭缝。没有人知道人造底物不与琼脂糖分子反应。可从琼脂层切出琼脂块或通过以特殊形式固化来制备。琼脂对光是透明的,从而可在光学显微镜下使用而不用移开。
在一些情况下也可使用其他凝胶如明胶、硅胶或聚丙烯酰胺凝胶或甚至可溶性底物的其他载体如滤纸。
用于颜色(光吸收剂)反应的装置的形式
用于显色(光吸收剂)反应和分子的装置必须具有无色微通道板和无色或白色过滤器。无色微通道板和过滤器对于光是透明的,从而在光模式中更好地用光学显微镜观察着色的微通道。
用于荧光反应的形式
为了消除可能的背景荧光,在该形式中必须使用黑色微通道板和黑色过滤器。
用于颗粒(用抗体非磁性、磁性和顺磁性微颗粒包被的)的形式
发明的装置不仅可用于在微通道中沉积细胞而且还可沉积用抗体包被的颗粒。这些颗粒必需显著小于微通道的直径。可在诊断剂市场上广泛地获得用特定单克隆抗体(聚丙烯、聚碳酸酯、磁性和其他颗粒)包被的颗粒。包被的颗粒用于通过Ab-Ag相互作用在其表面上浓缩抗原(细菌、病毒、蛋白等)。因此,用被研究的病毒的抗体包被的颗粒将在其表面吸收病毒,在通过装置过滤后,其将沉积在微通道中。包被的颗粒为在微通道中沉积不能通过常规过滤捕获(因为小尺寸)的小物体如病毒、蛋白和其他生物分子提供了可能性。在具有分别附着的病毒或生物分子的、被包被的颗粒在微通道中被捕获后,可通过上述的酶免疫测定法鉴定它们。
可通过磁场将磁性颗粒捕获在微通道中。在该情况下,显示于图7中的琼脂块必须被磁铁取代。如图10中显示,磁铁必须强到足以将磁性颗粒从液体拉向微通道的底部。将过滤材料表面上的具有抗原的磁性颗粒从液流中拉出的能力取决于磁场的能量、铁、钴和稀土元素原子的含量和/或颗粒的尺寸以及液流速度。为了将所有磁性颗粒从液流中拉出和让非磁性颗粒(有机和无机物颗粒、无需要的抗原决定子的活的和死的细胞以及溶剂分子)流出装置的流动室,可就样本的特定需要容易地调整所有这些参数。
装置的该形式具有额外的元件:具有用于输入和输出载有磁性颗粒(具有吸引至其表面的细胞、病毒或分子)的液体的通道的盖子。图10显示该改造的装置的结构:1-用于板的支架;2-防止微通道板的突然破坏和支架与板过滤器之间的不希望的缝隙的橡皮圈,和塑料制成的过滤器支持物;3-微通道板;4-用于捕获细胞的过滤器;11-具有与琼脂块相同尺寸的铁或稀土元素(钕和钐钴、钕铁硼合金),磁铁盘;10-用于磁铁或琼脂块的板;12-覆盖支架1的上部和形成流动室的盖子;8-用于输入和输出含有具有抗原的磁性颗粒的液体的通道。图10显示将磁性颗粒沉积在微通道的底部和将其与非磁性颗料分开的方法。
在图10的下部显示了磁铁工作的原理设计方案:在磁场中很容易分离磁性和非磁性颗粒。非磁性颗粒流出小室,而具有抗原的磁性颗粒被收集在微通道中。抗原检测和/或鉴定的方法与用于通过上述过滤捕获细胞的方法相同。
实施例1
液体样本中微生物污染的检测
必须就细菌或真菌的存在检测食品或药物工业中的许多不同液体样本。将大约100ml的液体样本(假定包含微生物)通过图4、5和6中显示的装置过滤。液体容易地通过黑色过滤器(孔径为0.2微米,纤维素质或硝酸纤维素质的),但细胞在过滤器表面上的通道的底部被捕获。在松开该装置后,移走多孔盘并用预先充填有4-甲基磷酸伞形酯和4-甲基醋酸伞形酯(各自0.1ml,浓度0.5mg/ml)的琼脂盘替代。这些发荧光底物的混合物保证所有活细胞将被发现,因为两种底物对应于存在于所有活细胞中的大组酶-酯酶和磷酸酶。来自包含称为发荧光底物的分子的琼脂块的液体在数秒钟内充满所有微通道。将装置(在一些通道中具有微生物细胞)置于保温箱(温度40-45℃)中进行20-30分钟。在温育后,将装置置于具有大约300-380nm的激发光和大约420-480nm的荧光的荧光显微镜下。可通过明亮的蓝色荧光(与黑暗的“空”微通道相比)容易地区分包含活细胞的微通道。甚至可在30-40分钟内可靠地发现100ml中的一个单个的活细胞,而通过常规的在佩特里细菌培养皿上培养的方法则需要3-5天。
实施例2
样本中大肠杆菌0:157的鉴定
使用白色硝酸纤维素过滤器和无色微通道板将100ml液体样本通过装置过滤。将大约2ml标准的针对大肠杆功0:157抗原的与辣根过氧化物酶(HRP)缀合的抗体加入装置,然后在数分钟内一部分一部分缓慢地通过装置过滤;如果在一些通道中存在细胞,那么缀合物(Ab+HRP)将附着至大肠杆菌0:157的表面;此后,将50ml的蒸馏水通过装置过滤以洗去剩余的缀合物。将包含:3,3′,5,5′-四甲基联苯胺的溶液的琼脂块加入装置以取代过滤器的多孔支持物。在40℃下温育35-40分钟。温育后,将具有过滤器的装置置于光学显微镜(放大倍数=X100)下。包含大肠杆菌0:157的微通道显示为蓝色的点。其他微通道显示为白色的点。使用该方法和装置甚至可在少于1小时内发现100ml中的一个细胞。常规方法需要在佩特里细菌培养皿上进行至少24-48小时的初步培养期。流式细胞计量术使得微生物学家能够实际上在其刚通过检测区中的激光束后立即发现用抗体+荧光色素着色的一个细胞;然而,100ml样本通过10微米检测区的管口需要许多小时。流式细胞仪的价格为大约$100,000。PCR在大约3-4小时内达到相同的结果,但其涉及复杂和昂贵的技术。此外,不同样本的混合物的PCR分析的可靠性不是十分的好。
实施例3
通过包被的磁性颗粒进行的检测和鉴定
借助于磁性颗粒进行的样本中细菌、病毒和生物分子的检测和鉴定由几个阶段组成。第一阶段:向假定包含被检测的生物体或生物分子的样本中加入被抗体包被的磁性颗粒。在该阶段,通过Ab-Ag相互作用将目的物附着至磁性颗粒。第二阶段:将包含与其他颗粒的混合物一起的磁性颗粒的液体通过装置(图10)。通过磁场将磁性颗粒在微通道中分离,而其他颗粒通过输出通道流出。第三阶段:抗体-酶缀合物通过微通道的阵列,然后附着至捕获在磁性颗粒上的抗原:细菌、病毒或生物分子。第四阶段:用透明的过滤器的多孔支持物替代磁铁并用蒸馏水洗去过剩的缀合物。第五阶段:移走用于过滤器的多孔支持物,然后加入包含对应缀合物的酶的人工底物的琼脂块。第六和第七阶段:在中35-45℃下温育装置15-45分钟(取决于缀合物和目的物),和计数着色的或荧光(取决于形式)微通道。一些微通道中的颜色或荧光表示在第一阶段附着至磁性颗粒的目的物的存在。该方法对所有生物目的物例如细胞、病毒和生物分子通常是通用的。一些目的物可具有如此少量的抗原位以至于附着的酶(指示剂分子)不能达到在显微镜(光学或荧光)下的可检测浓度。该缺点可通过使用更小的微通道和/或启用更复杂的激发光源(微小UV激光)和光电倍增管(影像增强器)代替视觉检测来改进。

Claims (25)

1.用于不经初步培养进行检测、鉴定或计数微生物或附着有生物分子、微生物或病毒的颗粒的设备,该设备包括:
具有多个微通道的装置,其中所述多个微通道中的每一个具有约30μm或以下的直径,用于检测每个微通道内少至一个的微生物或少至一个的附着有生物分子、微生物或病毒的颗粒;
用于过滤微生物或附着有生物分子、微生物或病毒的颗粒的过滤材料;和
充填有人工底物的琼脂糖块。
2.权利要求1的设备,进一步包括支持物,用于支持过滤材料贴紧具有多个微通道的装置,用于在所述微通道内捕获微生物或附着有生物分子或病毒的颗粒。
3.权利要求1的设备,其中具有多个微通道的装置和过滤材料是黑色、无色或白色的。
4.权利要求2的设备,其中用于过滤材料的支持物被具有磁场的装置替代,所述装置用于沉积磁性颗粒,所述磁性颗粒包被有抗体,该抗体对通过抗体-抗原相互作用吸引至所述抗体的生物分子、微生物、病毒或抗原有特异性。
5.权利要求1的设备,其中具有多个微通道的装置用于进行显色或荧光反应,并且其中所述装置是微通道玻璃板,其在微通道与玻璃板表面之间有约90°的角度。
6.权利要求1的设备,还包括用于检测、鉴定或计数微生物或附着有生物分子、微生物或病毒的颗粒的人造底物,其中所述人造底物选自诸如琼脂糖、明胶、聚丙烯酰胺或硅胶的凝胶;纸;或能够保存其中溶解有分子的液体以将其转移至微通道的多孔材料。
7.根据权利要求1的设备,其中所述多个微通道在两端都是开放的,从而使所述多个微通道都能够通过毛细管作用被液体充满。
8.根据权利要求1的设备,其中所述微通道的长度是约1000μm或以下。
9.根据权利要求1的设备,其中所述微通道的体积是约300,000μm3或以下。
10.根据权利要求1的设备,其中每个微通道一个微生物提供了每毫升样本数百万细胞的相应浓度。
11.根据权利要求1的设备,进一步包括:
被抗体包被的多个颗粒,所述抗体上特异性地附着有生物分子、微生物或病毒,其中与附着的生物分子、微生物或病毒一起的所述颗粒大到足以被过滤材料捕获,而其中的生物分子、微生物或病毒本身不足以大到被过滤材料捕获。
12.根据权利要求1的设备,还包括:
连接到具有多个微通道的装置的盖子,所述盖子具有输入和输出通道,以转运负载有磁性颗粒的液体,所述磁性颗粒附着有生物分子、微生物或病毒;和
具有磁场的装置,用于分离磁性颗粒进入所述多个微通道。
13.不经初步培养进行检测、鉴定或计数微生物或附着有生物分子、微生物或病毒的颗粒的方法,所述方法包括以下步骤:
提供具有多个微通道的装置;
给微通道提供能迅速与微生物或附着有生物分子、微生物或病毒的颗粒反应的充填有人工底物的琼脂糖块,以在微通道内对少至一个微生物或少至一个附着有生物分子、微生物或病毒的颗粒创建可检测的浓度;
其中所述方法不用于诊断任何疾病。
14.根据权利要求13的方法,还包括以下步骤:
提供过滤材料;和
通过过滤材料过滤样本,从而在微通道内捕获微生物或附着有生物分子、微生物或病毒的颗粒。
15.根据权利要求13的方法,进一步包括以下步骤:
通过毛细管作用将液体引入到微通道内。
16.根据权利要求13的方法,进一步包括以下步骤:
检测、鉴定或计数:i)微生物,用于工业微生物学;ii)空气、水和土壤污染物,用于环境分析;和/或iii)传染性或致病性微生物,用于流行病学或生物防御。
17.根据权利要求13的方法,其中所述人工底物是选自如下的一种或多种生物化学指示剂:荧光或生色物质、特异性酶和人造底物、酶免疫分析物和具有人造底物的缀合物。
18.根据权利要求13的方法,进一步包括如下步骤:
计数具有着色点或荧光点外观的微通道,根据计数步骤的结果和样本的体积确定样本中微生物的浓度。
19.根据权利要求13的方法,其中所述人工底物被限定到一个微体积,从而维持足以提供检测的人工底物物质的浓度水平。
20.根据权利要求13的方法,进一步包括以下步骤:
向样本中加入用抗体包被的磁性颗粒,所述抗体针对所研究的微生物、生物分子或病毒;
通过磁场在微通道内捕获所述磁性颗粒;和
通过酶或酶免疫分析鉴定、计数或检测微生物,或通过酶免疫分析鉴定、计数或检测生物分子。
21.用于不经初步培养进行检测、鉴定或计数微生物或附着有生物分子或病毒的颗粒的设备,所述设备包括:
具有多个微通道的装置,其中多个微通道中的每一个具有约300,000μm3或以下的微体积,其中每个通道中少至一个微生物或少至一个附着有生物分子、微生物或病毒的颗粒通过用充填有人工底物的琼脂糖块提供了可检测的颜色或荧光浓度。
22.用于不经初步培养进行检测、鉴定或计数微生物或附着有生物分子、微生物或病毒的颗粒的方法,所述方法包括如下步骤:
提供多个具有两端开口的微通道的装置;
在微通道内捕获微生物或附着有生物分子、微生物或病毒的颗粒;和
提供将通过毛细管作用填充所述多个微通道的液体;
其中所述方法不用于诊断任何疾病。
23.用于不经初步培养进行检测、鉴定或计数微生物或附着有微生物、病毒或生物分子的颗粒的设备,所述设备包括:
用于过滤样本的元件;
用于在微通道内捕获微生物或附着有生物分子、微生物或病毒的颗粒的元件;
用于向微通道内加入充填有人工底物的琼脂糖块以检测少至一个微生物或少至一个附着有微生物、病毒或生物分子的颗粒的元件;
用于浓缩微通道内的人工底物以防止分散,从而使得可以无需初步培养进行单个细胞的检测的元件。
24.用于不经初步培养进行检测、鉴定或计数微生物或附着有生物分子、微生物或病毒的颗粒的方法,所述方法包括如下步骤:
提供具有多个微通道的装置;
提供待测试的样本;和
提供一定体积的试剂以测试样本,其中对于测试所需的试剂的体积等于装置中所述多个微通道的数量乘以大约300,000μm3或以下微通道的体积之积;
其中所述方法不用于诊断任何疾病。
25.用于不经初步培养进行检测、鉴定或计数微生物或附着有生物分子、微生物或病毒的颗粒的方法,所述方法包括如下步骤:
提供具有多个通道的装置,所述通道用于捕获微生物或包被有生物分子、微生物或病毒的颗粒;
提供待测试样本到该具有多个通道的装置中;和
通过在通道内捕获少至一个细胞,来换算通道内的相应浓度,从每毫升零个细胞到每毫升至少五个数量级的细胞;
其中所述方法不用于诊断任何疾病。
CN2006800221629A 2005-04-20 2006-04-20 用于单个微生物的快速检测和鉴定而无需初步培养的装置 Expired - Fee Related CN101203617B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/109,857 US8663909B2 (en) 2002-05-09 2005-04-20 Device for rapid detection and identification of single microorganisms without preliminary growth
US11/109,857 2005-04-20
PCT/US2006/015321 WO2006113930A2 (en) 2005-04-20 2006-04-20 Device for rapid detection and identification of single microoganisms without preliminary growth

Publications (2)

Publication Number Publication Date
CN101203617A CN101203617A (zh) 2008-06-18
CN101203617B true CN101203617B (zh) 2012-03-14

Family

ID=37115982

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800221629A Expired - Fee Related CN101203617B (zh) 2005-04-20 2006-04-20 用于单个微生物的快速检测和鉴定而无需初步培养的装置

Country Status (5)

Country Link
US (1) US8663909B2 (zh)
EP (1) EP1871892A4 (zh)
CN (1) CN101203617B (zh)
BR (1) BRPI0608103A2 (zh)
WO (1) WO2006113930A2 (zh)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3252139A1 (en) 2001-09-06 2017-12-06 Rapid Micro Biosystems, Inc. Rapid detection of replicating cells
US8663909B2 (en) * 2002-05-09 2014-03-04 Nanologix, Inc. Device for rapid detection and identification of single microorganisms without preliminary growth
AU2004273783A1 (en) 2003-07-12 2005-03-31 Accelr8 Technology Corporation Sensitive and rapid biodetection
ES2624685T3 (es) 2004-12-16 2017-07-17 Accelerate Diagnostics, Inc. Detección microbiana rápida y prueba de susceptibilidad antimicrobiana
JP5160428B2 (ja) 2005-09-26 2013-03-13 ラピッド マイクロ バイオシステムズ インコーポレイテッド 増殖培地を含むカセット
JP4410747B2 (ja) * 2005-09-30 2010-02-03 Hoya株式会社 磁気記録ディスク用潤滑剤の成分比測定方法および磁気記録ディスクの製造方法
US20080254471A1 (en) * 2005-10-13 2008-10-16 Alamo Scientific Apparatus and Method for Microbial and Forensic Sampling and Manipulation
FR2897783B1 (fr) * 2006-02-24 2008-05-30 Millipore Corp Dispositif pour le controle microbiologique, ensembles de controle et d'incubation le comportant et procede le mettant en oeuvre
US8529835B2 (en) 2006-11-03 2013-09-10 Tufts University Biopolymer sensor and method of manufacturing the same
WO2008140562A2 (en) * 2006-11-03 2008-11-20 Trustees Of Tufts College Electroactive biopolymer optical and electro-optical devices and method of manufacturing the same
WO2008130445A2 (en) * 2006-11-10 2008-10-30 Advanced Analytical Technologies, Inc. Rapid detection microorganisms in fluids
CN101641448A (zh) * 2007-03-22 2010-02-03 纳诺洛吉克斯公司 微生物在透明渗透膜上的检测和鉴定
US8127325B2 (en) 2007-04-03 2012-02-28 Google Inc. Log processing to determine impression values using reliable durations
US8516515B2 (en) * 2007-04-03 2013-08-20 Google Inc. Impression based television advertising
FR2915487B1 (fr) * 2007-04-26 2009-06-05 Millipore Corp Ensemble et procede pour analyse microbiologique
US9549585B2 (en) 2008-06-13 2017-01-24 Nike, Inc. Footwear having sensor system
US10070680B2 (en) 2008-06-13 2018-09-11 Nike, Inc. Footwear having sensor system
US9002680B2 (en) * 2008-06-13 2015-04-07 Nike, Inc. Foot gestures for computer input and interface control
CN105768322A (zh) 2008-06-13 2016-07-20 耐克创新有限合伙公司 具有传感器系统的鞋
US9834806B2 (en) * 2008-06-27 2017-12-05 Hitachi Plant Services Co., Ltd. Microbe-collecting carrier cartridge, carrier treating apparatus, and method of measuring microbes
US10384203B2 (en) 2008-09-24 2019-08-20 First Light Biosciences, Inc. Kits and devices for detecting analytes
RU2516580C2 (ru) * 2008-11-24 2014-05-20 Конинклейке Филипс Электроникс Н.В. Способ и устройство для быстрого анализа образцов текучего вещества с использованием фильтра
US8255949B1 (en) 2009-01-07 2012-08-28 Google Inc. Television program targeting for advertising
WO2010107399A1 (en) * 2009-03-20 2010-09-23 Agency For Science, Technology And Research Devices for separating cells and methods of using them
EP2241875A1 (en) 2009-04-14 2010-10-20 Koninklijke Philips Electronics N.V. Up-concentration of organic microobjects for microscopic imaging.
WO2011087711A1 (en) * 2009-12-22 2011-07-21 3M Innovative Properties Company Methods of detecting microorganisms and kits therefore
BR112012033359A2 (pt) * 2010-06-30 2016-11-29 3M Innovative Properties Co ''artigo de placa de filtro que tem um conjunto de filtro absorvente de água''
KR101926319B1 (ko) 2010-11-10 2018-12-06 나이키 이노베이트 씨.브이. 시간 기반 체육 활동 측정 및 표시를 위한 시스템 및 방법
EP2675355B1 (en) 2011-02-17 2020-01-01 NIKE Innovate C.V. Footwear having sensor system
EP2676213B1 (en) 2011-02-17 2019-07-31 NIKE Innovate C.V. Location mapping
US9381420B2 (en) 2011-02-17 2016-07-05 Nike, Inc. Workout user experience
EP3153046B1 (en) 2011-02-17 2019-01-23 NIKE Innovate C.V. Footwear insert having sensor system
ES2551922T3 (es) 2011-03-07 2015-11-24 Accelerate Diagnostics, Inc. Sistemas rápidos de purificación celular
US10254204B2 (en) 2011-03-07 2019-04-09 Accelerate Diagnostics, Inc. Membrane-assisted purification
CN102367469B (zh) * 2011-10-24 2013-07-31 宁波大学 一种夜光藻活细胞的定量浓缩方法
MX368123B (es) 2011-11-07 2019-09-19 Rapid Micro Biosystems Inc Cassette para pruebas de esterilidad.
CN102517375B (zh) * 2012-01-10 2013-08-21 济南市疾病预防控制中心 一种利用毛细管培养法检测微生物的方法
CN102517198B (zh) * 2012-01-10 2014-07-30 济南市疾病预防控制中心 一种用于毛细管培养法检测或筛选微生物的装置
US11684111B2 (en) 2012-02-22 2023-06-27 Nike, Inc. Motorized shoe with gesture control
US11071344B2 (en) 2012-02-22 2021-07-27 Nike, Inc. Motorized shoe with gesture control
US20130213146A1 (en) 2012-02-22 2013-08-22 Nike, Inc. Footwear Having Sensor System
US20130213147A1 (en) 2012-02-22 2013-08-22 Nike, Inc. Footwear Having Sensor System
MX2014012439A (es) 2012-04-16 2015-01-16 Rapid Micro Biosystems Inc Dispositivo para cultivar celulas.
JP6027684B2 (ja) 2012-09-25 2016-11-16 ゼネラル・エレクトリック・カンパニイ バイオバーデン試料を回収及び検出するための使い捨て容器
US9043004B2 (en) 2012-12-13 2015-05-26 Nike, Inc. Apparel having sensor system
US11006690B2 (en) 2013-02-01 2021-05-18 Nike, Inc. System and method for analyzing athletic activity
US9743861B2 (en) 2013-02-01 2017-08-29 Nike, Inc. System and method for analyzing athletic activity
US10926133B2 (en) 2013-02-01 2021-02-23 Nike, Inc. System and method for analyzing athletic activity
US9410857B2 (en) 2013-03-15 2016-08-09 Nike, Inc. System and method for analyzing athletic activity
US9677109B2 (en) 2013-03-15 2017-06-13 Accelerate Diagnostics, Inc. Rapid determination of microbial growth and antimicrobial susceptibility
US9568404B2 (en) 2014-05-16 2017-02-14 Junyu Mai Method and apparatus for biomolecule analysis
DE102014116050B3 (de) 2014-11-04 2016-02-25 Universität Potsdam Vorrichtung und Verfahren zur Identifizierung von Mikroorganismen
US10023895B2 (en) 2015-03-30 2018-07-17 Accelerate Diagnostics, Inc. Instrument and system for rapid microogranism identification and antimicrobial agent susceptibility testing
US10253355B2 (en) 2015-03-30 2019-04-09 Accelerate Diagnostics, Inc. Instrument and system for rapid microorganism identification and antimicrobial agent susceptibility testing
CN109370904A (zh) * 2018-12-22 2019-02-22 精迅分子检测(深圳)有限公司 一种带有指示装置的培养瓶
US11618032B2 (en) 2020-08-31 2023-04-04 International Business Machines Corporation Multiplexed testing strip device

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650323A (en) * 1991-06-26 1997-07-22 Costar Corporation System for growing and manipulating tissue cultures using 96-well format equipment
US5670113A (en) * 1991-12-20 1997-09-23 Sibia Neurosciences, Inc. Automated analysis equipment and assay method for detecting cell surface protein and/or cytoplasmic receptor function using same
EP0631634B1 (en) * 1992-03-20 1996-03-06 CELSIS INTERNATIONAL plc Method and apparatus for the analysis of biological material
US5716798A (en) * 1992-09-22 1998-02-10 Becton Dickinson And Company Enhanced detection of microorganisms in samples
US6893816B1 (en) * 1993-10-28 2005-05-17 Houston Advanced Research Center Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions
CA2179364C (en) 1995-06-27 1999-09-28 Klaus W. Berndt Method and apparatus for detecting microorganisms
US5660990A (en) * 1995-08-18 1997-08-26 Immunivest Corporation Surface immobilization of magnetically collected materials
US6696286B1 (en) * 1997-04-09 2004-02-24 3M Innovative Properties Company Method and devices for detecting and enumerating microorganisms
US5962250A (en) * 1997-10-28 1999-10-05 Glaxo Group Limited Split multi-well plate and methods
US6210910B1 (en) * 1998-03-02 2001-04-03 Trustees Of Tufts College Optical fiber biosensor array comprising cell populations confined to microcavities
AU2740000A (en) 1999-01-25 2000-08-07 Lockheed Martin Energy Research Corporation Multifunctional and multispectral biosensor devices and methods of use
US7338773B2 (en) * 2000-04-14 2008-03-04 Millipore Corporation Multiplexed assays of cell migration
WO2001087487A2 (en) 2000-05-15 2001-11-22 Tecan Trading Ag Bidirectional flow centrifugal microfluidic devices
US6742659B2 (en) * 2000-05-18 2004-06-01 Millipore Corporation Multiple well plate with adhesive bonded filter
US7351376B1 (en) 2000-06-05 2008-04-01 California Institute Of Technology Integrated active flux microfluidic devices and methods
EP1330306A2 (en) * 2000-10-10 2003-07-30 BioTrove, Inc. Apparatus for assay, synthesis and storage, and methods of manufacture, use, and manipulation thereof
US6418968B1 (en) * 2001-04-20 2002-07-16 Nanostream, Inc. Porous microfluidic valves
US6811752B2 (en) * 2001-05-15 2004-11-02 Biocrystal, Ltd. Device having microchambers and microfluidics
US6729352B2 (en) 2001-06-07 2004-05-04 Nanostream, Inc. Microfluidic synthesis devices and methods
ES2270212T3 (es) * 2001-06-14 2007-04-01 Millipore Corporation Aparato multipocillo de cultivo de celulas.
CA2453207A1 (en) * 2001-07-06 2003-01-16 454 Corporation Method for isolation of independent, parallel chemical micro-reactions using a porous filter
US8361783B2 (en) * 2002-05-09 2013-01-29 Nanologix, Inc. Micromethod and device for the rapid detection, enumeration and identification of microorganisms
US7781159B2 (en) * 2002-05-09 2010-08-24 Nanologix, Inc. Micromethod and device for rapid detection, enumeration and identification of entities
US8663909B2 (en) * 2002-05-09 2014-03-04 Nanologix, Inc. Device for rapid detection and identification of single microorganisms without preliminary growth
US7524623B2 (en) * 2003-07-28 2009-04-28 Nanologix, Inc. Method and device for rapid detection of microorganisms by changing the shape of micro-colonies
US20060088895A1 (en) 2004-01-30 2006-04-27 Wanders Bart J Systems, methods and reagents for the detection of biological and chemical agents using dynamic surface generation and imaging

Also Published As

Publication number Publication date
US8663909B2 (en) 2014-03-04
WO2006113930A2 (en) 2006-10-26
EP1871892A4 (en) 2009-08-12
WO2006113930A3 (en) 2007-08-09
CN101203617A (zh) 2008-06-18
BRPI0608103A2 (pt) 2009-11-03
US20050221403A1 (en) 2005-10-06
EP1871892A2 (en) 2008-01-02

Similar Documents

Publication Publication Date Title
CN101203617B (zh) 用于单个微生物的快速检测和鉴定而无需初步培养的装置
EP2479552B1 (en) Methods for enhanced analysis of acoustic field focused cells and particles
CN101073002B (zh) 微流体装置
EP2134857B1 (en) Detection and identification of microorganisms on transparent permeable membranes
Juang et al. Applications of microfluidics in microalgae biotechnology: A review
US9029082B2 (en) Detection device for detecting biological microparticles such as bacteria, viruses, spores, pollen or biological toxins, and detection method
CN1957089B (zh) 污染测量
US20100279322A1 (en) Direct detection of intracellular fluorescently tagged cells in solution
US8361783B2 (en) Micromethod and device for the rapid detection, enumeration and identification of microorganisms
US11364502B2 (en) Device and method for high-throughput multiparameter measurements in one or more live and fixed cells
WO1989010566A1 (en) Process for forming and using microdroplets
US7781159B2 (en) Micromethod and device for rapid detection, enumeration and identification of entities
CN1845791A (zh) 利用带有多微管阵列形式整体室的传感器和侧面积分测量变换器进行化学或生物分析的方法和装置
US8206946B2 (en) Fluorescent virus probes for identification of bacteria
US20030022203A1 (en) Cellular Arrays
CN110168366A (zh) 用于基于颗粒的生物测定的过筛垂直流系统
US20100047850A1 (en) Method and device for rapid detection of microorganisms by changing the shape of micro-colonies in micro-channels
US20040157211A1 (en) Method and a system for counting cells from a plurality of species
Kim LAB-ON-A-DISCS FOR QUANTIFICATION OF MICROALGAL LIPIDS AND NATURAL ANTIOXIDANTS OF BEVERAGE SAMPLES
US20110039267A1 (en) Sample Preparation And Detection Of Analytes Using Silica Beads
CN112684165A (zh) 一种磁性微球介导的包被微球生化检测系统
Heller et al. Fast detection and identification of bacteria in potable water
Slaninová et al. Quaternary benzo (c) phenanthridine alkaloids, new supravital DNA probes.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120314

Termination date: 20150420

EXPY Termination of patent right or utility model