CN101189532B - Distance measuring device - Google Patents
Distance measuring device Download PDFInfo
- Publication number
- CN101189532B CN101189532B CN200680019988XA CN200680019988A CN101189532B CN 101189532 B CN101189532 B CN 101189532B CN 200680019988X A CN200680019988X A CN 200680019988XA CN 200680019988 A CN200680019988 A CN 200680019988A CN 101189532 B CN101189532 B CN 101189532B
- Authority
- CN
- China
- Prior art keywords
- light
- mentioned
- distance measuring
- range finding
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005259 measurement Methods 0.000 claims abstract description 75
- 238000001514 detection method Methods 0.000 claims abstract description 57
- 230000003287 optical effect Effects 0.000 claims description 53
- 239000013307 optical fiber Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 6
- 101100269674 Mus musculus Alyref2 gene Proteins 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 101100537098 Mus musculus Alyref gene Proteins 0.000 description 1
- 101150095908 apex1 gene Proteins 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C15/00—Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
- G01C15/002—Active optical surveying means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C3/00—Measuring distances in line of sight; Optical rangefinders
- G01C3/02—Details
- G01C3/06—Use of electric means to obtain final indication
- G01C3/08—Use of electric radiation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/32—Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
- G01S17/36—Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
本发明的距离测定装置设有:将测距光(22)照射到测定对象物的光发射部;处于已知位置的基准反射部(55),设置成可相对移动以横截所照射的测距光;光检测部(7),将来自上述测定对象物的反射光作为反射测距光(22′)检测,并将来自上述基准反射部的反射光作为内部参考光(22″)检测;以及控制运算部(15),根据涉及上述反射测距光的光检测信号和涉及上述内部参考光的光检测信号来计算到测定对象物的距离。
The distance measuring device of the present invention is provided with: a light emitting part that irradiates the distance measuring light (22) to the measuring object; Distance light: The light detection unit (7) detects the reflected light from the above-mentioned measurement object as reflected distance measuring light (22′), and detects the reflected light from the above-mentioned reference reflection unit as internal reference light (22″); And a control calculation unit (15) that calculates the distance to the object to be measured based on the light detection signal related to the reflected distance measuring light and the light detection signal related to the internal reference light.
Description
技术领域technical field
本发明涉及通过激光照射测定对象物并检测来自测定对象物的反射光来进行距离测定的距离测定装置。The present invention relates to a distance measuring device for performing distance measurement by irradiating a measurement object with laser light and detecting reflected light from the measurement object.
背景技术Background technique
作为距离测定装置,有用激光束照射测定对象物,利用来自测定对象物的反射光来测定至测定对象物的距离的光学距离测定装置。As the distance measuring device, there is an optical distance measuring device that irradiates the object to be measured with a laser beam, and measures the distance to the object to be measured by using the reflected light from the object to be measured.
传统的光学距离测定装置中,以一定的频率对激光束进行强度调制后作为测距光射出,检测被测定对象物反射的反射测距光,将所检测的反射测距光的强度调制的相位,跟距离测定装置内部形成的在参考光路得到的内部参考光的强度调制的相位进行比较,根据相位差测定至测定对象物的距离。In the traditional optical distance measuring device, the intensity of the laser beam is modulated at a certain frequency and emitted as distance measuring light, the reflected distance measuring light reflected by the object to be measured is detected, and the phase of the intensity modulation of the detected reflected distance measuring light is The phase of the intensity modulation of the internal reference light obtained in the reference optical path formed inside the distance measuring device is compared, and the distance to the object to be measured is measured based on the phase difference.
在上述距离测定装置进行的距离测定中,利用了上述相位差随着测距距离而变化的事实,若以Δφ表示内部参考光与反射测距光之间的相位差,D表示测距距离,f表示调制频率,C表示光速,则相位差Δφ用下式1表示。In the distance measurement carried out by the distance measuring device, the fact that the above-mentioned phase difference varies with the ranging distance is utilized. If Δφ is used to represent the phase difference between the internal reference light and the reflected ranging light, and D represents the ranging distance, f represents the modulation frequency, C represents the speed of light, and the phase difference Δφ is expressed by the
Δφ=4πfD/C (式1)Δφ=4πfD/C (Formula 1)
从而,测距距离D可通过测定相位差Δφ求出,此外,由于参考光路长已知,可用内部参考光路修正求出的测定距离,从而得到正确的测定距离。Therefore, the ranging distance D can be obtained by measuring the phase difference Δφ. In addition, since the reference optical path length is known, the internal reference optical path can be used to correct the calculated measuring distance, so as to obtain the correct measuring distance.
另外,在距离测定中,距离测定装置内部的检测电路等的漂移会造成测定误差,但是通过比较内部参考光和反射测距光的相位,检测电路等漂移的影响便相互抵消,故可算出正确的距离。In addition, in the distance measurement, the drift of the detection circuit inside the distance measuring device will cause measurement errors, but by comparing the phases of the internal reference light and the reflected distance measuring light, the influence of the drift of the detection circuit will cancel each other out, so the correct calculation can be made. distance.
接着,参照图7概要说明传统的距离测定装置。Next, an outline of a conventional distance measuring device will be described with reference to FIG. 7 .
激光二极管等发光元件1发出由发光驱动电路12以预定频率作了强度调制的激光束。该激光用半反射镜2分割为测距光3和内部参考光4,透过上述半反射镜2的上述测距光3通过物镜5照射在测定对象物6(例如,隅角棱镜等的反光镜)上,该测定对象物6所反射的反射测距光3’通过上述物镜5、半反射镜8后由光敏二极管等光检测元件7检测。A light-emitting
上述半反射镜2所反射的上述内部参考光4,被上述反射测距光3’的光路上的上述半反射镜8反射,由上述光检测元件7检测。该光检测元件7的光检测信号被输入光检测电路13,该光检测电路13为进行测距运算而处理从上述光检测元件7输入的信号。The
在上述测距光3的光路和上述内部参考光4的光路上跨接光路切换器9,另外,在上述反射测距光3’的光路上,设置光量调整器11。上述光路切换器9对上述测距光3的光路和上述内部参考光4的光路,两者择其一地截断一个,使另一个透过,由上述光检测元件7交替地检测上述反射测距光3′和上述内部参考光4。An optical path switcher 9 is bridged between the optical path of the
如上所述,由于使用光强度调制后的测距光3,求出从该测距光3得到的内部参考光4和反射测距光3′的相位差来进行距离运算,该反射测距光3′和上述内部参考光4的检测光量不同,会影响距离测定的精度。因而,设置了上述光量调整器11。该光量调整器11,具有浓度连续变化的振幅滤光片,通过使该振幅滤光片旋转,将上述反射测距光3′的检测光量调整到一定值。由于上述光量调整器11,即使上述测定对象物6的距离造成的反射光量变化,也可使上述光检测元件7检测的上述内部参考光4的检测光量与上述反射测距光3′的检测光量相等。As described above, since the
上述光路切换器9进行的光路切换和上述光量调整器11进行的光量调整,由驱动电路14控制。The optical path switching by the optical path switcher 9 and the light amount adjustment by the light amount adjuster 11 are controlled by the
控制运算部15控制发光驱动电路12,使从上述发光元件1射出的激光束受到预定频率的光强度调制,另外,上述驱动电路14控制上述光路切换器9的光路切换的定时。还有,上述控制运算部15根据上述光检测元件7的光检测信号,向上述驱动电路14发出使上述反射测距光3′的光量与上述内部参考光4的光量相等的控制信号。The
上述光检测电路13对来自上述光检测元件7的信号进行放大、A/D变换等的信号处理,同时进行求出上述内部参考光4的调制频率和上述反射测距光3′的调制频率的相位差等处理,送往上述控制运算部15。该控制运算部15根据从上述光检测电路13送来的相位差,用上式1算出至上述测定对象物6的距离。The
在上述传统的距离测定装置中,上述光路切换器9进行的上述内部参考光4和上述反射测距光3′之间的切换是机械切换。In the above conventional distance measuring device, the switching between the
光路切换和光量调整均以机械方式进行,难以进行高速的光路切换和高速的光量调整,因此不能进行高速距离测定。因而,虽然对建筑物等测定对象物进行距离测定时不会有问题,但是在用1个测定装置连续对多个移动体(例如,推土机等建筑机械)进行距离测定等要求高速距离测定的场合,就会遇到困难。另外,在用全站仪等对建筑物等进行三维测定的场合,必须通过自动测量对多个点进行测量,要求测定速度高速化。另外,在对移动体等进行测量的情况下,会产生光路切换速度、光量调整速度跟不上移动体的移动速度、距离测定无法进行等的问题。Both optical path switching and light intensity adjustment are performed mechanically, and it is difficult to perform high-speed optical path switching and high-speed light intensity adjustment, so high-speed distance measurement cannot be performed. Therefore, although there is no problem when measuring the distance of a measurement object such as a building, there is a need for high-speed distance measurement such as continuous distance measurement of multiple moving objects (for example, construction machinery such as bulldozers) with a single measurement device. , you will encounter difficulties. In addition, in the case of three-dimensional measurement of buildings, etc., by using a total station or the like, it is necessary to measure a plurality of points by automatic measurement, and it is required to increase the measurement speed. In addition, when measuring a moving body or the like, there are problems such as that the speed of switching the optical path and the speed of adjusting the light quantity cannot keep up with the moving speed of the moving body, and that distance measurement cannot be performed.
再有,作为使测距光旋转而进行多向、多点距离测定的距离测定装置,有日本专利公报第2694647号公报、日本特开平4-31 301 3号公报所揭示的装置。In addition, as a distance measuring device that rotates the distance measuring light to perform multi-directional and multi-point distance measurement, there are devices disclosed in Japanese Patent Publication No. 2694647 and Japanese Patent Application Laid-Open No. 4-313013.
鉴于这种情况,本发明的目的在于提供一种在距离测定装置中使光路切换、光量调整高速化,实现距离测定高速化的距离测定装置。In view of such circumstances, an object of the present invention is to provide a distance measuring device that speeds up switching of optical paths and adjustment of light intensity in the distance measuring device, and realizes speeding up of distance measurement.
发明内容Contents of the invention
本发明是一种距离测定装置,具有将测距光照射在测定对象物上的光发射部;可相对移动以横截所照射的测距光的处于已知位置的基准反射部;将来自上述测定对象物的反射光作为反射测距光并将来自上述基准反射部的反射光作为内部参考光而进行光检测的光检测部;以及根据涉及上述反射测距光的光检测信号和涉及上述内部参考光的光检测信号,计算到达测定对象物的距离的控制运算部,The present invention is a distance measuring device, which has a light emitting part that irradiates distance measuring light on an object to be measured; a reference reflector at a known position that is relatively movable to cross the irradiated distance measuring light; a photodetector for optically detecting reflected light from the object to be measured as reflected distance-measuring light and reflected light from the reference reflector as internal reference light; A control calculation unit that calculates the distance to the object to be measured with reference to the light detection signal of the light,
另外,本发明是这样一种距离测定装置,在设置上述基准反射部在光路上设有使上述内部参考光的光量变化的光量调整部件,In addition, the present invention is a distance measuring device in which a light quantity adjusting member for changing the light quantity of the internal reference light is provided on the optical path provided with the above-mentioned reference reflector,
另外,本发明是这样一种距离测定装置,其上述光量调整部件是在测距光穿越方向上浓度逐渐变化的滤光片,In addition, the present invention is a distance measuring device, wherein the above-mentioned light amount adjusting member is an optical filter whose density gradually changes in the direction in which the distance measuring light passes,
另外,本发明是这样一种距离测定装置,其上述光量调整部件与上述基准反射部一体地设置,In addition, the present invention is a distance measuring device in which the light quantity adjusting member is provided integrally with the reference reflecting portion,
另外,本发明是这样一种距离测定装置,它扫描至少包含上述测距光的测定对象物测定区域,上述基准反射部处于扫描范围内,上述测距光至少扫描包含测定对象物的测定区域,上述基准反射部位于扫描范围内,且配置在不干涉来自测定对象物的反射光的位置上,In addition, the present invention is a distance measuring device that scans a measurement area of an object to be measured including at least the distance-measuring light, the reference reflector is within the scanning range, and the distance-measuring light scans at least the measurement area including the object to be measured, The above-mentioned reference reflector is located within the scanning range and arranged at a position where it does not interfere with reflected light from the object to be measured,
另外,本发明是这样一种距离测定装置,其上述控制运算部根据检测光量变化的光检测信号生成与多个检测光量强度对应的多个内部参考基准,选择与反射测距光的光量对应的内部参考基准,并根据所选择的上述内部参考基准和反射测距光的光检测信号来计算到达测定对象物的距离,In addition, the present invention is a distance measuring device, wherein the control calculation unit generates a plurality of internal reference standards corresponding to a plurality of detected light intensity intensities based on the light detection signal of the detected light amount change, and selects the internal reference standard corresponding to the light amount of the reflected distance measuring light. internal reference, and calculate the distance to the object to be measured based on the selected internal reference and the light detection signal of the reflected ranging light,
另外,本发明是这样一种距离测定装置,其检测光量的变化通过测距光穿越滤光片而得到,In addition, the present invention is such a distance measuring device, the change of the detected light quantity is obtained by passing the distance measuring light through a filter,
另外,本发明是这样一种距离测定装置,其上述基准反射部由使上述基准反射部相对上述测距光移动的移动机构部支持,该移动机构部使上述基准反射部保持在偏离于测定方向的位置上移动,In addition, the present invention is a distance measuring device, wherein the reference reflection unit is supported by a moving mechanism unit that moves the reference reflection unit relative to the distance measuring light, and the movement mechanism unit keeps the reference reflection unit at a position deviated from the measurement direction. move in position,
另外,本发明是这样一种距离测定装置,其上述移动机构部具有检测上述基准反射部的位置的位置检测装置,上述控制运算部具有与上述基准反射部的位置对应的误差数据,上述光检测部根据与检测内部参照光时上述基准反射部的位置对应的误差,修正测定结果,In addition, the present invention is a distance measuring device, wherein the moving mechanism part has a position detection device for detecting the position of the reference reflection part, the control operation part has error data corresponding to the position of the reference reflection part, and the light detection The part corrects the measurement result according to the error corresponding to the position of the above-mentioned reference reflection part when detecting the internal reference light,
本发明还是这样一种距离测定装置,上述光发射部设有:使测距光在测定方向上偏转而照射的偏转光学部件;保持该偏转光学部件并可使之旋转的回转部;设置成可与该回转部的旋转中心同心地自由旋转的基准反射棱镜;以及使该基准反射棱镜独立于上述偏转光学部件而旋转的回转驱动部。The present invention is also such a distance measuring device, wherein the above-mentioned light emitting part is provided with: a deflecting optical component for deflecting and irradiating the distance measuring light in the measuring direction; a rotating part for holding and rotating the deflecting optical component; a reference reflective prism freely rotatable concentrically with the rotation center of the rotatable unit; and a rotatable drive unit that rotates the reference reflective prism independently of the deflection optical member.
附图说明Description of drawings
图1是概略表示本发明实施例的说明图;FIG. 1 is an explanatory diagram schematically showing an embodiment of the present invention;
图2是表示本发明实施例的距离测定装置的激光束发射部的剖面图;2 is a cross-sectional view showing a laser beam emitting portion of a distance measuring device according to an embodiment of the present invention;
图3是该距离测定装置测距部的略图;Fig. 3 is a schematic diagram of the distance measuring unit of the distance measuring device;
图4(A)表示光检测元件的光检测状态;Fig. 4 (A) shows the light detection state of the light detection element;
图4(B)是光检测信号的放大图;Figure 4 (B) is an enlarged view of the light detection signal;
图5是表示上述距离测定装置中在基准反射棱镜旋转后误差的说明图;Fig. 5 is an explanatory diagram showing the error after the reference reflective prism is rotated in the above-mentioned distance measuring device;
图6该反射基准棱镜旋转后误差与旋转角的对应表数据;The corresponding table data of the error and the rotation angle after the rotation of the reflection reference prism in Fig. 6;
图7是传统距离测定装置的略图。Fig. 7 is a schematic diagram of a conventional distance measuring device.
具体实施方式Detailed ways
以下,参照附图说明本发明的最佳实施例。首先,用图1概要说明本发明实施例的测定。在图1所示的距离测定装置17中,可形成水平基准面,并测定至测定对象物16的距离。Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. First, the measurement in the example of the present invention will be schematically described with reference to FIG. 1 . In the
上述距离测定装置17具有基准面形成部(图中未示出)和测距部19(后述)。上述距离测定装置17使基准面形成用激光束21回转照射,同时回转照射测距光22,使得用测距光测定至多个位置处的上述测定对象物16的距离成为可能。The
上述基准面形成部回转照射上述基准面形成用激光束21,形成水平基准面23。上述基准面形成用激光束21由至少1个倾斜的多个扇状激光束组成。另外,作为回转照射一个倾斜的3个以上的扇状激光束的激光装置,有日本特开2004-212058号公报提出的旋转激光装置。The reference plane forming unit turns and irradiates the reference plane forming
回转照射上述基准面形成用激光束21,测定对象物具有光检测器(图中未示出),通过求出该光检测器检测2个以上扇状激光束的时间差,根据该时间差和上述扇状激光束的倾斜角,求出相对于以上述距离测定装置17为中心的上述水平基准面23的仰角。另外,可根据仰角设定倾斜基准面。The
图2、图3概略表示本发明实施例的距离测定装置,图2表示上述距离测定装置17的激光束发射部24,图3表示上述距离测定装置17的上述测距部19的简略结构。上述激光束发射部24由基准面形成用光发射部25和测距用光发射部26构成,上述基准面形成用光发射部25和上述测距用光发射部26可以分别独立地照射上述基准面形成用激光束21和上述测距光22。另外,在本实施例中,上述基准面形成用激光束21和上述测距光22的照射方向是相同的,但也可以不同,例如相差180°。2 and 3 schematically show a distance measuring device according to an embodiment of the present invention. FIG. Above-mentioned laser
图2中,27表示距离测定装置17机架的顶板部,在机架的内部装入基准面形成用激光光源部(图中未示出)。在上述顶板部27的上侧,配置圆筒状的投射窗28,该投射窗28用透明玻璃等材料与上述基准面形成用光发射部25的光轴同心地设置。在上述投射窗28的上端设置上基板29,在上述投射窗28的内部设置中间基板31。In FIG. 2, 27 denotes the top plate portion of the frame of the
与上述基准面形成用光发射部25的光轴同心地配置园筒状棱镜支架32,该棱镜支架32由轴承33、34支承在上述顶板部27的上述中间基板31上自由旋转。A
在上述棱镜支架32的内部,作为偏转光学部件设置五棱镜42,在与上述棱镜支架32的上述五棱镜相对的部分穿孔而设置第1投射孔43,从上述基准面形成用激光光源部射出的基准面形成用激光束21在上述五棱镜42上在水平方向上发生偏转,通过上述第1投射孔43照射出去。In the inside of the above-mentioned
在上述棱镜支架32的上端设置第1旋转齿轮35,上述中间基板31上装有第1回转电动机36,该第1回转电动机36的输出轴上安装的第1驱动齿轮37与上述第1旋转齿轮35啮合。通过驱动上述第1回转电动机36,上述第1驱动齿轮37经过上述第1旋转齿轮35使上述五棱镜42旋转,上述基准面形成用激光束21便在水平面内旋转。A
另外,上述中间基板31上装有第1编码器38,该第1编码器38的输入轴上安装的第1从动齿轮39与上述第1旋转齿轮35啮合,该第1旋转齿轮35的旋转角经上述第1从动齿轮39由上述第1编码器38检测,检测出上述基准面形成用激光束21的照射方向。In addition, the
反射镜支架44与上述棱镜支架32同心地设置在该棱镜支架32的上侧,该反射镜支架44保持作为偏转光学部件的反光镜45,在面向该反光镜45的反射面的部分设置第2投射孔46。上述反射镜支架44可与上述棱镜支架32一体化,使上述五棱镜42与上述反光镜45的同光轴地一起旋转。还有,以同一光轴转动时,不一体化也行。The
在上述上基板29上设置镜筒47,该镜筒47的中心和上述反射镜支架44的中心一致,另外,在上述镜筒47中保持聚焦透镜48。在上述镜筒47中,经轴承49设置可自由旋转的旋转环套50,该旋转环套50上装有第2旋转齿轮51。A lens barrel 47 is provided on the
在上述上基板29中设置第2回转电动机52,该第2回转电动机52的输出轴上安装第2驱动齿轮53,该第2驱动齿轮53与上述第2旋转齿轮51啮合。A
另外,在上述旋转环套50上固定反射棱镜保持构件54,在该反射棱镜保持构件54上固定作为基准反射部的内部光路用的基准反射棱镜55。在内部光路上,例如,在基准反射棱镜55的反射面上设置振幅滤光片56。该振幅滤光片56在水平方向上连续地改变浓度,以连续地减小或连续地增加激光的透射光量。另外,上述振幅滤光片56也可分阶段地改变浓度,实际上也可在旋转扫描方向上逐渐改变浓度。In addition, a reflective
具体地说,将上述基准反射棱镜55设为隅角棱镜,将滤光片贴在隅角棱镜上,使中心附近的透射率高,越向周边透射率越低。Specifically, the above-mentioned reference
在上述上基板29上安装第2编码器58,该第2编码器58的输入轴上装有第2从动齿轮57,该第2从动齿轮57与上述第2旋转齿轮51啮合。A
通过驱动上述第2回转电动机52,上述基准反射棱镜55经由上述第2驱动齿轮53、上述第2旋转齿轮51、上述旋转环套50与上述振幅滤光片56一起旋转,另外,上述旋转环套50的旋转角,经由上述第2旋转齿轮5 1、上述第2从动齿轮57由上述第2编码器58检测。By driving the second
在上述聚焦透镜48的光轴上配置偏转反射镜62,并确定射出用光纤61的射出端位置,使之对着该偏转反射镜62的反射面。另外,在上述聚焦透镜48的光轴上,将检测光用光纤63的入射端位置确定在聚焦位置上。A
上述射出用光纤61将发光元件1射出的上述测距光22引向上述偏转反射镜,上述检测光用光纤63将反射测距光22′、内部参考光22″引向光检测元件7。The output
现参照图3就测距部19进行说明。Now, the
在图3中,与图7中所示相同者,标以相同的标记。In FIG. 3 , those that are the same as those shown in FIG. 7 are denoted by the same symbols.
在上述发光元件1的射出光轴上配置聚焦透镜59,在该聚焦透镜59的聚焦位置上配置上述射出用光纤61的入射端。该射出用光纤61,如上所述,将上述测距光22引向上述偏转反射镜62。A
在上述聚焦透镜48的聚焦位置上,配置上述光检测用光纤63的入射端,该光检测用光纤63的射出端配置在聚焦透镜64的光轴上,从上述光检测用光纤63射出上述反射测距光22′,上述内部参考光22″通过上述聚焦透镜64聚焦在上述光检测元件7上。On the focal position of the above-mentioned focusing
发光驱动电路12根据来自控制运算部15的控制信号控制上述发光元件1的驱动发光,并且光检测电路13对来自上述光检测元件7的光检测信号进行放大、A/D变换等所需的处理,处理后的信号送往上述控制运算部15。The light-emitting
该控制运算部15设有存储部65,在该存储部65中存入进行伴随距离测定的运算的测距运算程序和用以进行测定的顺序控制程序等程序,另外,上述存储部65还存储来自上述光检测元件7的光检测信号的随时间光量变化和测定中数据等。The
上述控制运算部15根据上述顺序控制程序,向上述第1回转电动机36用的第1电动机控制部66、上述第2回转电动机52用的第2电动机控制部67发出控制信号,上述第1电动机控制部66控制上述第1回转电动机36的旋转与停止,上述第2电动机控制部67控制上述第2回转电动机52的旋转与停止。The above-mentioned
上述第1编码器38检测上述反射镜支架44的旋转角,送往上述控制运算部15,另外,上述第2编码器58检测上述基准反射棱镜55的旋转角,送往上述控制运算部15。The
以下就测定动作进行说明。The measurement operation will be described below.
上述发光元件1通过上述发光驱动电路12以一定的频率进行强度调制并发光,射出测距用的激光束。来自上述发光元件1的激光束由上述聚焦透镜59聚焦在上述射出用光纤61的入射端。引向该射出用光纤61的激光束,从射出端作为上述测距光22射出,该测距光22由上述偏转反射镜62反射到上述聚焦透镜48的光轴上,进而在该聚焦透镜48上聚焦,入射到上述反光镜45,由该反光镜45偏转,以上述投射窗28所要求的发散角在水平方向照射。The light-emitting
在上述测距光22射出且上述基准面形成用激光束21射出的状态下,上述第1回转电动机36被驱动,经过上述第1驱动齿轮37、上述第1旋转齿轮35使上述五棱镜42、上述反光镜45旋转,透过上述投射窗28回转照射上述基准面形成用激光束21、上述测距光22,或者至少用上述基准面形成用激光束21和上述测距光22旋转扫描测定对象物存在的测定区域。In the state where the
还有,在进行距离测定的状态、即照射上述测距光22的状态下,用上述第2回转电动机52使上述基准反射棱镜55旋转,使该基准反射棱镜55成为处于偏离测定对象物的方向即测距方向的状态,另外,使上述第2回转电动机52停止,并使上述基准反射棱镜55保持在不影响测定的预定位置上。Also, in the state where the distance measurement is performed, that is, the state where the
还有,在有多个测定对象物,上述基准反射棱镜55保持在预定位置就会妨碍测定时,也可配合上述反光镜45的旋转而使上述基准反射棱镜55旋转,以避免测定方向与该基准反射棱镜55的位置处于重叠的状态。就是说,由于上述测定对象物所在的方向可通过上述第1编码器38检测,预先进行旋转扫描而求出测定对象物的位置,可根据来自上述第2编码器58的检测结果,使上述基准反射棱镜55移动到偏离于测定方向的位置上。Also, when there are a plurality of objects to be measured and the above-mentioned reference
回转照射上述测距光22,该测距光22通过测定对象物,从而上述测距光22被测定对象物反射。测定对象物所反射的反射测距光22’入射到上述反光镜45,由该反光镜45反射,并由上述聚焦透镜48聚焦,从入射端面入射到上述光检测用光纤63。从该光检测用光纤63射出的上述反射测距光22’经上述聚焦透镜64聚焦后,由上述光检测元件7检测。来自该光检测元件7的光检测信号经放大、A/D变换等之后,被送往上述控制运算部15,经过该控制运算部15之后存入上述存储部65。The distance-measuring
另外,通过回转照射上述测距光22,该测距光22也通过上述基准反射棱镜55,在通过的过程中被基准反射棱镜55反射,被反射的激光束再被上述反光镜45反射,经过上述聚焦透镜48、上述光检测用光纤63,作为内部参考光22″被上述光检测元件7检测。In addition, by rotating and irradiating the above-mentioned
此时,经由上述射出用光纤61、上述反光镜45、上述基准反射棱镜55、上述反光镜45、上述光检测用光纤63而到达上述光检测元件7的光路形成内部参考光路。另外,该内部参考光路的长度为设计值或通过实测而知的值。At this time, the optical path reaching the
来自上述光检测元件7的光检测信号被输入上述光检测电路13,该光检测电路13对关于上述反射测距光22’、上述内部参考光22″的光检测信号进行放大、A/D变换等所要的处理,处理后的信号被送到上述控制运算部15,经过该控制运算部15的处理后存入上述存储部65。上述控制运算部15,用存入上述存储部65的测距运算程序,根据该存储部65存储的光检测信号,计算出上述反射测距光22’和上述内部参考光22″的相位差,并根据算出的相位差和光速计算到达测定对象物的距离。The photodetection signal from the
接着,参照图4(A)、4(B)说明上述反射测距光22’和上述内部参考光22”。Next, the above-mentioned reflected distance measuring light 22' and the above-mentioned
如上所述,在本发明中回转照射上述测距光22,或往复扫描预定范围来进行距离测定。例如,在回转照射上述测距光22的场合,在只有一个测定对象物时,通过将上述反光镜45旋转一圈,也就是将上述测距光22旋转一圈,上述光检测元件7检测一个来自测定对象物的上述反射测距光22’和一个上述内部参考光22″。As described above, in the present invention, the above-mentioned
如上所述,在上述基准反射棱镜55的反射面上设置上述振幅滤光片56,上述测距光22在水平方向穿越上述基准反射棱镜55的过程中,上述测距光22同样穿越上述振幅滤光片56。该振幅滤光片56在水平方向上浓度逐渐变化,透过该振幅滤光片56的上述内部参考光22″的光量逐渐变化。另外,设定该内部参考光22″的光量变化量,使得它与来自处于近距离的测定对象物的反射测距光22’的光量和来自处于远距离的测定对象物的反射测距光22’之间的光量变化相等,或具有该量以上的大小。具体地说,可将上述内部参考光22″的光量变化量设为光检测部的动态范围内的最大,或者也可设定为处于动态范围内。As mentioned above, the above-mentioned
图4(A),图4(B)表示上述光检测元件7的光检测信号,图中,71表示检测上述内部参考光22″而得到的参考信号,72表示检测上述反射测距光22′而得到的测距信号(外部信号)。Fig. 4 (A), Fig. 4 (B) represent the photodetection signal of above-mentioned
上述参考信号71分割为所要强度级。例如,如图4(B)所示,该参考信号71被分成5个强度级L1、L2、L3、L4和L5,另外,分割为与强度级L1、L2、L3、L4和L5对应的Z1、Z2、Z3、Z4和Z5等5个区。The
在上述参考信号71中,提取并生成为具有与强度级1一致的光量的那部分光检测信号作为内部参考光Ref1、具有与强度级2一致的光量的那部分光检测信号作为内部参考光Ref2、具有与强度级3一致的光量的那部分光检测信号作为内部参考光Ref3、具有与强度级4一致的光量的那部分光检测信号作为内部参考光Ref4、具有与强度级1一致的光量的那部分光检测信号作为内部参考光Ref5,并存入上述存储部65。Of the above-mentioned
上述控制运算部15根据上述光检测元件7送来的光检测信号计算上述反射测距光22′的检测光量,并从存入上述存储部65的多个(在图4中为5个)内部参考光Ref中选择与上述反射测距光22′所具有的光量对应的内部参考光Ref。The above-mentioned
例如,在上述反射测距光22′的检测光量在比强度级L1大,比强度级L2小的区域Z2时,作为内部参考光Ref,选择内部参考光Ref2的光检测信号,根据该内部参考光Ref2的光检测信号和上述测距信号72,计算相位差,进而根据相位差和光速算出距离。For example, when the detected light quantity of the above-mentioned reflected ranging light 22' is in the area Z2 which is larger than the intensity level L1 and smaller than the intensity level L2, the light detection signal of the internal reference light Ref2 is selected as the internal reference light Ref, and the light detection signal of the internal reference light Ref2 is selected according to the internal reference light. A phase difference is calculated between the light detection signal of the light Ref2 and the
由于内部参考光Ref2的光检测信号与上述测距信号72的检测光量一致或大致一致,不会由于参考光和测距光的检测光量不同而产生测定误差。Since the light detection signal of the internal reference light Ref2 coincides or substantially coincides with the detected light quantity of the
此外,具有与上述反射测距光22′对应的光量的内部参考光Ref的选择,通过对记录于上述存储部65的数据的信号处理进行。因而,由于没有伴随内部参考光和测距光的光路切换、浓度滤光片的光量调整等的机械动作,距离测定能极高速地进行。In addition, selection of the internal reference light Ref having a light quantity corresponding to the reflected
因而,能满足用回转照射的测距光进行的距离测定等高速测定的要求。另外,根据来自上述第1编码器38的角度信号,在测定对象物侧求出距离数据和角度数据,再用基准面形成用激光束求出仰角,便可检测出位置。Therefore, it is possible to meet the demand for high-speed measurement such as distance measurement using the distance measuring light irradiated in rotation. In addition, the position can be detected by obtaining distance data and angle data on the side of the object to be measured based on the angle signal from the
如上所述,在本发明中,上述内部参考光22″通过旋转的上述基准反射棱镜55反射求出。因此,在支持上述基准反射棱镜55的旋转机构上,有时会包含零件精度、装配精度等原因造成的误差。As mentioned above, in the present invention, the above-mentioned
图5示意表示因上述基准反射棱镜55的旋转位置变化造成的误差。FIG. 5 schematically shows errors caused by changes in the rotational position of the reference
图中,73表示在假定旋转机构没有造成误差的情况下,上述基准反射棱镜55旋转时该基准反射棱镜55反射面的基准轨迹,基准轨迹假定为真圆。另外,图中,74表示旋转机构有误差的情况下上述基准反射棱镜55的反射面的轨迹。上述基准轨迹73和上述轨迹74之间的差便是误差R。另外,为方便起见上述轨迹7 4表示为椭圆。In the figure, 73 represents the reference trajectory of the reflection surface of the
上述误差R表现为内部参考光路长度的误差,成为测定误差,因此,在实施高精度测定的场合,根据误差R修正测定结果。The above-mentioned error R appears as an error in the internal reference optical path length and becomes a measurement error. Therefore, when performing high-precision measurement, the measurement result is corrected based on the error R.
另外,上述轨迹74的轨迹是所需要的手段,例如,通过实测求出取得与上述基准反射棱镜55的旋转位置9和该基准反射棱镜55的反射面的误差R对应的数据。上述旋转位置θ通过上述第2编码器58测定,例如测定每步15°的误差,制作图6所示的数据表,并将该数据表存储在上述存储部65中。The locus of the locus 74 is a necessary means, for example, to acquire data corresponding to the rotational position 9 of the reference
因而,根据上述第2编码器58的角度信号检测取得上述参考信号71(参见图4)时的上述基准反射棱镜55的旋转位置,由上述数据表取得与所检测的角度对应的误差R,根据上述误差R修正算出的测定距离。另外,所取得的误差R,例如,假设在0°~15°为R1、15°~30°为R2等,也可以按区域判断旋转位置来求出误差R。另外,例如,对于0°~15°之间的旋转位置误差R,也可以按比例分配R1和R2来求出误差R。Therefore, the rotational position of the above-mentioned reference
另外,在上述实施例中,可以固定上述测距光22的照射方向,驱动上述第2回转电动机52,转动上述基准反射棱镜55,使之横截上述测距光22。In addition, in the above-described embodiment, the irradiation direction of the distance-measuring
另外,在只有1个测定对象物时,也可省去回转照射上述测距光22的功能,只让上述基准反射棱镜55旋转,或者也可以使该反射棱镜55滑动而横截上述测距光22。另外,距离测定方式,既可为相位差方式,也可为时间差方式。In addition, when there is only one object to be measured, the function of rotating and illuminating the
产业上利用的可能性Possibility of industrial use
依据本发明,由于设有:光发射部,使测距光照射测定对象物;基准反射部,设置得可以相对移动以横截所照射的测距光并处于已知位置;光检测部,将来自上述测定对象物的反射光作为反射测距光,将来自上述基准反射部的反射光作为内部参考光进行检测;以及控制运算部,根据涉及上述反射测距光的光检测信号和涉及上述内部参考光的光检测信号算出到测定对象物的距离,所以没有测距光和上述内部参考光的机械光路切换,因此,可进行高速测距。According to the present invention, since it is provided with: a light emitting part, so that the distance measuring light irradiates the object to be measured; a reference reflection part, which can be relatively moved so as to cross the irradiated distance measuring light and be at a known position; a light detecting part, which will The reflected light from the measurement target object is used as the reflected distance measuring light, and the reflected light from the above reference reflecting part is detected as the internal reference light; The optical detection signal of the reference light calculates the distance to the object to be measured, so there is no mechanical optical path switching between the distance measuring light and the above-mentioned internal reference light, so high-speed distance measurement is possible.
另外,依据本发明,由于在设置上述基准反射部的光路上,设置使上述内部参考光的光量发生变化的光量调整部件,可以得到与反射测距光的光量相应的上述内部参考光,因此,可提高测定可靠性。In addition, according to the present invention, since the light quantity adjustment means for changing the light quantity of the internal reference light is provided on the optical path where the reference reflection part is provided, the internal reference light corresponding to the light quantity of the reflected distance measuring light can be obtained. Therefore, Measurement reliability can be improved.
另外,依据本发明,由于上述测距光扫描至少包含测定对象物的测定区域,上述基准反射部位于扫描范围内,且配置在不干涉来自测定对象物的反射光的位置上,因此,能够在扫描测距光的过程中进行测距,可望测定的高速化。In addition, according to the present invention, since the distance-measuring light scans at least the measurement area including the object to be measured, and the reference reflector is located within the scanning range, and is arranged at a position that does not interfere with the reflected light from the object to be measured, it is possible to The distance measurement is performed while the distance measurement light is being scanned, and it is expected to speed up the measurement.
另外,依据本发明,上述控制运算部可以根据检测光量变化的光检测信号,生成与多个检测光量强度对应的多个内部参考基准,选择对应于反射测距光光量的内部参考基准,根据所选择的内部参考基准和上述反射测距光的光检测信号计算到达测定对象物的距离,故可望测定的高速化,使在测距光扫描过程中实时地测量到测定对象物的距离成为可能。In addition, according to the present invention, the above-mentioned control calculation unit can generate a plurality of internal reference standards corresponding to a plurality of detected light intensity intensities based on the light detection signal of the detected light quantity change, select an internal reference standard corresponding to the reflected distance measuring light quantity, and then The selected internal reference standard and the light detection signal of the above-mentioned reflected distance measuring light calculate the distance to the object to be measured, so it is expected to speed up the measurement and make it possible to measure the distance to the object to be measured in real time during the scanning process of the distance measuring light .
另外,若采用本发明,由于上述基准反射部由可以相对于上述测距光移动的上述基准反射部的移动机构部支持,该移动机构部使上述基准反射部保持在偏离于测定方向的位置上移动,故上述基准反射部的存在不会妨碍测定作业。In addition, according to the present invention, since the reference reflector is supported by the movement mechanism of the reference reflector that can move relative to the distance measuring light, the movement mechanism maintains the reference reflector at a position deviated from the measuring direction. Therefore, the presence of the above-mentioned reference reflector will not hinder the measurement operation.
另外,若采用本发明,由于上述移动机构部具有检测上述基准反射部位置的位置检测装置,上述控制运算部具有对应于上述基准反射部的位置的误差数据,上述光检测部能够根据与检测内部参考光时上述基准反射部的位置对应的误差修正测定结果,故高精度的测定成为可能。In addition, according to the present invention, since the moving mechanism part has a position detection device for detecting the position of the reference reflection part, the control computation part has error data corresponding to the position of the reference reflection part, and the light detection part can detect the internal The measurement result is corrected for an error corresponding to the position of the reference reflector when the reference light is used, so that high-precision measurement becomes possible.
Claims (10)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005165185A JP4819403B2 (en) | 2005-06-06 | 2005-06-06 | Distance measuring device |
JP165185/2005 | 2005-06-06 | ||
PCT/JP2006/309772 WO2006132060A1 (en) | 2005-06-06 | 2006-05-10 | Distance measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101189532A CN101189532A (en) | 2008-05-28 |
CN101189532B true CN101189532B (en) | 2013-03-27 |
Family
ID=37498265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200680019988XA Expired - Fee Related CN101189532B (en) | 2005-06-06 | 2006-05-10 | Distance measuring device |
Country Status (5)
Country | Link |
---|---|
US (1) | US7474388B2 (en) |
EP (1) | EP1914565A4 (en) |
JP (1) | JP4819403B2 (en) |
CN (1) | CN101189532B (en) |
WO (1) | WO2006132060A1 (en) |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5020585B2 (en) * | 2006-09-27 | 2012-09-05 | 株式会社トプコン | Measuring system |
US7697125B2 (en) * | 2007-05-11 | 2010-04-13 | Rosemount Aerospace Inc. | Scanning ladar with adjustable operational parameters |
JP5207665B2 (en) | 2007-06-08 | 2013-06-12 | 株式会社トプコン | Measuring system |
JP5145011B2 (en) * | 2007-10-26 | 2013-02-13 | 株式会社トプコン | Laser survey system |
JP4663743B2 (en) * | 2008-01-31 | 2011-04-06 | 北陽電機株式会社 | Scanning distance measuring device |
JP5124321B2 (en) * | 2008-03-21 | 2013-01-23 | 株式会社トプコン | Measuring system |
JP5124319B2 (en) * | 2008-03-21 | 2013-01-23 | 株式会社トプコン | Surveying instrument, surveying system, measuring object detection method, and measuring object detection program |
JP5166087B2 (en) * | 2008-03-21 | 2013-03-21 | 株式会社トプコン | Surveying device and surveying system |
JP5150329B2 (en) | 2008-03-26 | 2013-02-20 | 株式会社トプコン | Surveying device and surveying system |
US9482755B2 (en) | 2008-11-17 | 2016-11-01 | Faro Technologies, Inc. | Measurement system having air temperature compensation between a target and a laser tracker |
JP5616025B2 (en) * | 2009-01-22 | 2014-10-29 | 株式会社トプコン | Lightwave distance measuring method and lightwave distance measuring apparatus |
US20100228517A1 (en) * | 2009-03-09 | 2010-09-09 | Lasercraft, Inc. | Lidar devices with reflective optics |
JP5280258B2 (en) * | 2009-03-16 | 2013-09-04 | 株式会社トプコン | Surveying system |
DE102009026434A1 (en) * | 2009-05-25 | 2010-12-09 | Robert Bosch Gmbh | Aiming optics device |
US8659749B2 (en) | 2009-08-07 | 2014-02-25 | Faro Technologies, Inc. | Absolute distance meter with optical switch |
JP5263273B2 (en) * | 2009-11-30 | 2013-08-14 | 株式会社デンソーウェーブ | Laser measuring device |
JP5456549B2 (en) | 2010-04-15 | 2014-04-02 | 株式会社トプコン | Surveying system and laser reference surface smoothing method in surveying system |
US8422034B2 (en) | 2010-04-21 | 2013-04-16 | Faro Technologies, Inc. | Method and apparatus for using gestures to control a laser tracker |
US9400170B2 (en) | 2010-04-21 | 2016-07-26 | Faro Technologies, Inc. | Automatic measurement of dimensional data within an acceptance region by a laser tracker |
US8537371B2 (en) | 2010-04-21 | 2013-09-17 | Faro Technologies, Inc. | Method and apparatus for using gestures to control a laser tracker |
US9772394B2 (en) | 2010-04-21 | 2017-09-26 | Faro Technologies, Inc. | Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker |
US8724119B2 (en) | 2010-04-21 | 2014-05-13 | Faro Technologies, Inc. | Method for using a handheld appliance to select, lock onto, and track a retroreflector with a laser tracker |
US8619265B2 (en) | 2011-03-14 | 2013-12-31 | Faro Technologies, Inc. | Automatic measurement of dimensional data with a laser tracker |
US9377885B2 (en) | 2010-04-21 | 2016-06-28 | Faro Technologies, Inc. | Method and apparatus for locking onto a retroreflector with a laser tracker |
DE102010032725B4 (en) * | 2010-07-26 | 2012-04-26 | Faro Technologies, Inc. | Device for optically scanning and measuring an environment |
EP2469221A1 (en) * | 2010-12-21 | 2012-06-27 | Universite Pierre Et Marie Curie - Paris 6 | Method and system for configuring a device for correcting the effect of a medium on a light signal, method, device and system for correcting said effect. |
US8902408B2 (en) | 2011-02-14 | 2014-12-02 | Faro Technologies Inc. | Laser tracker used with six degree-of-freedom probe having separable spherical retroreflector |
GB2511236B (en) | 2011-03-03 | 2015-01-28 | Faro Tech Inc | Target apparatus and method |
US9164173B2 (en) | 2011-04-15 | 2015-10-20 | Faro Technologies, Inc. | Laser tracker that uses a fiber-optic coupler and an achromatic launch to align and collimate two wavelengths of light |
US9686532B2 (en) | 2011-04-15 | 2017-06-20 | Faro Technologies, Inc. | System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices |
DE112012001708B4 (en) | 2011-04-15 | 2018-05-09 | Faro Technologies, Inc. | coordinate measuring machine |
US9482529B2 (en) | 2011-04-15 | 2016-11-01 | Faro Technologies, Inc. | Three-dimensional coordinate scanner and method of operation |
USD688577S1 (en) | 2012-02-21 | 2013-08-27 | Faro Technologies, Inc. | Laser tracker |
CN103149567A (en) * | 2011-12-07 | 2013-06-12 | 亚洲光学股份有限公司 | Distance measuring device |
TWI471581B (en) * | 2011-12-09 | 2015-02-01 | Asia Optical Co Inc | Distance measuring device |
CN104094081A (en) | 2012-01-27 | 2014-10-08 | 法罗技术股份有限公司 | Inspection method with barcode identification |
EP2634594A1 (en) * | 2012-03-01 | 2013-09-04 | Leica Geosystems AG | Method for determining a change in distance by means of interferometry |
US9279679B2 (en) * | 2012-09-12 | 2016-03-08 | Kabushiki Kaisha Topcon | Construction machine control method and construction machine control system |
US9041914B2 (en) | 2013-03-15 | 2015-05-26 | Faro Technologies, Inc. | Three-dimensional coordinate scanner and method of operation |
CN106062511B (en) | 2013-12-05 | 2018-12-04 | 特林布尔有限公司 | The method of geodetic instrument and operation geodetic instrument |
WO2015082217A2 (en) | 2013-12-05 | 2015-06-11 | Trimble Ab | Distance measurement instrument with scanning function |
US9606228B1 (en) | 2014-02-20 | 2017-03-28 | Banner Engineering Corporation | High-precision digital time-of-flight measurement with coarse delay elements |
JP6371985B2 (en) * | 2014-04-11 | 2018-08-15 | パナソニックIpマネジメント株式会社 | Mirror drive device, beam irradiation device, and laser radar |
US9395174B2 (en) | 2014-06-27 | 2016-07-19 | Faro Technologies, Inc. | Determining retroreflector orientation by optimizing spatial fit |
JP6553999B2 (en) | 2015-09-17 | 2019-07-31 | 株式会社トプコン | Polygon mirror and fan beam output device and surveying system |
JP6657396B2 (en) * | 2016-06-02 | 2020-03-04 | シャープ株式会社 | Optical sensors, electronic equipment |
JP6857979B2 (en) * | 2016-07-27 | 2021-04-14 | 株式会社トプコン | Laser scanner optics and surveying equipment |
JP6728369B2 (en) * | 2016-09-08 | 2020-07-22 | シャープ株式会社 | Optical sensor and electronic equipment |
DE102017107245B4 (en) * | 2017-04-04 | 2024-07-25 | Prüftechnik Dieter Busch GmbH | Device and method for measuring cavities and use of the device for determining roll alignments |
JP6855316B2 (en) * | 2017-05-10 | 2021-04-07 | 株式会社トプコン | Surveying system |
CN107167813A (en) * | 2017-05-19 | 2017-09-15 | 深圳市瑞大科技有限公司 | Optical radar |
JP6860459B2 (en) * | 2017-09-19 | 2021-04-14 | 株式会社東芝 | Distance measuring device |
FR3090125B1 (en) * | 2018-12-18 | 2021-02-26 | Thales Sa | Compact lidar system |
DE102019111852B3 (en) * | 2019-05-07 | 2020-06-04 | Sick Ag | Safety laser scanner and method |
JP7582320B2 (en) | 2020-10-14 | 2024-11-13 | 日本電気株式会社 | Optical ranging device and optical ranging method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5991011A (en) * | 1996-11-14 | 1999-11-23 | Sick Ag | Laser distance finding apparatus |
CN1497264A (en) * | 2002-10-18 | 2004-05-19 | ��ʽ�������տ� | position measuring device |
CN1545610A (en) * | 2002-06-28 | 2004-11-10 | 株式会社拓普康 | Position detection device |
CN1573357A (en) * | 2003-05-21 | 2005-02-02 | 株式会社拓普康 | Distance-measuring system |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60149985A (en) * | 1984-01-14 | 1985-08-07 | Asahi Optical Co Ltd | Lightwave ranging device |
JP2694647B2 (en) | 1988-04-05 | 1997-12-24 | 株式会社ソキア | Distance measuring theodolite |
JPH087261B2 (en) * | 1990-11-09 | 1996-01-29 | 株式会社オプテック | Lightwave distance measuring method and lightwave distance meter |
JPH04313013A (en) | 1991-01-16 | 1992-11-05 | Sokkia Co Ltd | Plain type two-dimensional range finder |
DE4219260C2 (en) * | 1992-06-12 | 1994-07-14 | Leuze Electronic Gmbh & Co | Photoelectric device with a test object |
US5455669A (en) * | 1992-12-08 | 1995-10-03 | Erwin Sick Gmbh Optik-Elektronik | Laser range finding apparatus |
DE4316348A1 (en) * | 1993-05-15 | 1994-11-17 | Wild Heerbrugg Ag | Distance measuring device |
JP3137307B2 (en) * | 1993-12-27 | 2001-02-19 | アステックス株式会社 | Omnidirectional distance detector |
US5784155A (en) * | 1996-02-08 | 1998-07-21 | Kabushiki Kaisha Topcon | Laser survey instrument |
DE19607345A1 (en) * | 1996-02-27 | 1997-08-28 | Sick Ag | Laser distance determination device |
US5988862A (en) * | 1996-04-24 | 1999-11-23 | Cyra Technologies, Inc. | Integrated system for quickly and accurately imaging and modeling three dimensional objects |
US6052190A (en) * | 1997-09-09 | 2000-04-18 | Utoptics, Inc. | Highly accurate three-dimensional surface digitizing system and methods |
JP2004512505A (en) * | 2000-09-27 | 2004-04-22 | ギガー,クルト | Signal detecting device and signal detecting method in distance measuring device |
JP2004212058A (en) | 2002-12-26 | 2004-07-29 | Topcon Corp | Working position measuring device |
JP3908226B2 (en) * | 2004-02-04 | 2007-04-25 | 日本電産株式会社 | Scanning range sensor |
-
2005
- 2005-06-06 JP JP2005165185A patent/JP4819403B2/en not_active Expired - Fee Related
-
2006
- 2006-05-10 EP EP06732623A patent/EP1914565A4/en not_active Withdrawn
- 2006-05-10 US US11/666,669 patent/US7474388B2/en active Active
- 2006-05-10 WO PCT/JP2006/309772 patent/WO2006132060A1/en active Application Filing
- 2006-05-10 CN CN200680019988XA patent/CN101189532B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5991011A (en) * | 1996-11-14 | 1999-11-23 | Sick Ag | Laser distance finding apparatus |
CN1545610A (en) * | 2002-06-28 | 2004-11-10 | 株式会社拓普康 | Position detection device |
CN1497264A (en) * | 2002-10-18 | 2004-05-19 | ��ʽ�������տ� | position measuring device |
CN1573357A (en) * | 2003-05-21 | 2005-02-02 | 株式会社拓普康 | Distance-measuring system |
Non-Patent Citations (1)
Title |
---|
JP特开平10-20035A 1998.01.23 |
Also Published As
Publication number | Publication date |
---|---|
WO2006132060A1 (en) | 2006-12-14 |
JP4819403B2 (en) | 2011-11-24 |
JP2006337302A (en) | 2006-12-14 |
EP1914565A1 (en) | 2008-04-23 |
EP1914565A9 (en) | 2012-02-15 |
CN101189532A (en) | 2008-05-28 |
US20070263202A1 (en) | 2007-11-15 |
EP1914565A4 (en) | 2013-01-09 |
US7474388B2 (en) | 2009-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101189532B (en) | Distance measuring device | |
JP5150329B2 (en) | Surveying device and surveying system | |
EP2103902B1 (en) | Surveying Device and Surveying System | |
JP5124319B2 (en) | Surveying instrument, surveying system, measuring object detection method, and measuring object detection program | |
EP1772749B1 (en) | Distance measuring device | |
JP3941839B2 (en) | Laser rotary irradiation device | |
CN100397039C (en) | Laser leveling systems for pipe laying | |
EP2381272B1 (en) | Laser scanner | |
US8174682B2 (en) | Shape measuring instrument with light source control | |
JP4796834B2 (en) | Distance measuring method and distance measuring device | |
EP1321739B1 (en) | Position measuring instrument | |
US11598854B2 (en) | Surveying system | |
JP6783093B2 (en) | measuring device | |
EP3696499B1 (en) | Surveying system having a rotating mirror | |
JP6749192B2 (en) | Scanner and surveying equipment | |
JP4851737B2 (en) | Distance measuring device | |
JP4074967B2 (en) | Laser irradiation device | |
CN115685140A (en) | Measuring device | |
JP6913422B2 (en) | Surveying system | |
US7531772B2 (en) | Apparatus for translational displacement of a lens in a laser focussing optical system | |
KR20070015267A (en) | Displacement measuring device | |
JP2025006809A (en) | Surveying Equipment | |
JP6884529B2 (en) | measuring device | |
WO2024232359A1 (en) | Surveying device and surveying system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130327 |