CN101171711A - 燃料电池催化剂的载体 - Google Patents

燃料电池催化剂的载体 Download PDF

Info

Publication number
CN101171711A
CN101171711A CNA2006800150888A CN200680015088A CN101171711A CN 101171711 A CN101171711 A CN 101171711A CN A2006800150888 A CNA2006800150888 A CN A2006800150888A CN 200680015088 A CN200680015088 A CN 200680015088A CN 101171711 A CN101171711 A CN 101171711A
Authority
CN
China
Prior art keywords
catalyst
carbon
fuel cell
oxygen reduction
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800150888A
Other languages
English (en)
Other versions
CN101171711B (zh
Inventor
I·C·哈拉莱
B·梅尔佐圭
M·K·卡彭特
S·斯瓦蒂拉延
G·C·加拉贝迪安
A·M·曼斯
蔡梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN101171711A publication Critical patent/CN101171711A/zh
Application granted granted Critical
Publication of CN101171711B publication Critical patent/CN101171711B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/086Phosphoric acid fuel cells [PAFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

通过用导电性碳化钛或氮化钛颗粒代替碳颗粒作为氧还原和氢氧化催化剂的载体来改善燃料电池的耐久性,该燃料电池具有聚合物电解质膜、其一个表面上具有阳极,在另一表面具有氧还原阴极。例如,沉积于纳米尺寸的碳化钛或氮化钛载体颗粒上的纳米尺寸的铂颗粒提供了出色的氧还原能力,并且在酸性环境耐腐蚀。优选地,为改善电极性能,在电极材料中碳化钛(氮化钛)上的催化剂与未负载催化剂的碳相混合。

Description

燃料电池催化剂的载体
技术领域
本发明涉及低温酸性和碱性燃料电池,比如:在各电池里都使用了固体聚合物电解质膜的那些,其中在膜的每侧都具有包含催化剂的电极。更具体地,本发明涉及用于此类电池的催化剂载体材料。
发明背景
燃料电池是被开发用来产生动力(motive)和固定电能的电化学电池。一种燃料电池设计使用固体聚合物电解质(SPE)膜或者质子交换膜(PEM),以在阳极和阴极之间提供离子转移。使用了能提供质子的气态和液态燃料。例子包括氢和甲醇,氢更受欢迎。氢供应给燃料电池的阳极,氧(作为空气)作为电池的氧化剂并被供应到电池的阴极。电极由多孔导电材料(如织造石墨、石墨化片或者碳纸)形成,以使燃料可以分散在面向燃料供应电极的膜表面上。每个电极都承载了经过细碎的、负载在碳颗粒上的催化剂颗粒(如:铂颗粒),以促进氢在阳极的离子化和氧在阴极的还原。质子从阳极流经离子传导性的聚合物膜到达阴极,在那里他们与氧结合形成水,水从电池里排出。导体板移走在阳极形成的电子。
目前,PEM燃料电池的现有技术使用由全氟化的离聚物(如杜邦公司的Nafion)制备的膜。这种离聚物带有可电离的侧基(如:磺酸盐基团)以从阳极经膜向阴极传输质子。
一个阻碍大规模实施燃料电池技术的重大问题是在延长运行中和在正常汽车车辆运行中以及车辆停止/启动循环中的电力需求循环中性能的损失。本发明基于这样的认识:PEM燃料电池的相当一部分与氧还原电极催化剂的退化有关。这种退化可能是由于铂颗粒的生长、铂颗粒的溶解和碳载体材料的腐蚀而引起。电池里磺酸盐基团和水的存在产生了酸性环境,这种环境促使了各电池的电极中的上述变化。
已经发现,在电势高于1.2V时,碳会被严重腐蚀,和当电势低于1.2V时,在碳表面加入铂颗粒显著增大腐蚀速率。这些过程导致铂催化剂活性表面面积的损失,这又导致氧电极性能的损失。然而,循环实验显示:仅仅是氢吸附面积的损失并不能解释氧还原活性的损失。其他因素包括来自于吸附的OH物质的干扰和吸附的OH物质的可能的位置交换(这可以改变铂催化剂对氧还原的电催化性质)。因此,铂与催化剂负载体的特定相互作用可对铂电催化剂性能的稳定性有巨大影响。
发明概述
按照本发明,作为燃料电池阴极或者两个电极上使用的催化剂颗粒的载体材料的碳被取代。使用碳化钛和/或氮化钛是因为它们有合适的电导率(即:电阻率在3-300μΩcm)和出色的抗氧化性及耐酸腐蚀性。碳化钛和/或氮化钛催化剂载体材料,特别是作为纳米尺寸颗粒的独特性质,可以获得增强的催化行为以及提高的燃料电池电极的耐久性。他们显示出良好的抗酸性,所述酸比如是燃料电池环境中的硫酸。碳(优选碳颗粒)与承载催化剂的钛化合物颗粒混合或者分散在其中。但碳不承载催化剂也不与其接触。
这些特定的钛化合物适合于用作燃料电池里催化剂的载体。因此,氢-氧燃料电池堆里的每块电池的膜电极组合件将包括合适的质子交换膜,在膜的一侧有薄的氢氧化阳极和另一侧有氧还原阴极。至少在阴极或者两个电极中,催化剂被负载在纳米尺寸的碳化钛或者氮化钛或者这些金属化合物的混合物颗粒上。
在优选实施方案中,由碳和纳米尺寸的TiC颗粒或TiN颗粒的披铂间隙化合物组成的复合材料被用作燃料电池里的催化剂载体材料,以促进铂电化催化剂与载体的相互作用并防止其在电势循环中的性能退化。铂和含有铂的合金是燃料电池应用中高效的和优选的催化剂。其他贵金属组合物也是适合的。
碳化钛和/或氮化钛催化剂载体材料(没有承载催化剂的碳)的使用可用于低温(如低于大约200℃)的酸性和碱性燃料电池。通过将催化剂颗粒负载于碳化钛或氮化钛上,电池的耐腐蚀性能得到改善,而且通过将碳包含在电极材料中,电极的整体性能也得到改善。碳,优选作为碳颗粒,与负载着催化剂的碳化钛(或氮化钛)相混合,使得催化剂颗粒不和碳颗粒发生物理上的接触。
本发明的其他目的与优点可以在随后的示例性优选实施方案的描述中变得更加明显。
附图简述
图1是用在组装燃料电池堆里的各电池中的固体聚合物电解质膜和电极组合件(MEA)组合的示意图。
图2是图1中MEA的放大的不完整截面图。
图3是经过20次循环、100次循环和500次循环后的三条循环伏安曲线的图,表示包含纳米尺寸碳化钛负载的铂的电极和可逆的氢电极(rhe)的电池的电流(i,mA)vs.电势(E,V/rhe)。该三个CN循环的曲线图说明Pt/TiN电极上氢吸附(HAD)的面积减少是循环次数的函数。HAD的面积由在阴极(降低的)电势扫描中通过0.35伏和0.05伏之间的电荷来决定。该电荷由0.05V到0.35伏在负电流时(即:在循环电位扫描降低部分上记录)所确定的伏安图的面积减去由于双层电容贡献的校正值而得到。
图4是经过20次循环、100次循环和1000次循环后的三条循环伏安曲线的图,表示包括由纳米尺寸的碳化钛负载的铂与高表面积的碳颗粒混合而形成的电极和可逆的氢电极(rhe)的电池的电流(i,mA)vs.电势(E,V/rhe)。图4说明与含有与碳添加材料混合的沉积在纳米尺寸碳化钛上的铂催化剂的电极的循环次数相关的HAD面积的保持力。
图5是经过20次循环、100次循环和500次循环后的三个循环伏安曲线图,表示包括纳米尺寸碳化钛负载的铂电极和可逆的氢电极(rhe)的电池的电流(i,mA)vs.电势(E,V/rhe)。图5说明,HAD面积的减少为包含沉积于纳米尺寸氮化钛上的铂催化剂的电极的循环次数的函数。
图6是经过20次,100次和1000次循环后的三条循环伏安曲线的图,表示电池的电流(i,(mA))vs.电位(E,V/rhe),该电池包括沉积在纳米尺寸氮化钛上的铂与高表面积的碳颗粒混合而形成的电极和可逆的氢电极(rhe)。图6说明,与含有与碳添加剂材料混合的沉积在纳米尺寸碳化钛上的铂催化剂的电极的循环次数相关的HAD面积的保持力。
优选实施方案描述
授予本发明的受让人的许多美国专利描述了含有固体聚合物电解质膜装置和电极组合件的电化学燃料电池组合件。例如,US 6277513的图1-4包含了这样的描述,该专利的说明书和附图作为参考被包括到本说明书里。
本申请的图1说明作为在‘513专利中图1所说明的电化学电池一部分的膜电极组合件10。参考本说明书图1,膜电极组合件10包括阳极12和阴极14。例如,在氢/氧(空气)燃料电池里,氢在阳极12被氧化成H+(质子),而氧则在阴极14被还原为水。
图2提供了在图1中所示的膜电极组合件10的放大的、不完整横截面视图。在图2里,阳极12和阴极14被施加在质子交换膜16的相对侧(分别是侧面32、侧面30)。PEM16可适当地为由全氟化离聚物(如:杜邦公司的Nafion)制备的膜。膜的离聚物分子带有可离子化侧基(如:磺酸盐基团),以便从被施加在膜16的底表面32的阳极12穿过膜向被施加在膜16顶表面30的阴极14转移质子。在示例性电池中,聚合物电解质膜可具有100mm×100mm×0.05mm的尺寸。正如将被描述的,阳极12和阴极14都是油墨制备的多孔薄电极层并且通过贴花法直接施加到PEM16的相对表面30、32上,或者施加到(碳片)集电器上。
根据本发明,阴极14适当地包括由碳化钛和或/氮化钛的纳米尺寸的催化剂载体颗粒18。钠米尺寸包含直径或最大尺寸在大约1至大约100nm范围的颗粒。催化剂载体颗粒18载有用于氧的还原催化剂的较小颗粒20,如铂。该披铂的载体颗粒18被嵌入到合适的导电基质材料22中。在该实施方案中,基质材料22适合地为类似聚合物电解质膜16的、质子传导性的全氟化离聚物材料。该基质材料也可以包含电子传导材料如碳颗粒21。根据本发明的碳颗粒21。承载铂颗粒20的催化剂的载体颗粒18以及碳颗粒21的混合物,和基质材料22被悬浮于适宜的挥发性液态介质中并被施加到质子交换膜16的表面30。这种介质通过蒸发被去除,干燥的阴极14材料进一步被压制并烘烤到PEM16的表面30中以形成阴极16。
与现有技术的膜电极组合件相比,装置10优选在阴极层14中包含碳颗粒21,这些碳颗粒与沉积在碳化钛颗粒和/或氮化钛颗粒18上的铂催化剂颗粒20相混合。在这个实施例中,在阴极14中,耐久的和导电的碳化钛颗粒18取代碳催化剂载体颗粒。在本发明图2的实施方案中,阳极12由与阴极14同样的材料构造。但与在本实施例中使用的相比,阳极12可采用碳或者与本实施例中所用的不同的非碳的催化剂载体和催化剂。
碳化钛和/或氮化钛颗粒18被用作电池10的至少阴极侧14的催化剂载体颗粒。在优选的实施方案中,碳颗粒如Vulcan XC-72R与载有催化剂的碳化钛或氮化钛颗粒相混合。Pt/TiC(例如)对碳的重量比优选为大约70∶30。承载有钛化合物的催化剂与碳的混合物的重量比分别从5∶95到95∶5都是合适的。其他的碳材料可与碳化铂或氮化铂上的催化剂颗粒相混合。
如上说明,用TiC和/或TiN来代替碳作为膜电极组合件中的催化剂载体材料的目的是提高电池的有效运行寿命。因此,在用于汽车和其他应用中的燃料电池的负载循环和停-动循环期间,催化剂的氧还原性能可以得到稳定。既然碳腐蚀是制约燃料电池阴极有效寿命的主要因素,用TiC或TiN代替碳催化剂载体就提高了燃料电池阴极的寿命。
如上所述,碳化钛和氮化钛展现了类似于金属的导电性(即:电阻率在3-300μΩcm范围)以及出色的抗化学氧化性和抗腐蚀性。这些材料,特别是作为纳米尺寸颗粒,的独特的和有用的性质,是能提高催化性能以及增加的燃料电池电极耐久性。
在模拟的燃料电池环境(95℃的0.5M的硫酸水溶液)中对这几种材料上进行了化学的和电化学的腐蚀试验。以所采用的10mV/s的电势扫描速度,在0-1.2V/rhe的电势范围里(这里,“rhe”是指可逆氢电极的电化学电势)的500次电化学循环期间测量的由沉积于碳化钛以及氮化钛上的铂制备的电极上的氢吸附面积。
在室温下,在0.5M的硫酸水溶液中对碳化钛和氮化钛的化学腐蚀速率列于表1中。
表1
  材料  氮化钛   碳化钛
  溶解速率,微摩尔m-2-1  3.9   5.6
作为本发明实施方案的实施例,制备了包含沉积于碳化钛颗粒上的铂颗粒的催化剂和,用相似的方式,制备了包含在氮化钛颗粒上的铂颗粒的催化剂。例如,该制备包括,在存在一氧化碳的条件下,用肼还原氯铂酸以在100nm颗粒尺寸的碳化钛颗粒上制成铂纳米颗粒。特别地,1.00g的TiC(20m2/g)与在170ml水中的1.80g H2PtCl6混合。pH值用1M NaOH调节到5,并将混合物用超声波降解15分钟。然后,在CO经过溶液以200sccm冒泡15分钟的同时搅拌混合物。将10毫升的含有0.21g肼水化物的溶液滴加到反应混合物中,并用一氧化碳鼓泡持续一个小时。然后,一氧化碳流量减小到50sccm,并且让混合物持续反应16个小时。非常小的铂颗粒(平均3.2nm)沉积在纳米尺寸的碳化钛颗粒上。类似制备了包含在纳米尺寸的氮化钛颗粒上的小铂颗粒的催化剂。过滤并用大量水洗涤该负载的催化剂产物,然后对催化剂进行风干。在真空下于室温实现最终干燥。铂催化剂具有30m2/g的氢吸附面积。
表2中给出了,当温度为95℃,在0.5M的硫酸溶液中,和电势为1.2V和1.4V时,商业可获得的披铂碳基准催化剂和上述制备的披铂的碳化钛的电化学腐蚀速率之间的比较。虽然碳载体的腐蚀通过CO2或CO析出导致质量损失,而TiC的腐蚀却因形成TiO2而导致质量增加。氧化钛的形成通过稳定铂颗粒,降低颗粒生长,增强铂与氧化钛的引起改善的氧还原催化性的相互作用对燃料电池的性能具有有益的影响。
表2
材料     披铂碳   披铂碳化钛
腐蚀速率,电势=1.2V,微摩尔m-2 hr-1     -1.8   +20
腐蚀速率,电势=1.4V,微摩尔m-2 hr-1     -15   +19
图3、图4、图5和图6表示在0-1.2V的电势限值之间扫描速率为10mV/s的一些工作电极vs.在80℃温度的可逆氢电极(此后简写为“V/rhe”、)的电势循环期间,以1-2-5步,以扫描速率为2mV/s收集的循环伏安曲线。0到0.35V/rhe的伏安曲线区域与氢的吸附与解吸相对应,分别针对以降低的(阴极扫描)和上升的(阳极扫描)电势值的扫描。在阴极扫描中的0.05到0.35V之间的面积在减去双层充电/放电的影响后,可被用来确定催化剂的氢吸附(HAD)面积。HAD面积表示对材料催化活性面积的量度。图3和图5清楚的显示,仅仅使用披铂碳化钛(即:在电极上没有碳颗粒)或者仅仅使用披铂氮化钛都遇到大的缺陷:对于披铂的TiC和披铂的TiN,500次循环后HAD面积和因此的催化剂活性萎缩。然而,正如图4和图6中所显示的,加入与载有催化剂的碳化钛或者氮化钛相混合的碳,对于Pt/TiC和Pt/TiN,可以大大改善HAD保持力。
在图3、图4、图5和图6上显示的数据是对通过施加压力连接到金集电器的小球形式的工作电极进行收集的。小球是由Pt/TiC或Pt/TiN催化剂,两者且不含碳添加剂,和10%的Teflon黏合剂经辊浆法(roll and pastemethod)制成。在包含所述工作电极、碳反电极和密封的氢参比电极的三电极电池中,每个球状电极都以10mV/s的恒定的扫描速率循环。在整个实验期间,该电池装满了设置在恒定温度80℃的0.5M的硫酸水溶液,并用氩气冒泡经过电极对电池进行除气。在电势循环中,在1-2-5步收集以2mV/s的较低扫描速率循环伏安曲线,以检验HAD面积随循环次数的演变。
可见,在燃料电池环境下,碳化钛和氮化钛作为催化剂载体都提供了好的抗腐蚀性能。而且,出于示例性实施例目的,描述了碳化钛颗粒和氮化钛颗粒上的铂颗粒作为燃料电池催化剂的用途。这些钛化合物催化剂载体可以用于燃料电池的阳极和阴极电极两者上,但是更特别地,在电池的容易腐蚀的氧还原部分(即,阴极)上,可以提供好的抗腐蚀性能。当钛化合物载体上的催化剂与碳相混合时,可以保持更好的催化性能。碳颗粒为优选的。进一步优选地,包括在钛化合物颗粒上的催化剂和碳的电极用聚合物黏合剂材料(比如:类似电池中使用的膜材料的材料)固定。本发明适用于低温(在低于大约200℃运行)酸性和碱性燃料电池。

Claims (10)

1.一种酸性或碱性燃料电池,其在不高于大约200℃的温度运行,并包括:
夹在阳极和氧还原阴极之间的聚合物电解质膜;
该氧还原阴极包含承载于催化剂载体颗粒上的氧还原催化剂颗粒和碳;该催化剂载体颗粒基本由碳化钛和氮化钛的至少一种构成,而碳与催化剂载体颗粒彼此分散。
2.权利要求1所述的燃料电池,其中,所述氧还原阴极进一步包含针对在载体颗粒上的催化剂和碳的聚合物黏合剂。
3.权利要求1所述的燃料电池,其中,所述氧还原催化剂包含贵金属。
4.权利要求1所述的燃料电池,其中,所述氧还原催化剂包含铂或者含有铂的合金。
5.权利要求1所述的燃料电池,其中,所述氧还原阴极包含碳颗粒。
6.一种燃料电池,包含:
夹在氢氧化阳极和氧还原阴极之间的聚合物电解质膜;
氢氧化阳极包含载于催化剂载体颗粒之上的氢氧化催化剂颗粒,该催化剂载体基本上由碳化钛和氮化钛的至少一种构成;和
氧还原阴极包含载于催化剂载体颗粒之上的氧还原催化剂颗粒和碳;该催化剂载体颗粒基本上由碳化钛和氮化钛的至少一种构成,碳与催化剂载体颗粒彼此分散,而氧还原催化剂颗粒不与碳接触。
7.权利要求6所述的燃料电池,其中,所述氧还原阴极进一步包含针对载体颗粒上的催化剂和碳的聚合物黏合剂。
8.权利要求6所述的燃料电池,其中,所述氧还原催化剂包含贵金属。
9.权利要求6所述的燃料电池,其中,所述氧还原催化剂包含铂或含有铂的合金。
10.权利要求6所述的燃料电池,其中,所述氧还原阴极包含碳颗粒。
CN2006800150888A 2005-05-02 2006-05-01 燃料电池催化剂的载体 Expired - Fee Related CN101171711B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US67671205P 2005-05-02 2005-05-02
US60/676,712 2005-05-02
PCT/US2006/016527 WO2006119147A2 (en) 2005-05-02 2006-05-01 Supports for fuel cell catalysts

Publications (2)

Publication Number Publication Date
CN101171711A true CN101171711A (zh) 2008-04-30
CN101171711B CN101171711B (zh) 2010-06-16

Family

ID=37308569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800150888A Expired - Fee Related CN101171711B (zh) 2005-05-02 2006-05-01 燃料电池催化剂的载体

Country Status (5)

Country Link
US (1) US7622216B2 (zh)
KR (1) KR100982645B1 (zh)
CN (1) CN101171711B (zh)
DE (1) DE112006001111B4 (zh)
WO (1) WO2006119147A2 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104151A (zh) * 2009-12-16 2011-06-22 中国科学院大连化学物理研究所 一种膜电极在碱性阴离子交换膜燃料电池中的应用
CN102658185A (zh) * 2012-04-23 2012-09-12 汉能科技有限公司 一种二次可逆空气电极用催化剂及其制备方法
CN103730665A (zh) * 2012-10-15 2014-04-16 丰田自动车株式会社 空气电池用空气极以及空气电池
CN104466205A (zh) * 2009-04-23 2015-03-25 3M创新有限公司 使用混合无机物的催化剂性质控制
CN106981667A (zh) * 2017-05-09 2017-07-25 河海大学 一种二维碳化钛/碳纳米管负载铂颗粒复合材料的制备方法
CN112820887A (zh) * 2021-01-18 2021-05-18 南京大学 一种燃料电池阴极氧还原催化剂及其制备方法和应用
CN114260011A (zh) * 2022-01-05 2022-04-01 贵州师范大学 一种钌铱钛铂掺杂四元光电催化碳基电极的制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767330B2 (en) * 2005-05-04 2010-08-03 Gm Global Technology Operations, Inc. Conductive matrices for fuel cell electrodes
US20070037041A1 (en) * 2005-08-12 2007-02-15 Gm Global Technology Operations, Inc. Electrocatalyst Supports for Fuel Cells
US20080003476A1 (en) * 2006-06-12 2008-01-03 Virkar Anil V Chemical additives for the suppression of catalyst degradation in fuel cells
US7879752B2 (en) * 2006-08-11 2011-02-01 GM Global Technology Operations LLC Electrocatalyst
US8383293B2 (en) * 2006-11-22 2013-02-26 GM Global Technology Operations LLC Supports for fuel cell catalysts based on transition metal silicides
CN101945701B (zh) * 2008-02-20 2014-05-07 昭和电工株式会社 催化剂用载体、催化剂和其制造方法
KR101088978B1 (ko) * 2009-05-02 2011-12-01 숭실대학교산학협력단 연료전지용 촉매전극을 위한 코어/쉘 구조의 나노 지지체 및 그 제조방법
EP2506350B1 (en) * 2009-11-27 2017-03-29 University of Yamanashi Oxide-based stable high-potential carrier for solid polymer fuel cell
WO2011075125A1 (en) 2009-12-17 2011-06-23 United Technologies Corporation Supported catalyst
EP2564456B1 (en) 2010-04-26 2021-05-26 3M Innovative Properties Company Platinum nickel catalyst alloy
KR101161526B1 (ko) * 2011-05-16 2012-07-02 숭실대학교산학협력단 연료전지용 촉매전극을 위한 코어/쉘 구조의 나노 지지체 및 그 제조방법
JP2017524931A (ja) 2014-07-18 2017-08-31 ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー, デパートメント オブ ヘルス アンド ヒューマン サービシーズ ポリマー電解質膜を用いたエアロゾル粒子成長システム
USD844562S1 (en) * 2016-10-05 2019-04-02 General Electric Company Fuel cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3346421A (en) * 1963-12-30 1967-10-10 Exxon Research Engineering Co Transition metal electrode
NL7714464A (nl) * 1977-12-28 1979-07-02 Electrochem Energieconversie Poreuze elektrode.
DE3344343A1 (de) * 1983-12-08 1985-06-13 Battelle-Institut E.V., 6000 Frankfurt Verfahren zur herstellung von schalenkatalysatoren
US4795684A (en) * 1984-03-23 1989-01-03 Electric Power Research Institute, Inc. Fuel cell electrocatalyst support comprising an ultra-fine chainy-structured titanium carbide
US5272017A (en) * 1992-04-03 1993-12-21 General Motors Corporation Membrane-electrode assemblies for electrochemical cells
US6297185B1 (en) * 1998-02-23 2001-10-02 T/J Technologies, Inc. Catalyst
US6372376B1 (en) * 1999-12-07 2002-04-16 General Motors Corporation Corrosion resistant PEM fuel cell
US7396559B2 (en) * 2003-08-11 2008-07-08 General Motors Corporation Method of making an electrically conductive element for use in a fuel cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466205B (zh) * 2009-04-23 2018-04-13 3M创新有限公司 使用混合无机物的催化剂性质控制
CN104466205A (zh) * 2009-04-23 2015-03-25 3M创新有限公司 使用混合无机物的催化剂性质控制
CN102104151A (zh) * 2009-12-16 2011-06-22 中国科学院大连化学物理研究所 一种膜电极在碱性阴离子交换膜燃料电池中的应用
CN102104151B (zh) * 2009-12-16 2013-09-18 中国科学院大连化学物理研究所 一种膜电极在碱性阴离子交换膜燃料电池中的应用
CN102658185A (zh) * 2012-04-23 2012-09-12 汉能科技有限公司 一种二次可逆空气电极用催化剂及其制备方法
CN103730665B (zh) * 2012-10-15 2016-02-17 丰田自动车株式会社 空气电池用空气极以及空气电池
US9225018B2 (en) 2012-10-15 2015-12-29 Toyota Jidosha Kabushiki Kaisha Air cathode for air batteries and air battery
CN103730665A (zh) * 2012-10-15 2014-04-16 丰田自动车株式会社 空气电池用空气极以及空气电池
CN106981667A (zh) * 2017-05-09 2017-07-25 河海大学 一种二维碳化钛/碳纳米管负载铂颗粒复合材料的制备方法
CN106981667B (zh) * 2017-05-09 2019-11-12 河海大学 一种二维碳化钛/碳纳米管负载铂颗粒复合材料的制备方法
CN112820887A (zh) * 2021-01-18 2021-05-18 南京大学 一种燃料电池阴极氧还原催化剂及其制备方法和应用
CN112820887B (zh) * 2021-01-18 2022-03-18 南京大学 一种燃料电池阴极氧还原催化剂及其制备方法和应用
CN114260011A (zh) * 2022-01-05 2022-04-01 贵州师范大学 一种钌铱钛铂掺杂四元光电催化碳基电极的制备方法
CN114260011B (zh) * 2022-01-05 2023-09-12 贵州师范大学 一种钌铱钛铂掺杂四元光电催化碳基电极的制备方法

Also Published As

Publication number Publication date
WO2006119147A2 (en) 2006-11-09
DE112006001111B4 (de) 2009-06-25
US7622216B2 (en) 2009-11-24
US20060246344A1 (en) 2006-11-02
DE112006001111T5 (de) 2008-06-19
KR100982645B1 (ko) 2010-09-17
CN101171711B (zh) 2010-06-16
KR20080005451A (ko) 2008-01-11
WO2006119147A3 (en) 2007-09-20

Similar Documents

Publication Publication Date Title
CN101171711B (zh) 燃料电池催化剂的载体
CN101278422B (zh) 用于燃料电池电极的催化剂
US9882223B2 (en) Catalysts and electrodes for fuel cells
US7175930B2 (en) Conducting polymer-grafted carbon material for fuel cell applications
US9799903B2 (en) Electrocatalyst for solid polymer fuel cell
US20090047559A1 (en) Fuel cell electrode catalyst with improved noble metal utilization efficiency, method for manufacturing the same, and solid polymer fuel cell comprising the same
US7459103B2 (en) Conducting polymer-grafted carbon material for fuel cell applications
CA2570992A1 (en) Catalyst support for an electrochemical fuel cell
US7195834B2 (en) Metallized conducting polymer-grafted carbon material and method for making
US10090532B2 (en) Method for producing fuel cell electrode
US20100068591A1 (en) Fuel cell catalyst, fuel cell cathode and polymer electrolyte fuel cell including the same
JP2004510316A (ja) タングステン含有燃料電池触媒及びその製造方法
US11515555B2 (en) Reversible shunts for overcharge protection in polymer electrolyte membrane fuel cells
CN101978536B (zh) 膜电极接合体和燃料电池
JP5065289B2 (ja) 貴金属量を低減させた燃料電池用電極、及びそれを備えた固体高分子型燃料電池
CN101794894B (zh) 用于pem燃料电池的阳极材料
Lyth et al. Electrocatalysts in polymer electrolyte membrane fuel cells
Ornelas et al. Accelerated degradation tests for Pt/C catalysts in sulfuric acid
US20230112131A1 (en) Reversible shunts for overcharge protection in polymer electrolyte membrane fuel cells
WO2023091557A1 (en) Carbon supported electrode
JP2006140107A (ja) 固体高分子型燃料電池の電極構造体
Sheng Electrocatalytic activities of supported Pt nanoparticles for low-temperature fuel cell applications
CN118266106A (zh) 碳负载电极
KR101288972B1 (ko) 연료전지용 전극 및 이를 채용한 연료전지
Shieu et al. A Kinetic Study of the Platinum/Carbon Anode Catalyst

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100616

Termination date: 20210501

CF01 Termination of patent right due to non-payment of annual fee