CN101196471A - Quantitative detection system and detection method of soil heavy metal pollution - Google Patents
Quantitative detection system and detection method of soil heavy metal pollution Download PDFInfo
- Publication number
- CN101196471A CN101196471A CNA2007101726909A CN200710172690A CN101196471A CN 101196471 A CN101196471 A CN 101196471A CN A2007101726909 A CNA2007101726909 A CN A2007101726909A CN 200710172690 A CN200710172690 A CN 200710172690A CN 101196471 A CN101196471 A CN 101196471A
- Authority
- CN
- China
- Prior art keywords
- laser
- quantification
- heavy metal
- beam splitter
- atomic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001385 heavy metal Inorganic materials 0.000 title claims abstract description 22
- 239000002689 soil Substances 0.000 title claims abstract description 22
- 238000001514 detection method Methods 0.000 title claims description 20
- 239000013307 optical fiber Substances 0.000 claims abstract description 18
- 238000011002 quantification Methods 0.000 claims abstract description 14
- 238000010606 normalization Methods 0.000 claims abstract description 8
- 239000000523 sample Substances 0.000 claims description 38
- 230000003595 spectral effect Effects 0.000 claims description 26
- 230000008569 process Effects 0.000 claims description 9
- 238000011088 calibration curve Methods 0.000 claims description 8
- 238000001675 atomic spectrum Methods 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 5
- 238000010183 spectrum analysis Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 4
- 238000004611 spectroscopical analysis Methods 0.000 claims description 3
- 238000001228 spectrum Methods 0.000 abstract description 4
- 235000013619 trace mineral Nutrition 0.000 abstract description 4
- 239000011573 trace mineral Substances 0.000 abstract description 4
- 230000009021 linear effect Effects 0.000 abstract description 3
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 abstract 4
- 230000006698 induction Effects 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- 238000004445 quantitative analysis Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000002536 laser-induced breakdown spectroscopy Methods 0.000 description 4
- 239000012491 analyte Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000003574 free electron Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000009022 nonlinear effect Effects 0.000 description 2
- 238000004451 qualitative analysis Methods 0.000 description 2
- 238000011155 quantitative monitoring Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 238000001391 atomic fluorescence spectroscopy Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001637 plasma atomic emission spectroscopy Methods 0.000 description 1
- 238000000918 plasma mass spectrometry Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
技术领域technical field
本发明涉及物质的等离子体光谱定量分析技术,具体是指一种土壤重金属污染定量化检测系统及检测方法,它用于对中、轻度重金属污染土壤的定量化监测。The invention relates to a plasma spectrum quantitative analysis technology for substances, and specifically refers to a soil heavy metal pollution quantitative detection system and detection method, which are used for quantitative monitoring of moderately and lightly heavy metal polluted soil.
背景技术Background technique
重金属是环境中“一类污染物”,伴随社会经济的快速发展,其污染程度和污染面积都呈逐年增加趋势。土壤一旦遭受重金属污染,将经食物链富集和放大最终影响人类健康,所以国内外都非常关注土壤重金属污染的监测和治理等问题。Heavy metals are "a class of pollutants" in the environment. With the rapid development of social economy, the degree of pollution and the area of pollution are increasing year by year. Once the soil is polluted by heavy metals, it will be enriched and magnified through the food chain and ultimately affect human health. Therefore, both domestic and foreign countries are very concerned about the monitoring and treatment of heavy metal pollution in soil.
土壤重金属元素种类多样,它们在环境中的背景值以及在《中国土壤环境质量标准》中所规定的临界值都不尽相同,采用传统方法对土壤重金属进行同时分析非常困难,通常先到污染地点采集土壤样品,然后返回实验室应用原子吸收光谱、原子荧光光谱、等离子——原子发射光谱或质谱等进行化学分析,且不同重金属分析方法存在差异,操作工序复杂、费时,不但耗费大量人力物力,对实验人员的健康也有一定影响。激光诱导等离子体光谱技术是一项近年来快速发展的化学元素分析技术,具有实时、快速、现场探测和多元素同时探测的优点,非常适合土壤重金属污染监测。There are various types of soil heavy metal elements, and their background values in the environment and the critical values stipulated in the "China Soil Environmental Quality Standards" are different. It is very difficult to analyze soil heavy metals at the same time using traditional methods, and usually go to the polluted site first Collect soil samples, and then return to the laboratory for chemical analysis using atomic absorption spectroscopy, atomic fluorescence spectroscopy, plasma-atomic emission spectroscopy or mass spectrometry, and there are differences in different heavy metal analysis methods. It also has a certain impact on the health of the experimenters. Laser-induced plasma spectroscopy is a chemical element analysis technology that has developed rapidly in recent years. It has the advantages of real-time, rapid, on-site detection and simultaneous detection of multiple elements, and is very suitable for monitoring heavy metal pollution in soil.
激光诱导等离子体光谱技术的工作机理为:高能脉冲激光束会聚于样品表面,在会聚点处获得兆瓦级的光子能量密度(单位平方厘米),物质吸收了高密度的光子发生“多光子吸收电离”,电离出的自由电子在激光电场的加速作用下与原子发生剧烈碰撞并使其电离而产生更多的自由电子,这些自由电子继续参与到碰撞电离过程中,从而发生类似“链式反应”的“级联电离”,当电子密度增加到一定程度,发生离解而形成高温高能态的等离子体,同时伴有清脆的冲击波响声和强烈的闪光。激光脉冲持续时间通常在10ns以下,激光脉冲消失以后,等离子体逐渐冷下来,同时辐射出各种元素的原子光谱。这些原子谱线是物质所含元素的“指纹”,其波长位置对应元素的种类,其信号强度对应元素的含量,这就是光诱导等离子体光谱技术定性、定量分析物质元素组成的基础。The working mechanism of laser-induced plasma spectroscopy technology is: the high-energy pulsed laser beam converges on the surface of the sample, and a megawatt-level photon energy density (unit square centimeter) is obtained at the convergence point. Ionization”, the ionized free electrons collide violently with the atoms under the acceleration of the laser electric field and ionize it to generate more free electrons, these free electrons continue to participate in the impact ionization process, thus a similar “chain reaction” occurs "Cascade ionization", when the electron density increases to a certain level, dissociation occurs to form a high-temperature and high-energy plasma, accompanied by a crisp shock wave sound and a strong flash. The duration of the laser pulse is usually below 10ns. After the laser pulse disappears, the plasma gradually cools down and radiates the atomic spectrum of various elements at the same time. These atomic spectral lines are the "fingerprints" of the elements contained in the substance. The wavelength position corresponds to the type of element, and the signal intensity corresponds to the content of the element. This is the basis for the qualitative and quantitative analysis of the composition of material elements by light-induced plasma spectroscopy.
目前,激光诱导等离子体光谱技术的定性分析能力已经得到世界公认,但在定量分析方面由于受到“非线性效应”的影响,一直很难找到一种通用性的定量化方法。所谓“非线性效应”指的是激光诱导等离子体辐射出的特定元素的原子谱线信号强度不仅仅取决于该种元素在等离子体中的含量,同时还受到其他很多因素的影响,从而导致这种元素原子谱线强度和对应的含量之间呈现非线性关系。在导致非线性的影响因素中,最主要的是原子谱线的“自吸收”效应,即特定波长的原子辐射在穿越高密度的等离子体时发生“自吸收”而衰减,这种“自吸收”影响的程度很难量化,从而导致元素原子谱线强度和对应的含量之间的非线性关系也很难量化。At present, the qualitative analysis capability of laser-induced plasma spectroscopy has been recognized all over the world, but due to the influence of "non-linear effects" in quantitative analysis, it has been difficult to find a general quantitative method. The so-called "non-linear effect" refers to the fact that the signal intensity of the atomic spectral line of a specific element radiated by the laser-induced plasma is not only determined by the content of the element in the plasma, but also affected by many other factors, resulting in this There is a non-linear relationship between the intensity of the atomic spectral line of each element and the corresponding content. Among the influencing factors that lead to nonlinearity, the most important is the "self-absorption" effect of atomic spectral lines, that is, atomic radiation of a specific wavelength undergoes "self-absorption" and attenuates when passing through high-density plasma. "The extent of the influence is difficult to quantify, which leads to the nonlinear relationship between the intensity of the atomic spectral line of the element and the corresponding content is also difficult to quantify.
大量试验研究表明:对样本中含量不足300ppm的痕量元素而言,原子光谱辐射时“自吸收”效应的影响很小,元素原子谱线强度和对应含量之间能够保持较好的线性关系。中国政府颁布的《土壤环境质量标准》中,土壤重金属污染分作三级,一级污染最轻;三级污染最重;二级污染又分作A、B、C三级,其中C级污染最重。对照不同级别的质量标准值,对300ppm以下的重金属污染作定量监测,能够很好的评价绝大多数重金属元素的一级、二级污染程度,也就是说可以精确量化300ppm以下中、轻度污染的程度。A large number of experimental studies have shown that for trace elements with a content of less than 300ppm in the sample, the "self-absorption" effect of atomic spectral radiation has little effect, and a good linear relationship can be maintained between the element atomic spectral line intensity and the corresponding content. In the "Soil Environmental Quality Standards" promulgated by the Chinese government, soil heavy metal pollution is divided into three levels, the first level pollution is the lightest; the third level pollution is the heaviest; the second level pollution is divided into A, B, and C levels, of which C level pollution heaviest. Quantitative monitoring of heavy metal pollution below 300ppm, compared with quality standard values of different levels, can well evaluate the primary and secondary pollution levels of most heavy metal elements, that is to say, it can accurately quantify medium and light pollution below 300ppm Degree.
另外,在利用激光诱导等离子体光谱技术进行定量分析时,由于采样点尺寸很小(通常小于1mm),从而被测样本基质的不均匀性很容易导致测量结果呈现较大的离散性,为了提高定量分析的精度和准确度,通常需要重复测量,在对大量数据统计分析的基础上给出较理想的结果,但每次测量过程中由于激光脉冲能量的不稳定性往往引入较大的测量偏差,需要采取必要的措施消除掉这一影响,通常的做法是对特定元素特定波长原子谱线的强度值进行归一化,归一化标准的选择直接决定了定量化的精度和准确度,通常是把归一化标准选择为样本中主体元素(含量较高的元素)的某条原子谱线的信号强度,这种选择的出发点是认为痕量元素的原子谱线强度和主体元素的原子谱线强度之间的相对关系在不同的测量过程中能保持较好的一致性,而实际上,由于样本基质的不均匀性,每次测量过程中主体元素的含量也是变化的,而这种变化根本无法量化,从而导致主体元素原子谱线强度也是变化并且无法量化的;因此当把一个变化的、并且无法量化的量作为标准值进行归一化时,归一化结果也必然带有一定程度的随机性,将对最终统计结果带来必然的消极影响。In addition, when using laser-induced plasma spectroscopy for quantitative analysis, due to the small size of the sampling point (usually less than 1mm), the inhomogeneity of the measured sample matrix can easily lead to large dispersion of measurement results. In order to improve The precision and accuracy of quantitative analysis usually requires repeated measurements, and gives ideal results based on the statistical analysis of a large amount of data, but each measurement process often introduces a large measurement deviation due to the instability of laser pulse energy , it is necessary to take necessary measures to eliminate this effect. The usual method is to normalize the intensity value of the atomic spectral line of a specific element at a specific wavelength. The selection of the normalization standard directly determines the precision and accuracy of the quantification. Usually The normalization standard is selected as the signal intensity of a certain atomic line of the main element (element with high content) in the sample. The starting point of this choice is that the atomic line intensity of the trace element and the atomic spectrum of the main element The relative relationship between the line intensities can maintain a good consistency in different measurement processes, but in fact, due to the inhomogeneity of the sample matrix, the content of the main elements also changes in each measurement process, and this change It cannot be quantified at all, so that the intensity of the atomic spectral line of the main element is also changing and cannot be quantified; therefore, when a variable and unquantifiable quantity is used as a standard value for normalization, the normalization result must also have a certain degree of The randomness will have an inevitable negative impact on the final statistical results.
发明内容Contents of the invention
本发明的目的是要建立一种土壤重金属污染定量化检测系统及其检测方法,消除每次激光激发过程中激光脉冲能量的抖动对测量精度的影响,实现对300ppm以下中、轻度重金属污染的土壤作精确的定量化检测。The purpose of the present invention is to establish a soil heavy metal pollution quantitative detection system and its detection method, to eliminate the influence of the jitter of laser pulse energy on the measurement accuracy during each laser excitation process, and to realize the detection of medium and light heavy metal pollution below 300ppm Soil for accurate quantitative detection.
如附图1所示,本发明土壤重金属污染定量化检测系统包括:激光器1、分束镜2、会聚光学透镜3、样本4、光纤探头5、光纤6、光谱仪7、激光功率计8、计算机9。系统工作原理为:激光器1发射出的激光束首先通过分束镜2,其中10%的激光脉冲能量被分束镜2反射到激光功率计8的探头上,另外90%的激光脉冲能量透过分束镜2,再经由会聚镜3会聚在样本4表面诱发产生等离子体,激光功率计8测量10%的激光脉冲能量并把能量值通过接口电路传给计算机9作为归一化标准值,激光诱导等离子体辐射出的原子光谱被光纤探头5收集,通过光纤6耦合到光谱仪7的入射狭缝中,光谱分析数据通过接口电路传给计算机9,计算机9内装有光谱数据和激光功率数据采集处理软件,数据采集和处理软件实现光谱数据和激光脉冲能量数据的采集和处理,处理结果与计算机中特定元素的定量化校准曲线对照,从而实现被测样本中特定元素的定量化检测。As shown in accompanying
本发明土壤重金属污染定量化检测系统的定量化检测方法包括下列步骤:The quantitative detection method of the soil heavy metal pollution quantitative detection system of the present invention comprises the following steps:
1)建立定量化校准曲线1) Establish a quantitative calibration curve
激光器1发射出的激光束首先通过分束镜2,其中10%的激光脉冲能量被分束镜2反射到激光功率计8的探头上,另外90%的激光脉冲能量透过分束镜,再经由会聚镜3会聚在特定型号标准样本4表面诱发产生等离子体;激光功率计8测量10%的激光脉冲能量并把能量值通过接口电路传给计算机9作为归一化标准值进行存储;激光诱导等离子体辐射出的原子光谱被光纤探头5收集,通过光纤6耦合到光谱仪7的入射狭缝中,光谱分析数据通过接口电路传给计算机9存储;选择待测元素的特定波长原子谱线,以激光功率计8测得的激光能量值作为归一化标准值,将谱线强度值归一化。对不同特定型号标准样本重复上述步骤进行测量,将所测数据与该元素的含量值组成一个(x,y)坐标(y代表归一化后的原子谱线强度值,x代表元素含量值),并拟合出一条针对待测元素的校准曲线。The laser beam emitted by the
2)测量未知样本中待测元素的归一化原子光谱强度值2) Measure the normalized atomic spectral intensity value of the analyte in the unknown sample
激光器1发射出的激光束首先通过分束镜2,其中10%的激光脉冲能量被分束镜2反射到激光功率计8的探头上,另外90%的激光脉冲能量透过分束镜2,再经由会聚镜3会聚在未知样本4表面诱发产生等离子体;激光功率计8测量10%的激光脉冲能量并把能量值通过接口电路传给计算机9作为归一化标准值进行存储;激光诱导等离子体辐射出的原子光谱被光纤探头5收集,通过光纤6耦合到光谱仪7的入射狭缝中,光谱分析数据通过接口电路传给计算机9存储;根据步骤1)建立校准曲线时所选取的待测元素的波长,把未知样本中待测元素相同波长的原子谱线强度值归一化,得到归一化的原子谱线强度值测量值y0。The laser beam emitted by the
3)获取待测元素定量化数据3) Obtain the quantitative data of the elements to be measured
根据步骤2)获得的未知样本中待测元素归一化的原子谱线强度值(y=y0),利用步骤1)获得的定量化校准曲线,就可以得到该元素的含量值x(x=x0),从而实现特定元素的定量化检测。According to the normalized atomic spectral line intensity value (y=y 0 ) of the unknown sample obtained in step 2) and the quantitative calibration curve obtained in step 1), the content value of the element x(x =x 0 ), so as to realize the quantitative detection of specific elements.
本发明的优点是:The advantages of the present invention are:
(1)测量系统的定量化检测方法只针对于300ppm以下的痕量元素,能够有效避免由于原子谱线的“自吸收”效应导致的谱线强度值和元素含量之间的非线性关系。(1) The quantitative detection method of the measurement system is only aimed at trace elements below 300ppm, which can effectively avoid the nonlinear relationship between the spectral line intensity value and element content caused by the "self-absorption" effect of atomic spectral lines.
(2)测量系统把各种元素等离子体谱线强度值均归一化到入射激光的强度值,完全消除了每次激光激发过程中激光脉冲能量的抖动对测量精度的影响,提高了定量化测量精度。(2) The measurement system normalizes the intensity values of the plasma lines of various elements to the intensity value of the incident laser, which completely eliminates the influence of the jitter of the laser pulse energy on the measurement accuracy during each laser excitation process, and improves the quantification. measurement accuracy.
附图说明Description of drawings
图1为本发明的检测系统结构示意图;其中:Fig. 1 is the detection system structural representation of the present invention; Wherein:
1——激光器;1 - laser;
2——分束镜;2—beam splitter;
3——会聚光学透镜;3—converging optical lens;
4——被测样本;4 - the sample to be tested;
5——光纤探头;5——optical fiber probe;
6——光纤;6 - optical fiber;
7——光谱仪;7 - spectrometer;
8——激光功率计;8—laser power meter;
9——计算机。9 - Computer.
具体实施方式Detailed ways
下面根据图1给出本发明一个较好实施例。A preferred embodiment of the present invention is provided below according to FIG. 1 .
用于定量化检测的系统包括如下几个部分:The system for quantitative detection includes the following parts:
1)激光器11)
激光器1发射出的光束用于激发样本产生等离子体光谱,同时产生定量化过程所需的归一化标准值。选用Nd:YAG调Q脉冲激光器,工作波长1064nm,脉宽3-5ns,最大脉冲能量200mJ,脉冲能量稳定度±2%,最大脉冲重复频率20Hz,激光束发散角小于1mrad。The beam emitted by the
2)分束镜22) beam splitter 2
分束镜2用来对激光器发射出的激光束进行分束。分束镜245°放置,分束镜2在光束入射的一面镀有反射膜,使得入射光束有10%的脉冲能量反射到激光功率计的探头上,另外90%的脉冲能量透射过去激发样本形成等离子体。The beam splitter 2 is used to split the laser beam emitted by the laser. The beam splitter is placed at 245°, and the beam splitter 2 is coated with a reflective film on the incident side of the beam, so that 10% of the pulse energy of the incident beam is reflected to the probe of the laser power meter, and the other 90% of the pulse energy is transmitted to excite the sample to form plasma.
3)会聚光学透镜33) Converging
会聚光学透镜3用来会聚激光束,使得样本表面的激光能量密度达到击穿阈值,从而诱发产生等离子体。透镜口径20mm,焦距200mm。The converging
4)光纤探头54) Fiber optic probe 5
光纤探头5用来收集等离子体辐射出的原子光谱能量并耦合到光纤6中。光纤探头口径30mm,焦距52mm,透射波长范围200-1100nm。The optical fiber probe 5 is used to collect the atomic spectral energy radiated by the plasma and couple it into the
5)光谱仪75)
光谱仪7用来对光纤探头5收集到的激光诱导等离子体光谱作光谱分析。光谱仪7采用中阶梯光栅,光谱仪7响应波长200-850nm,光谱仪7的入射狭缝用芯径50μm的紫外透射光纤代替,光谱分辨率0.04-0.2nm。光谱仪探测器采用增强型CCD器件,光谱信号经其A/D转换以后通过PCI接口卡与计算机连接。The
6)激光功率计86)
激光功率计8用来对入射到探头上的激光脉冲能量值进行测量,得到定量化过程所需的归一化标准值。光谱响应范围0.2-1.65μm,测量功率范围1mW-10kW,测量准确度±0.5%。The
7)计算机97)
计算机9内装有光谱数据和激光功率数据采集处理软件。光谱仪通过PCI接口卡与计算机相连,激光功率计通过RS232接口和计算机相连,数据采集和处理软件实现光谱数据和激光脉冲能量数据的采集,以及定量化过程的实现,可以得到标准样本中待测元素的定量化校准曲线,可以实现未知样本中待测元素的定量化检测。The
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007101726909A CN101196471A (en) | 2007-12-21 | 2007-12-21 | Quantitative detection system and detection method of soil heavy metal pollution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007101726909A CN101196471A (en) | 2007-12-21 | 2007-12-21 | Quantitative detection system and detection method of soil heavy metal pollution |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101196471A true CN101196471A (en) | 2008-06-11 |
Family
ID=39547009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007101726909A Pending CN101196471A (en) | 2007-12-21 | 2007-12-21 | Quantitative detection system and detection method of soil heavy metal pollution |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101196471A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102253020A (en) * | 2011-05-03 | 2011-11-23 | 杭州电子科技大学 | Cavity enhanced detection apparatus for heavy metal content in air |
CN102680436A (en) * | 2012-06-16 | 2012-09-19 | 山西大学 | Method and device for measuring content of carbon in coal ash |
CN102680413A (en) * | 2012-05-25 | 2012-09-19 | 浙江大学 | Device and method for hyperspectral rapid detection on content of field soil organic matters by using panoramic annular belt |
CN102830071A (en) * | 2012-08-13 | 2012-12-19 | 浙江大学 | Detection apparatus and method for total phosphorus content in soil |
CN102901717A (en) * | 2012-06-12 | 2013-01-30 | 中国科学院安徽光学精密机械研究所 | Laser-induced breakdown spectroscopy-based portable handheld soil heavy mental detection device |
CN103424389A (en) * | 2013-07-25 | 2013-12-04 | 华南师范大学 | Test system for measuring PL spectrum and PLE spectrum of fluorescent powder |
CN103604782A (en) * | 2013-11-22 | 2014-02-26 | 天津陆海石油设备系统工程有限责任公司 | Solid sample element analyzer based on laser technology |
CN104730046A (en) * | 2015-03-20 | 2015-06-24 | 杭州电子科技大学 | Laser-induced breakdown trace amount substance analysis device |
CN105510243A (en) * | 2015-12-31 | 2016-04-20 | 聚光科技(杭州)股份有限公司 | Spectral analysis device |
CN106950183A (en) * | 2017-02-28 | 2017-07-14 | 中国科学院合肥物质科学研究院 | A kind of portable soil nutrient detection means based on spectral technique |
CN107607495A (en) * | 2017-10-31 | 2018-01-19 | 北京农业智能装备技术研究中心 | A kind of soil total N content detecting system and method |
CN107931315A (en) * | 2017-10-27 | 2018-04-20 | 南方科技大学 | Land pollution treatment system |
CN109060755A (en) * | 2018-10-19 | 2018-12-21 | 南京贻润环境科技有限公司 | A kind of soil pollution real-time in-situ detection device based on laser fluorescence inductive technology |
CN109115546A (en) * | 2018-08-22 | 2019-01-01 | 滑县恒琢信息科技有限公司 | A kind of greening gardens soil pollution by heavy metal object administers sampling system |
CN110296974A (en) * | 2019-07-16 | 2019-10-01 | 钇斯特激光科技(天津)有限责任公司 | Quantitative LIBS laser system and quantitative approach |
CN110346260A (en) * | 2019-08-02 | 2019-10-18 | 东北石油大学 | Fine and close oil reservoir matrix rock core static state imbibition recovery ratio laser measuring device for measuring and method |
CN111551510A (en) * | 2020-05-22 | 2020-08-18 | 浙江科达检测有限公司 | Soil heavy metal ion detection system and detection method |
CN111855643A (en) * | 2020-07-21 | 2020-10-30 | 华谱智能科技(天津)有限公司 | LIBS soil detection method, system and equipment for realizing self-adaptive spectral line balance |
-
2007
- 2007-12-21 CN CNA2007101726909A patent/CN101196471A/en active Pending
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102253020B (en) * | 2011-05-03 | 2012-12-05 | 杭州电子科技大学 | Cavity enhanced detection apparatus for heavy metal content in air |
CN102253020A (en) * | 2011-05-03 | 2011-11-23 | 杭州电子科技大学 | Cavity enhanced detection apparatus for heavy metal content in air |
CN102680413A (en) * | 2012-05-25 | 2012-09-19 | 浙江大学 | Device and method for hyperspectral rapid detection on content of field soil organic matters by using panoramic annular belt |
CN102901717B (en) * | 2012-06-12 | 2014-10-29 | 中国科学院安徽光学精密机械研究所 | Laser-induced breakdown spectroscopy-based portable handheld soil heavy mental detection device |
CN102901717A (en) * | 2012-06-12 | 2013-01-30 | 中国科学院安徽光学精密机械研究所 | Laser-induced breakdown spectroscopy-based portable handheld soil heavy mental detection device |
CN102680436A (en) * | 2012-06-16 | 2012-09-19 | 山西大学 | Method and device for measuring content of carbon in coal ash |
CN102830071A (en) * | 2012-08-13 | 2012-12-19 | 浙江大学 | Detection apparatus and method for total phosphorus content in soil |
CN102830071B (en) * | 2012-08-13 | 2015-01-21 | 浙江大学 | Detection apparatus and method for total phosphorus content in soil |
CN103424389B (en) * | 2013-07-25 | 2016-06-22 | 华南师范大学 | A kind of test system of the PL spectrum measuring fluorescent material and PLE spectrum |
CN103424389A (en) * | 2013-07-25 | 2013-12-04 | 华南师范大学 | Test system for measuring PL spectrum and PLE spectrum of fluorescent powder |
CN103604782A (en) * | 2013-11-22 | 2014-02-26 | 天津陆海石油设备系统工程有限责任公司 | Solid sample element analyzer based on laser technology |
CN104730046A (en) * | 2015-03-20 | 2015-06-24 | 杭州电子科技大学 | Laser-induced breakdown trace amount substance analysis device |
CN105510243A (en) * | 2015-12-31 | 2016-04-20 | 聚光科技(杭州)股份有限公司 | Spectral analysis device |
CN106950183A (en) * | 2017-02-28 | 2017-07-14 | 中国科学院合肥物质科学研究院 | A kind of portable soil nutrient detection means based on spectral technique |
CN107931315A (en) * | 2017-10-27 | 2018-04-20 | 南方科技大学 | Land pollution treatment system |
CN107607495A (en) * | 2017-10-31 | 2018-01-19 | 北京农业智能装备技术研究中心 | A kind of soil total N content detecting system and method |
CN107607495B (en) * | 2017-10-31 | 2020-06-09 | 北京农业智能装备技术研究中心 | System and method for detecting total nitrogen content of soil |
CN109115546A (en) * | 2018-08-22 | 2019-01-01 | 滑县恒琢信息科技有限公司 | A kind of greening gardens soil pollution by heavy metal object administers sampling system |
CN109060755A (en) * | 2018-10-19 | 2018-12-21 | 南京贻润环境科技有限公司 | A kind of soil pollution real-time in-situ detection device based on laser fluorescence inductive technology |
CN110296974A (en) * | 2019-07-16 | 2019-10-01 | 钇斯特激光科技(天津)有限责任公司 | Quantitative LIBS laser system and quantitative approach |
CN110346260A (en) * | 2019-08-02 | 2019-10-18 | 东北石油大学 | Fine and close oil reservoir matrix rock core static state imbibition recovery ratio laser measuring device for measuring and method |
CN110346260B (en) * | 2019-08-02 | 2022-03-08 | 东北石油大学 | Laser measurement device and method for static imbibition recovery factor of tight oil reservoir matrix core |
CN111551510A (en) * | 2020-05-22 | 2020-08-18 | 浙江科达检测有限公司 | Soil heavy metal ion detection system and detection method |
CN111855643A (en) * | 2020-07-21 | 2020-10-30 | 华谱智能科技(天津)有限公司 | LIBS soil detection method, system and equipment for realizing self-adaptive spectral line balance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101196471A (en) | Quantitative detection system and detection method of soil heavy metal pollution | |
CN102262075B (en) | Method for measuring elemental concentration through laser-induced breakdown spectroscopy based on spectrophotometry | |
Body et al. | Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system | |
CN103175808B (en) | Laser-induced breakdown spectroscopy analysis system and method | |
CN107014804B (en) | Device and method for inhibiting self-absorption effect of laser-induced breakdown spectroscopy through microwave-assisted excitation | |
CN102507512A (en) | An In-Situ Detection Method of Infrared-Ultraviolet Double Pulse Laser-Induced Breakdown Spectroscopy | |
CN102788771B (en) | Method for measuring content of powdery substantial elements based on laser-induced breakdown spectroscopy | |
CN102798625B (en) | Laser-induced breakdown spectroscopy measurement method for element content of powdery substance | |
CN103529000A (en) | Single-light-source dual-wavelength laser-induced breakdown spectroscopy measurement device and method | |
CN105572103A (en) | Method for quantitatively detecting multiple heavy metals in leather at same time based on LIBS (Laser-Induced Breakdown Spectroscopy) technology | |
CN103954593A (en) | Plasma signal acquisition device based on laser-induced-breakdown spectroscopy | |
Sarkar et al. | Laser-induced breakdown spectroscopy for determination of uranium in thorium–uranium mixed oxide fuel materials | |
CN104730044B (en) | Device and method for synchronous acquisition of atomic and molecular spectra | |
CN113189082B (en) | Trace organic pollutant analytical spectrometer based on double-pulse-width laser and detection method | |
CN116297319A (en) | Lily heavy metal accurate detection method and system based on LIBS and NIR data fusion | |
CN112255149B (en) | Method, system and storage medium for detecting particle size of loose particle accumulation | |
CN116990282A (en) | LIBS-based oil-gas shale analysis method | |
CN110082342A (en) | Utilize the method and apparatus of laser spectrum measurement Combustion Flow Field material composition concentration | |
CN1908626B (en) | Laser-induced dissociation spectroscopy detection system and detection method for simulating space environment | |
CN103063622B (en) | Portable rapid element composition analyzer | |
CN103543131B (en) | A kind of method improving elements are contained precision based on dipulse and space restriction effect | |
CN201449373U (en) | Photoelectric Double Pulse Laser Induced Breakdown Spectrometer | |
CN203465202U (en) | Portable laser probe component analysis device | |
CN103558191B (en) | A kind of portable laser probe analytical instrument | |
CN203606283U (en) | Single-light-source dual-wavelength laser-induced breakdown spectroscopy measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |